Follow us on Wechat

用微信扫码二维码

分享至好友和朋友圈

Volume 6 Issue 5
Sep.  2021
Turn off MathJax
Article Contents
Terasaki Hidenori, Sakaiya Tatsuhiro, Shigemori Keisuke, Akimoto Kosaku, Kato Hiroki, Hironaka Yoichiro, Kondo Tadashi. In situ observation of the Rayleigh–Taylor instability of liquid Fe and Fe–Si alloys under extreme conditions: Implications for planetary core formation[J]. Matter and Radiation at Extremes, 2021, 6(5): 054403. doi: 10.1063/5.0029448
Citation: Terasaki Hidenori, Sakaiya Tatsuhiro, Shigemori Keisuke, Akimoto Kosaku, Kato Hiroki, Hironaka Yoichiro, Kondo Tadashi. In situ observation of the Rayleigh–Taylor instability of liquid Fe and Fe–Si alloys under extreme conditions: Implications for planetary core formation[J]. Matter and Radiation at Extremes, 2021, 6(5): 054403. doi: 10.1063/5.0029448

In situ observation of the Rayleigh–Taylor instability of liquid Fe and Fe–Si alloys under extreme conditions: Implications for planetary core formation

doi: 10.1063/5.0029448
More Information
  • Corresponding author: a)Author to whom correspondence should be addressed: tera@okayama-u.ac.jp
  • Received Date: 2020-09-13
  • Accepted Date: 2021-08-02
  • Available Online: 2021-09-01
  • Publish Date: 2021-09-15
  • Rayleigh–Taylor (RT) instability, which occurs when a heavy fluid overlies a light fluid in a gravitational field, is an important scenario for planetary core formation, especially beneath the planetary magma ocean. This process has been discussed based on numerical simulations and experiments using analog materials. However, experiments on the RT instability using the core-forming melt have not been performed at high pressures. In this study, we perform in situ observation of the RT instability of liquid Fe and Fe–Si (Si = 10 and 20 wt. %) alloys under high pressure using a high-power laser-shock technique. The observed perturbation on the Fe–Si surface grows exponentially with time, while there is no obvious growth of perturbations on the Fe in the measured time range. Therefore, the growth rate of the RT instability increases with Si content. The timescale of the initial growth of the RT instability in planetary interiors is likely to be much faster (by more than two orders of magnitude) than the 30–40 × 106 year timescale of planetary core formation.
  • loading
  • [1]
    D. C. Rubie and S. A. Jacobson, “Mechanisms and geochemical models of core formation,” in Deep Earth: Physics and Chemistry of the Lower Mantle and Core, Geophysical Monograph Series Vol. 217, edited by H. Terasaki and R. A. Fischer (Wiley: American Geophysical Union, 2016), pp. 181–190.
    [2]
    M. C. Shannon and C. B. Agee, “Percolation of core melts at lower mantle conditions,” Science 280, 1059 (1998).10.1126/science.280.5366.1059
    [3]
    H. Terasaki, D. J. Frost, D. C. Rubie, and F. Langenhorst, “Interconnectivity of Fe–O–S liquid in polycrystalline silicate perovskite at lower mantle conditions,” Phys. Earth Planet. Inter. 161, 170 (2007).10.1016/j.pepi.2007.01.011
    [4]
    N. Takafuji, K. Hirose, S. Ono, F. Xu, M. Mitome, and Y. Bando, “Segregation of core melts by permeable flow in the lower mantle,” Earth Planet. Sci. Lett. 224, 249 (2004).10.1016/j.epsl.2004.05.016
    [5]
