Follow us on Wechat

用微信扫码二维码

分享至好友和朋友圈

Volume 6 Issue 3
May  2021
Turn off MathJax
Article Contents
Samsonov A. S., Kostyukov I. Yu., Nerush E. N.. Hydrodynamical model of QED cascade expansion in an extremely strong laser pulse[J]. Matter and Radiation at Extremes, 2021, 6(3): 034401. doi: 10.1063/5.0035347
Citation: Samsonov A. S., Kostyukov I. Yu., Nerush E. N.. Hydrodynamical model of QED cascade expansion in an extremely strong laser pulse[J]. Matter and Radiation at Extremes, 2021, 6(3): 034401. doi: 10.1063/5.0035347

Hydrodynamical model of QED cascade expansion in an extremely strong laser pulse

doi: 10.1063/5.0035347
More Information
  • Corresponding author: a)Author to whom correspondence should be addressed: asams@ipfran.ru
  • Received Date: 2020-10-28
  • Accepted Date: 2021-02-14
  • Available Online: 2021-05-01
  • Publish Date: 2021-05-15
  • The development of a self-sustained quantum electrodynamical (QED) cascade in a single strong laser pulse is studied analytically and numerically. A hydrodynamical approach is used to construct an analytical model of cascade evolution, which includes the key features of the cascade observed in 3D QED particle-in-cell (QED-PIC) simulations, such as the magnetic field dominance in the cascade plasma and laser energy absorption. The equations of the model are derived in closed form and solved numerically. Direct comparison between the solutions of the model equations and 3D QED-PIC simulations shows that our model is able to describe the complex nonlinear process of cascade development qualitatively well. Various regimes of the interaction based on the intensity of the laser pulse are revealed in both the solutions of the model equations and the results of the QED-PIC simulations.
  • loading
  • [1]
    P. A. Sturrock, “A model of pulsars,” Astrophys. J. 164, 529 (1971).10.1086/150865
    [2]
    J. K. Daugherty and A. K. Harding, “Electromagnetic cascades in pulsars,” Astrophys. J. 252, 337–347 (1982).10.1086/159561
    [3]
    E. N. Nerush and I. Yu. Kostyukov, “Radiation emission by extreme relativistic electrons and pair production by hard photons in a strong plasma wakefield,” Phys. Rev. E 75, 057401 (2007).10.1103/physreve.75.057401
    [4]
    A. R. Bell and J. G. Kirk, “Possibility of prolific pair production with high-power lasers,” Phys. Rev. Lett. 101, 200403 (2008).10.1103/physrevlett.101.200403
    [5]
    E. N. Nerush, I. Yu. Kostyukov, A. M. Fedotov, N. B. Narozhny, N. V. Elkina, and H. Ruhl, “Laser field absorption in self-generated electron-positron pair plasma,” Phys. Rev. Lett. 106, 035001 (2011).10.1103/physrevlett.106.035001
    [6]
    C. P. Ridgers, C. S. Brady, R. Duclous, J. G. Kirk, K. Bennett, T. D. Arber, A. P. L. Robinson, and A. R. Bell, “Dense electron-positron plasmas and ultraintense γ rays from laser-irradiated solids,” Phys. Rev. Lett. 108, 165006 (2012).10.1103/physrevlett.108.165006
    [7]
    N. B. Narozhny and A. M. Fedotov, “Quantum-electrodynamic cascades in intense laser fields,” Phys.-Usp. 58, 95 (2015).10.3367/ufne.0185.201501i.0103
    [8]
    I. Yu. Kostyukov and E. N. Nerush, “Production and dynamics of positrons in ultrahigh intensity laser-foil interactions,” Phys. Plasmas 23, 093119 (2016).10.1063/1.4962567
    [9]
    E. N. Nerush, D. A. Serebryakov, and I. Yu. Kostyukov, “Weibel instability in hot plasma flows with the production of gamma-rays and electron–positron pairs,” Astrophys. J. 851, 129 (2017).10.3847/1538-4357/aa9d1a
    [10]
    E. S. Efimenko, A. V. Bashinov, A. A. Gonoskov, S. I. Bastrakov, A. A. Muraviev, I. B. Meyerov, A. V. Kim, and A. M. Sergeev, “Laser-driven plasma pinching in e−e+ cascade,” Phys. Rev. E 99, 031201 (2019).10.1103/physreve.99.031201
