Follow us on Wechat

用微信扫码二维码

分享至好友和朋友圈

Volume 6 Issue 2
Mar.  2021
Turn off MathJax
Article Contents
Yan Zixiang, Liu Hao, Zhang Xinyu, Ren Guoli, Liu Jie, Kang Wei, Zhang Weiyan, He Xiantu. Dynamics of particles near the surface of a medium under ultra-strong shocks[J]. Matter and Radiation at Extremes, 2021, 6(2): 026903. doi: 10.1063/5.0030906
Citation: Yan Zixiang, Liu Hao, Zhang Xinyu, Ren Guoli, Liu Jie, Kang Wei, Zhang Weiyan, He Xiantu. Dynamics of particles near the surface of a medium under ultra-strong shocks[J]. Matter and Radiation at Extremes, 2021, 6(2): 026903. doi: 10.1063/5.0030906

Dynamics of particles near the surface of a medium under ultra-strong shocks

doi: 10.1063/5.0030906
More Information
  • Corresponding author: a)Author to whom correspondence should be addressed: weikang@pku.edu.cn
  • Received Date: 2020-09-27
  • Accepted Date: 2021-02-08
  • Available Online: 2021-03-01
  • Publish Date: 2021-03-15
  • Through nonequilibrium molecular dynamics simulations, we provide an atomic-scale picture of the dynamics of particles near the surface of a medium under ultra-strong shocks. This shows that the measured surface velocity vf under ultra-strong shocks is actually the velocity of the critical surface at which the incident probe light is reflected, and vf has a single-peaked structure. The doubling rule commonly used in the case of relatively weak shocks to determine particle velocity behind the shock front is generally not valid under ultra-strong shocks. After a short period of acceleration, vf exhibits a long slowly decaying tail, which is not sensitive to the atomic mass of the medium. A scaling law for vf is also proposed, and this may be used to improve the measurement of particle velocity u in future experiments.
  • loading
  • [1]
    M. Millot, P. M. Celliers, P. A. Sterne et al., “Measuring the shock impedance mismatch between high-density carbon and deuterium at the National Ignition Facility,” Phys. Rev. B 97, 144108 (2018).10.1103/physrevb.97.144108
    [2]
    J. Zheng, Q. F. Chen, Y. J. Gu et al., “Shock-adiabatic to quasi-isentropic compression of warm dense helium up to 150 Gpa,” Phys. Rev. B 95, 224104 (2017).10.1103/physrevb.95.224104
    [3]
    T. Doppner, D. C. Swift, A. L. Kritcher et al., “Absolute equation-of-state measurement for polystyrene from 25 to 60 Mbar using a spherically converging shock wave,” Phys. Rev. Lett. 121, 025001 (2018).10.1103/physrevlett.121.025001
    [4]
    C. A. McCoy, M. C. Gregor, D. N. Polsin et al., “Shock-wave equation-of-state measurements in fused silica up to 1600 Gpa,” J. Appl. Phys. 119, 215901 (2016).10.1063/1.4952975
    [5]
    Z. G. Li, Q. F. Chen, Y. J. Gu et al., “Multishock compression of dense cryogenic hydrogen-helium mixtures up to 60 Gpa: Validating the equation of state calculated from first principles,” Phys. Rev. B 98, 064101 (2018).10.1103/physrevb.98.064101
    [6]
    D. Batani, H. Stabile et al., “Hugoniot data for carbon at megabar pressures,” Phys. Rev. Lett. 92, 065503 (2004).10.1103/physrevlett.92.065503
    [7]
    D. Batani, A. Balducci et al., “Equation of state data for gold in the pressure range <10 TPa,” Phys. Rev. B 61, 9287 (2000).10.1103/physrevb.61.9287
    [8]
    D. Batani, A. Morelli et al., “Equation of state data for iron at pressure beyond 10 mbar,” Phys. Rev. Lett. 88, 235502 (2002).10.1103/physrevlett.88.235502
    [9]