    C. Y. Shi, L. Zhang, W. Yang, Y. Liu, J. Wang, Y. Meng, J. C. Andrews, and W. L. Mao, “Formation of an interconnected network of iron melt at Earth’s lower mantle conditions,” Nat. Geosci. 6, 971 (2013).10.1038/ngeo1956
    [6]
    R. Honda, H. Mizutani, and T. Yamamoto, “Numerical simulation of Earth’s core formation,” J. Geophys. Res. 98, 2075, https://doi.org/10.1029/92jb02699 (1993).10.1029/92jb02699
    [7]
    H. Samuel and P. J. Tackley, “Dynamics of core formation and equilibration by negative diapirism,” Geochem., Geophys., Geosyst. 9, Q06011 (2008).10.1029/2007gc001896
    [8]
    D. H. Sharp, “An overview of Rayleigh–Taylor instability,” Physica D 12, 3 (1984).10.1016/0167-2789(84)90510-4
    [9]
    S. Chandrasekhar, Hydrodynamic and Hydromagnetic Stability (Oxford University Press, London, 1968).
    [10]
    S. W. Haan, “Onset of nonlinear saturation for Rayleigh-Taylor growth in the presence of a full spectrum of modes,” Phys. Rev. A 39, 5812 (1989).10.1103/physreva.39.5812
    [11]
    D. J. Stevenson, “Models of the Earth’s core,” Science 214, 611 (1981).10.1126/science.214.4521.611
    [12]
    S. Sasaki and K. Nakazawa, “Metal-silicate fractionation in the growing Earth: Energy source for the terrestrial magma ocean,” J. Geophys. Res. 91, 9231, https://doi.org/10.1029/jb091ib09p09231 (1986).10.1029/jb091ib09p09231
    [13]
    R. Ziethe and T. Spohn, “Two-dimensional Stokes flow around a heated cylinder: A possible application for diapirs in the mantle,” J. Geophys. Res. 112, B09403, https://doi.org/10.1029/2006jb004789 (2007).10.1029/2006jb004789
    [14]
    P. Olson and D. Weeraratne, “Experiments on metal–silicate plumes and core formation,” Philos. Trans. R. Soc., A 366, 4253 (2008).10.1098/rsta.2008.0194
    [15]
    K. Shigemori, H. Azechi, M. Nakai, M. Honda, K. Meguro, N. Miyanaga, H. Takabe, and K. Mima, “Measurements of Rayleigh-Taylor growth rate of planar targets irradiated directly by partially coherent light,” Phys. Rev. Lett. 78, 250 (1997).10.1103/physrevlett.78.250
    [16]
    T. Sakaiya, H. Azechi, M. Matsuoka, N. Izumi, M. Nakai, K. Shigemori, H. Shiraga, A. Sunahara, H. Takabe, and T. Yamanaka, “Ablative Rayleigh-Taylor instability at short wavelengths observed with moiré interferometry,” Phys. Rev. Lett. 88, 145003 (2002).10.1103/physrevlett.88.145003
    [17]
    V. A. Smalyuk, D. T. Casey, D. S. Clark, M. J. Edwards, S. W. Haan, A. Hamza, D. E. Hoover, W. W. Hsing, O. Hurricane, J. D. Kilkenny, J. Kroll, O. L. Landen, A. Moore, A. Nikroo, L. Peterson, K. Raman, B. A. Remington, H. F. Robey, S. V. Weber, and K. Widmann, “First measurements of hydrodynamic instability growth in indirectly driven implosions at ignition-relevant conditions on the National Ignition Facility,” Phys. Rev. Lett. 112, 185003 (2014).10.1103/physrevlett.112.185003
    [18]
    Y. Zhou, “Rayleigh–Taylor and Richtmyer–Meshkov instability induced flow, turbulence, and mixing. I,” Phys. Rep. 720-722, 1 (2017).10.1016/j.physrep.2017.07.005
    [19]
    A. Casner, C. Mailliet, G. Rigon, S. F. Khan, D. Martinez, B. Albertazzi, T. Michel, T. Sano, Y. Sakawa, P. Tzeferacos, D. Lamb, S. Liberatore, N. Izumi, D. Kalantar, P. Di Nicola, J. M. Di Nicola, E. Le Bel, I. Igumenshchev, V. Tikhonchuk, B. A. Remington, J. Ballet, E. Falize, L. Masse, V. A. Smalyuk, and M. Koenig, “From ICF to laboratory astrophysics: Ablative and classical Rayleigh–Taylor instability experiments in turbulent-like regimes,” Nucl. Fusion 59, 032002 (2019).10.1088/1741-4326/aae598
