Citation: | Yan Zixiang, Liu Hao, Zhang Xinyu, Ren Guoli, Liu Jie, Kang Wei, Zhang Weiyan, He Xiantu. Dynamics of particles near the surface of a medium under ultra-strong shocks[J]. Matter and Radiation at Extremes, 2021, 6(2): 026903. doi: 10.1063/5.0030906 |
[1] |
M. Millot, P. M. Celliers, P. A. Sterne et al., “Measuring the shock impedance mismatch between high-density carbon and deuterium at the National Ignition Facility,” Phys. Rev. B 97, 144108 (2018).10.1103/physrevb.97.144108
|
[2] |
J. Zheng, Q. F. Chen, Y. J. Gu et al., “Shock-adiabatic to quasi-isentropic compression of warm dense helium up to 150 Gpa,” Phys. Rev. B 95, 224104 (2017).10.1103/physrevb.95.224104
|
[3] |
T. Doppner, D. C. Swift, A. L. Kritcher et al., “Absolute equation-of-state measurement for polystyrene from 25 to 60 Mbar using a spherically converging shock wave,” Phys. Rev. Lett. 121, 025001 (2018).10.1103/physrevlett.121.025001
|
[4] |
C. A. McCoy, M. C. Gregor, D. N. Polsin et al., “Shock-wave equation-of-state measurements in fused silica up to 1600 Gpa,” J. Appl. Phys. 119, 215901 (2016).10.1063/1.4952975
|
[5] |
Z. G. Li, Q. F. Chen, Y. J. Gu et al., “Multishock compression of dense cryogenic hydrogen-helium mixtures up to 60 Gpa: Validating the equation of state calculated from first principles,” Phys. Rev. B 98, 064101 (2018).10.1103/physrevb.98.064101
|
[6] |
D. Batani, H. Stabile et al., “Hugoniot data for carbon at megabar pressures,” Phys. Rev. Lett. 92, 065503 (2004).10.1103/physrevlett.92.065503
|
[7] |
D. Batani, A. Balducci et al., “Equation of state data for gold in the pressure range <10 TPa,” Phys. Rev. B 61, 9287 (2000).10.1103/physrevb.61.9287
|
[8] |
D. Batani, A. Morelli et al., “Equation of state data for iron at pressure beyond 10 mbar,” Phys. Rev. Lett. 88, 235502 (2002).10.1103/physrevlett.88.235502
|
[9] |
N. Ozaki, K. A. Tanaka et al., “Gekko/hiper-driven shock waves and equation-of-state measurements at ultrahigh pressures,” Phys. Plasmas 11, 1600 (2004).10.1063/1.1650845
|
[10] |
N. Ozaki, T. Ono et al., “Equation-of-state measurements for polystyrene at multi-tpa pressures in laser direct-drive experiments,” Phys. Plasmas 12, 124503 (2005).10.1063/1.2149310
|
[11] |
K. Jakubowska et al., “Theoretical and experimental refraction index of shock compressed and pre-compressed water in the megabar pressure range,” Eur. Phys. Lett. 126, 56001 (2019).10.1209/0295-5075/126/56001
|
[12] |
M. Koenig et al., “Relative consistency of equation of state by laser driven shock waves,” Phys. Rev. Lett. 74, 2260 (1995).10.1103/physrevlett.74.2260
|
[13] |
A. L. Kritcher, D. C. Swift, T. Doppner et al., “A measurement of the equation of state of carbon envelopes of white dwarfs,” Nature 584, 51 (2020).10.1038/s41586-020-2535-y
|
[14] |
J. Lindl, “Development of the indirect-drive approach to inertial confinement fusion and the target physics basis for ignition and gain,” Phys. Plasmas 2, 3933 (1995).10.1063/1.871025
|
[15] |
Z. Fan, Y. Liu, B. Liu et al., “Non-equilibrium between ions and electrons inside hot spots from National Ignition Facility experiments,” Matter Radiat. Extremes 2, 3 (2017).10.1016/j.mre.2016.11.003
|
[16] |
E. M. Campbell, V. N. Goncharov, T. C. Sangster et al., “Laser-direct drive program: Promise, challenge and path forward,” Matter Radiat. Extremes 2, 37 (2017).10.1016/j.mre.2017.03.001
|
[17] |
J. Nilsen, A. L. Kritcher, M. E. Martin et al., “Understanding the effects of radiative preheat and self-emission from shock heating on equation of state measurement at 100s of Mbar using spherically converging shock waves in a NIF hohlraum,” Matter Radiat. Extremes 5, 018410 (2020).10.1063/1.5131748
|
[18] |
J. A. Gaffney, S. X. Hu, P. Arnault et al., “A review of equation-of-state models for inertial confinement fusion materials,” High Energy Density Phys. 28, 7 (2018).10.1016/j.hedp.2018.08.001
|
[19] |
X. T. He, J. W. Li, Z. F. Fan et al., “A hybrid-drive nonisobaric-ignition scheme for inertial confinement fusion,” Phys. Plasmas 23, 082706 (2016).10.1063/1.4960973
|
[20] |
Y. B. Zel’dovich and Y. P. Raizer, Physics of Shock Waves and High-Temperature Hydrodynamic Phenomena (Academic Press, New York and London, 1967).