    N. Ozaki, K. A. Tanaka et al., “Gekko/hiper-driven shock waves and equation-of-state measurements at ultrahigh pressures,” Phys. Plasmas 11, 1600 (2004).10.1063/1.1650845
    [10]
    N. Ozaki, T. Ono et al., “Equation-of-state measurements for polystyrene at multi-tpa pressures in laser direct-drive experiments,” Phys. Plasmas 12, 124503 (2005).10.1063/1.2149310
    [11]
    K. Jakubowska et al., “Theoretical and experimental refraction index of shock compressed and pre-compressed water in the megabar pressure range,” Eur. Phys. Lett. 126, 56001 (2019).10.1209/0295-5075/126/56001
    [12]
    M. Koenig et al., “Relative consistency of equation of state by laser driven shock waves,” Phys. Rev. Lett. 74, 2260 (1995).10.1103/physrevlett.74.2260
    [13]
    A. L. Kritcher, D. C. Swift, T. Doppner et al., “A measurement of the equation of state of carbon envelopes of white dwarfs,” Nature 584, 51 (2020).10.1038/s41586-020-2535-y
    [14]
    J. Lindl, “Development of the indirect-drive approach to inertial confinement fusion and the target physics basis for ignition and gain,” Phys. Plasmas 2, 3933 (1995).10.1063/1.871025
    [15]
    Z. Fan, Y. Liu, B. Liu et al., “Non-equilibrium between ions and electrons inside hot spots from National Ignition Facility experiments,” Matter Radiat. Extremes 2, 3 (2017).10.1016/j.mre.2016.11.003
    [16]
    E. M. Campbell, V. N. Goncharov, T. C. Sangster et al., “Laser-direct drive program: Promise, challenge and path forward,” Matter Radiat. Extremes 2, 37 (2017).10.1016/j.mre.2017.03.001
    [17]
    J. Nilsen, A. L. Kritcher, M. E. Martin et al., “Understanding the effects of radiative preheat and self-emission from shock heating on equation of state measurement at 100s of Mbar using spherically converging shock waves in a NIF hohlraum,” Matter Radiat. Extremes 5, 018410 (2020).10.1063/1.5131748
    [18]
    J. A. Gaffney, S. X. Hu, P. Arnault et al., “A review of equation-of-state models for inertial confinement fusion materials,” High Energy Density Phys. 28, 7 (2018).10.1016/j.hedp.2018.08.001
    [19]
    X. T. He, J. W. Li, Z. F. Fan et al., “A hybrid-drive nonisobaric-ignition scheme for inertial confinement fusion,” Phys. Plasmas 23, 082706 (2016).10.1063/1.4960973
    [20]
    Y. B. Zel’dovich and Y. P. Raizer, Physics of Shock Waves and High-Temperature Hydrodynamic Phenomena (Academic Press, New York and London, 1967).
    [21]
    J. M. Walsh and R. H. Christian, “Equation of state of metals from shock wave measurements,” Phys. Rev. 97, 1544–1556 (1955).10.1103/physrev.97.1544
    [22]
    J. M. Walsh, M. H. Rice, R. G. Mcqueen et al., “Shock-wave compressions of twenty-seven metals. Equations of state of metals,” Phys. Rev. 108, 196–216 (1957).10.1103/physrev.108.196
    [23]
    A. Benuzzi-Mounaix, M. Koenig, G. Huser et al., “Absolute equation of state measurements of iron using laser driven shocks,” Phys. Plasmas 9, 2466 (2002).10.1063/1.1478557
    [24]
    L. V. Al’tshuler, K. K. Krupnikov, B. N. Ledenev et al., “Dynamic compressibility and equation of state of iron under high pressure,” Sov. Phys. JETP. 7, 606 (1958).
    [25]
    L. V. Al’tshuler, S. B. Kormer, A. A. Bakanova et al., “Equation of state for aluminum, copper, and lead in the high pressure region,” Sov. Phys. JETP. 11, 573 (1960).
    [26]
    L. M. Baker and R. E. Hollenbach, “Laser interferometer for measuring high velocities of any reflecting surface,” J. Appl. Phys. 43, 4669–4675 (1972).10.1063/1.1660986
    [27]
    D. R. Goosman, “Analysis of the laser velocity interferometer,” J. Appl. Phys. 46, 3516–3524 (1975).10.1063/1.322079