    [20]
    C. Yamanaka, S. Nakai, T. Yamanaka, Y. Izawa, Y. Kato, K. MIma, K. Nishihara, T. Mochizuki, M. Yamanaka, M. Nakatsuka, T. Sasaki, T. Yabe, K. Yoshida, H. Azechi, H. Nishimura, T. Norimatsu, S. Ido, N. Miyanaga, S. Sakabe, H. Takabe, J. Jitsuno, and M. Takagi, “High thermonuclear neutron yield by shock multiplexing implosion with GEKKO XII green laser,” Nucl. Fusion 27, 19 (1987).10.1088/0029-5515/27/1/003
    [21]
    T. Sakaiya, H. Terasaki, K. Akimoto, H. Kato, T. Ueda, R. Hosogi, T. Fujikawa, T. Kondo, Y. Hironaka, and K. Shigemori, “Measurements of Rayleigh–Taylor instability growth of laser-shocked iron–silicon alloy,” High Pressure Res. 39, 150 (2019).10.1080/08957959.2019.1575966
    [22]
    H. Takabe, M. Yamanaka, K. Mima, C. Yamanaka, H. Azechi, N. Miyanaga, M. Nakatsuka, T. Jitsuno, T. Norimatsu, M. Takagi, H. Nishimura, M. Nakai, T. Yabe, T. Sasaki, K. Yoshida, K. Nishihara, Y. Kato, Y. Izawa, T. Yamanaka, and S. Nakai, “Scalings of implosion experiments for high neutron yield,” Phys. Fluids 31, 2884 (1988).10.1063/1.866997
    [23]
    B. A. Remington, R. E. Rudd, and J. S. Wark, “From microjoules to megajoules and kilobars to gigabars: Probing matter at extreme states of deformation,” Phys. Plasmas 22, 090501 (2015).10.1063/1.4930134
    [24]
    H. Azechi, M. Nakai, K. Shigemori, N. Miyanaga, H. Shiraga, H. Nishimura, M. Honda, R. Ishizaki, J. G. Wouchuk, H. Takabe, K. Nishihara, K. Mima, A. Nishiguchi, and T. Endo, “Direct-drive hydrodynamic instability experiments on the GEKKO XII laser,” Phys. Plasmas 4, 4079 (1997).10.1063/1.872528
    [25]
    T. Sakaiya, “Experimental investigation of ablative Rayleigh-Taylor instability,” Ph.D. thesis, Osaka University, 2005.
    [26]
    B. L. Henke, E. M. Gullikson, and J. C. Davis, “X-ray interactions: Photoabsorption, scattering, transmission, and reflection at E = 50-30,000 eV, Z = 1-92,” At. Data Nucl. Data Tables 54, 181 (1993).10.1006/adnd.1993.1013
    [27]
    V. A. Smalyuk, T. R. Boehly, D. K. Bradley, J. P. Knauer, and D. D. Meyerhofer, “Characterization of an x-ray radiographic system used for laser-driven planar target experiments,” Rev. Sci. Instrum. 70, 647 (1999).10.1063/1.1149313
    [28]
    P. Ramaprabhu, G. Dimonte, P. Woodward, C. Fryer, G. Rockefeller, K. Muthuraman, P.-H. Lin, and J. Jayaraj, “The late-time dynamics of the single-mode Rayleigh-Taylor instability,” Phys. Fluids 24, 074107 (2012).10.1063/1.4733396
    [29]
    R. Betti, V. N. Goncharov, R. L. McCrory, and C. P. Verdon, “Growth rates of the ablative Rayleigh–Taylor instability in inertial confinement fusion,” Phys. Plasmas 5, 1446 (1998).10.1063/1.872802
    [30]
    T. Kleine, C. Münker, K. Mezger, and H. Palme, “Rapid accretion and early core formation on asteroids and the terrestrial planets from Hf–W chronometry,” Nature 418, 952 (2002).10.1038/nature00982
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(5)  / Tables(1)

    Article Metrics

    Article views (124) PDF downloads(74) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return