    [11]
    V. Yakimenko, S. Meuren, F. Del Gaudio, C. Baumann, A. Fedotov, F. Fiuza, T. Grismayer, M. Hogan, A. Pukhov, L. Silva et al., “Prospect of studying nonperturbative QED with beam-beam collisions,” Phys. Rev. Lett. 122, 190404 (2019).10.1103/physrevlett.122.190404
    [12]
    H. J. Bhabha and W. Heitler, “The passage of fast electrons and the theory of cosmic showers,” Proc. R. Soc. London, Ser. A 159, 432–458 (1937).10.1098/rspa.1937.0082
    [13]
    M. A. Ruderman and P. G. Sutherland, “Theory of pulsars-polar caps, sparks, and coherent microwave radiation,” Astrophys. J. 196, 51–72 (1975).10.1086/153393
    [14]
    P. Mészáros, “Gamma-ray bursts,” Rep. Prog. Phys. 69, 2259 (2006).10.1088/0034-4885/69/8/r01
    [15]
    Y. B. Zel’dovich, “Interaction of free electrons with electromagnetic radiation,” Sov. Phys. Usp. 18, 79 (1975).10.1070/PU1975v018n02ABEH001947
    [16]
    F. Rohrlich, Classical Charged Particles (World Scientific Publishing Company, 2007).
    [17]
    V. I. Ritus, “Quantum effects of the interaction of elementary particles with an intense electromagnetic field,” J. Sov. Laser Res. 6, 497–617 (1985).10.1007/bf01120220
    [18]
    V. N. Baier, V. M. Katkov, and V. M. Strakhovenko, Electromagnetic Processes at High Energies in Oriented Single Crystals (World Scientific, 1998).
    [19]
    See http://www.eli-laser.eu for the extreme light infrastructure (ELI).
    [20]
    See https://portail.polytechnique.edu/luli/en/cilex-apollon/apollon for APOLLON.
    [21]
    A. Gonoskov, I. Gonoskov, C. Harvey, A. Ilderton, A. Kim, M. Marklund, G. Mourou, and A. Sergeev, “Probing nonperturbative QED with optimally focused laser pulses,” Phys. Rev. Lett. 111, 060404 (2013).10.1103/physrevlett.111.060404
    [22]
    E. G. Gelfer, A. A. Mironov, A. M. Fedotov, V. F. Bashmakov, E. N. Nerush, I. Yu. Kostyukov, and N. B. Narozhny, “Optimized multibeam configuration for observation of QED cascades,” Phys. Rev. A 92, 022113 (2015).10.1103/physreva.92.022113
    [23]
    T. Grismayer, M. Vranic, J. L. Martins, R. A. Fonseca, and L. O. Silva, “Laser absorption via quantum electrodynamics cascades in counter propagating laser pulses,” Phys. Plasmas 23, 056706 (2016).10.1063/1.4950841
    [24]
    T. Grismayer, M. Vranic, J. L. Martins, R. A. Fonseca, and L. O. Silva, “Seeded QED cascades in counterpropagating laser pulses,” Phys. Rev. E 95, 023210 (2017).10.1103/physreve.95.023210
    [25]
    M. Jirka, O. Klimo, M. Vranic, S. Weber, and G. Korn, “QED cascade with 10 PW-class lasers,” Sci. Rep. 7, 15302 (2017).10.1038/s41598-017-15747-1
    [26]
    W. Luo, W.-Y. Liu, T. Yuan, M. Chen, J.-Y. Yu, F.-Y. Li, D. Del Sorbo, C. Ridgers, and Z.-M. Sheng, “QED cascade saturation in extreme high fields,” Sci. Rep. 8, 8400 (2018).10.1038/s41598-018-26785-8
    [27]
    P. Zhang, S. S. Bulanov, D. Seipt, A. V. Arefiev, and A. G. R. Thomas, “Relativistic plasma physics in supercritical fields,” Phys. Plasmas 27, 050601 (2020).10.1063/1.5144449
    [28]
    E. N. Nerush, V. F. Bashmakov, and I. Yu. Kostyukov, “Analytical model for electromagnetic cascades in rotating electric field,” Phys. Plasmas 18, 083107 (2011).10.1063/1.3624481
    [29]
    D. Del Sorbo, D. R. Blackman, R. Capdessus, K. Small, C. Slade-Lowther, W. Luo, M. J. Duff, A. P. L. Robinson, P. McKenna, Z.-M. Sheng et al., “Efficient ion acceleration and dense electron–positron plasma creation in ultra-high intensity laser-solid interactions,” New J. Phys. 20, 033014 (2018).10.1088/1367-2630/aaae61
    [30]
    I. Yu. Kostyukov, I. I. Artemenko, and E. N. Nerush, “Growth rate of QED cascades in a rotating electric field,” 2018, 259–263.