    [28]
    P. M. Celliers, G. W. Collins, L. B. D. Silva et al., “Accurate measurement of laser-driven shock trajectories with velocity interferometry,” Appl. Phys. Lett. 73, 1320–1322 (1998).10.1063/1.121882
    [29]
    P. M. Celliers, D. K. Bradley, G. W. Collins et al., “Line-imaging velocimeter for shock diagnostics at the OMEGA laser facility,” Rev. Sci. Instrum. 75, 4916–4929 (2004).10.1063/1.1807008
    [30]
    W. F. Hemsing, “Velocity sensing interferometer (VISAR) modification,” Rev. Sci. Instrum. 50, 73–78 (1979).10.1063/1.1135672
    [31]
    P. M. Celliers, G. W. Collins, L. B. D. Silva et al., “Shock-induced transformation of liquid deuterium into a metallic fluid,” Phys. Rev. Lett. 84, 5564–5567 (2000).10.1103/physrevlett.84.5564
    [32]
    D. G. Hicks, P. M. Celliers, G. Collins et al., “Shock-induced transformation of Al2O3 and LiF into semiconducting liquids,” Phys. Rev. Lett. 91, 035502 (2003).10.1103/physrevlett.91.035502
    [33]
    P. Loubeyre, P. M. Celliers, D. G. Hicks et al., “Coupling static and dynamic compressions: First measurements in dense hydrogen,” High Pressure Res. 24, 25–31 (2004).10.1080/08957950310001635792
    [34]
    T. R. Boehly, V. N. Goncharov, W. Seka et al., “Velocity and timing of multiple spherically converging shock waves in liquid deuterium,” Phys. Rev. Lett. 106, 195001 (2011).10.1103/physrevlett.106.195005
    [35]
    S. Zhang, A. Lazicki, B. Militzer et al., “Equation of state of boron nitride combining computation, modeling, and experiment,” Phys. Rev. B 99, 165103 (2019).10.1103/physrevb.99.165103
    [36]
    D. H. Dolan, “What does ‘velocity’ interferometry really measure,” AIP Conf. Proc. 1159, 589 (2009).10.1063/1.3295207
    [37]
    B. L. Holian, C. W. Patterson, M. Mareschal, and E. Salomons, “Modeling shock wave in an ideal gas: Going beyond the Navier-Stokes level,” Phys. Rev. E. 47, R24–R27 (1993).10.1103/physreve.47.r24
    [38]
    H. Liu, W. Kang, Q. Zhang et al., “Molecular dynamics simulations of microscopic structure of ultra strong shock waves in dense helium,” Front. Phys. 11, 115206 (2016).10.1007/s11467-016-0590-5
    [39]
    S. Plimpton, P. Crozier, and A. Thompson, Lammps-Large-Scale Atomic/Molecular Massively Parallel Simulator (Sandia National Laboratories, 2007).
    [40]
    L. Verlet, “Computer ‘experiments’ on classical fluids. I. Thermodynamical properties of Lennard-Jones molecules,” Phys. Rev. 159, 98–103 (1967).10.1103/physrev.159.98
    [41]
    R. A. Aziz, V. P. S. Nain, J. S. Carley et al., “An accurate intermolecular potential for helium,” J. Chem. Phys. 70, 4330 (1979).10.1063/1.438007
    [42]
    A. Benuzzi, M. Koenig, B. Faral et al., “Preheating study by reflectivity measurements in laser-driven shocks,” Phys. Plasmas 5, 2410 (1998).10.1063/1.872917
    [43]
    P. Gibbon, Short Pulse Laser Interactions with Matter (Inperial College Press, London, 2005).
    [44]
    H. Liu, Y. Zhang, W. Kang et al., “Molecular dynamics simulation of strong shock waves propagating in dense deuterium, taking into consideration effects of excited electrons,” Phys. Rev. E. 95, 023201 (2017).10.1103/physreve.95.023201
    [45]
    G. A. Baker, Essentials of Padé Approximants (Academic Press, New York, London, 1975).
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(6)  / Tables(1)

    Article Metrics

    Article views (187) PDF downloads(7) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return