|
[21] |
J. M. Walsh and R. H. Christian, “Equation of state of metals from shock wave measurements,” Phys. Rev. 97, 1544–1556 (1955).10.1103/physrev.97.1544
|
[22] |
J. M. Walsh, M. H. Rice, R. G. Mcqueen et al., “Shock-wave compressions of twenty-seven metals. Equations of state of metals,” Phys. Rev. 108, 196–216 (1957).10.1103/physrev.108.196
|
[23] |
A. Benuzzi-Mounaix, M. Koenig, G. Huser et al., “Absolute equation of state measurements of iron using laser driven shocks,” Phys. Plasmas 9, 2466 (2002).10.1063/1.1478557
|
[24] |
L. V. Al’tshuler, K. K. Krupnikov, B. N. Ledenev et al., “Dynamic compressibility and equation of state of iron under high pressure,” Sov. Phys. JETP. 7, 606 (1958).
|
[25] |
L. V. Al’tshuler, S. B. Kormer, A. A. Bakanova et al., “Equation of state for aluminum, copper, and lead in the high pressure region,” Sov. Phys. JETP. 11, 573 (1960).
|
[26] |
L. M. Baker and R. E. Hollenbach, “Laser interferometer for measuring high velocities of any reflecting surface,” J. Appl. Phys. 43, 4669–4675 (1972).10.1063/1.1660986
|
[27] |
D. R. Goosman, “Analysis of the laser velocity interferometer,” J. Appl. Phys. 46, 3516–3524 (1975).10.1063/1.322079
|
[28] |
P. M. Celliers, G. W. Collins, L. B. D. Silva et al., “Accurate measurement of laser-driven shock trajectories with velocity interferometry,” Appl. Phys. Lett. 73, 1320–1322 (1998).10.1063/1.121882
|
[29] |
P. M. Celliers, D. K. Bradley, G. W. Collins et al., “Line-imaging velocimeter for shock diagnostics at the OMEGA laser facility,” Rev. Sci. Instrum. 75, 4916–4929 (2004).10.1063/1.1807008
|
[30] |
W. F. Hemsing, “Velocity sensing interferometer (VISAR) modification,” Rev. Sci. Instrum. 50, 73–78 (1979).10.1063/1.1135672
|
[31] |
P. M. Celliers, G. W. Collins, L. B. D. Silva et al., “Shock-induced transformation of liquid deuterium into a metallic fluid,” Phys. Rev. Lett. 84, 5564–5567 (2000).10.1103/physrevlett.84.5564
|
[32] |
D. G. Hicks, P. M. Celliers, G. Collins et al., “Shock-induced transformation of Al2O3 and LiF into semiconducting liquids,” Phys. Rev. Lett. 91, 035502 (2003).10.1103/physrevlett.91.035502
|
[33] |
P. Loubeyre, P. M. Celliers, D. G. Hicks et al., “Coupling static and dynamic compressions: First measurements in dense hydrogen,” High Pressure Res. 24, 25–31 (2004).10.1080/08957950310001635792
|
[34] |
T. R. Boehly, V. N. Goncharov, W. Seka et al., “Velocity and timing of multiple spherically converging shock waves in liquid deuterium,” Phys. Rev. Lett. 106, 195001 (2011).10.1103/physrevlett.106.195005
|
[35] |
S. Zhang, A. Lazicki, B. Militzer et al., “Equation of state of boron nitride combining computation, modeling, and experiment,” Phys. Rev. B 99, 165103 (2019).10.1103/physrevb.99.165103
|
[36] |
D. H. Dolan, “What does ‘velocity’ interferometry really measure,” AIP Conf. Proc. 1159, 589 (2009).10.1063/1.3295207
|
[37] |
B. L. Holian, C. W. Patterson, M. Mareschal, and E. Salomons, “Modeling shock wave in an ideal gas: Going beyond the Navier-Stokes level,” Phys. Rev. E. 47, R24–R27 (1993).10.1103/physreve.47.r24
|
[38] |
H. Liu, W. Kang, Q. Zhang et al., “Molecular dynamics simulations of microscopic structure of ultra strong shock waves in dense helium,” Front. Phys. 11, 115206 (2016).10.1007/s11467-016-0590-5
|
[39] |
S. Plimpton, P. Crozier, and A. Thompson, Lammps-Large-Scale Atomic/Molecular Massively Parallel Simulator (Sandia National Laboratories, 2007).
|
[40] |
L. Verlet, “Computer ‘experiments’ on classical fluids. I. Thermodynamical properties of Lennard-Jones molecules,” Phys. Rev. 159, 98–103 (1967).10.1103/physrev.159.98
|
[41] |
R. A. Aziz, V. P. S. Nain, J. S. Carley et al., “An accurate intermolecular potential for helium,” J. Chem. Phys. 70, 4330 (1979).10.1063/1.438007
|
[42] |
A. Benuzzi, M. Koenig, B. Faral et al., “Preheating study by reflectivity measurements in laser-driven shocks,” Phys. Plasmas 5, 2410 (1998).10.1063/1.872917
|
[43] |
P. Gibbon, Short Pulse Laser Interactions with Matter (Inperial College Press, London, 2005).
|
[44] |
H. Liu, Y. Zhang, W. Kang et al., “Molecular dynamics simulation of strong shock waves propagating in dense deuterium, taking into consideration effects of excited electrons,” Phys. Rev. E. 95, 023201 (2017).10.1103/physreve.95.023201
|
[45] |
G. A. Baker, Essentials of Padé Approximants (Academic Press, New York, London, 1975).
|