    [31]
    T. Yuan, J. Y. Yu, W. Y. Liu, S. M. Weng, X. H. Yuan, W. Luo, M. Chen, Z. M. Sheng, and J. Zhang, “Spatiotemporal distributions of pair production and cascade in solid targets irradiated by ultra-relativistic lasers with different polarizations,” Plasma Phys. Controlled Fusion 60, 065003 (2018).10.1088/1361-6587/aab3ba
    [32]
    W. Luo, S.-D. Wu, W.-Y. Liu, Y.-Y. Ma, F.-Y. Li, T. Yuan, J.-Y. Yu, M. Chen, and Z.-M. Sheng, “Enhanced electron-positron pair production by two obliquely incident lasers interacting with a solid target,” Plasma Phys. Controlled Fusion 60, 095006 (2018).10.1088/1361-6587/aad211
    [33]
    Y. Lu, T.-P. Yu, L.-X. Hu, Z.-Y. Ge, W.-Q. Wang, J.-X. Liu, K. Liu, Y. Yin, and F.-Q. Shao, “Enhanced copious electron–positron pair production via electron injection from a mass-limited foil,” Plasma Phys. Controlled Fusion 60, 125008 (2018).10.1088/1361-6587/aae819
    [34]
    B. Martinez, M. Lobet, R. Duclous, E. d’Humières, and L. Gremillet, “High-energy radiation and pair production by Coulomb processes in particle-in-cell simulations,” Phys. Plasmas 26, 103109 (2019).10.1063/1.5118339
    [35]
    V. B. Berestetskii, E. M. Lifshitz, and L. P. Pitaevskii, Quantum Electrodynamics (Butterworth-Heinemann, 1982), Vol. 4.
    [36]
    A. A. Mironov, N. B. Narozhny, and A. M. Fedotov, “Collapse and revival of electromagnetic cascades in focused intense laser pulses,” Phys. Lett. A 378, 3254–3257 (2014).10.1016/j.physleta.2014.09.058
    [37]
    A. S. Samsonov, E. N. Nerush, and I. Yu. Kostyukov, “Laser-driven vacuum breakdown waves,” Sci. Rep. 9, 11133 (2019).10.1038/s41598-019-47355-6
    [38]
    V. E. Semenov, “Breakdown wave in the self-consistent field of an electromagnetic wave beam,” Sov. J. Plasma Phys. 8, 347–350 (1982).
    [39]
    J. G. Kirk, A. R. Bell, and C. P. Ridgers, “Pair plasma cushions in the hole-boring scenario,” Plasma Phys. Controlled Fusion 55, 095016 (2013).10.1088/0741-3335/55/9/095016
    [40]
    N. V. Elkina, A. M. Fedotov, I. Yu. Kostyukov, M. V. Legkov, N. B. Narozhny, E. N. Nerush, and H. Ruhl, “QED cascades induced by circularly polarized laser fields,” Phys. Rev. Spec. Top.–Accel. Beams 14, 054401 (2011).10.1103/physrevstab.14.054401
    [41]
    L. D. Landau, J. S. Bell, M. J. Kearsley, L. P. Pitaevskii, E. M. Lifshitz, and J. B. Sykes, Electrodynamics of Continuous Media (Elsevier, 2013), Vol. 8.
    [42]
    See ipfran.ru/institute/structure/421969/quill-3d-code for QUILL code.
    [43]
    A. Di Piazza, C. Müller, K. Z. Hatsagortsyan, and C. H. Keitel, “Extremely high-intensity laser interactions with fundamental quantum systems,” Rev. Mod. Phys. 84, 1177–1228 (2012).10.1103/revmodphys.84.1177
    [44]
    S. S. Bulanov, C. B. Schroeder, E. Esarey, and W. P. Leemans, “Electromagnetic cascade in high-energy electron, positron, and photon interactions with intense laser pulses,” Phys. Rev. A 87, 062110 (2013).10.1103/physreva.87.062110
    [45]
    A. Mironov, A. Fedotov, and N. Narozhny, “Observable features of QED cascades in collisions of GeV electrons with intense laser pulses,” J. Phys.: Conf. Ser. 826, 012029 (2017).10.1088/1742-6596/826/1/012029
    [46]
    L. D. Landau, The Classical Theory of Fields (Elsevier, 2013), Vol. 2.
    [47]
    J. N. Bardsley, B. M. Penetrante, and M. H. Mittleman, “Relativistic dynamics of electrons in intense laser fields,” Phys. Rev. A 40, 3823 (1989).10.1103/physreva.40.3823
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(9)

    Article Metrics

    Article views (254) PDF downloads(6) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return