Follow us on Wechat

用微信扫码二维码

分享至好友和朋友圈

Volume 6 Issue 4
Jul.  2021
Turn off MathJax
Article Contents
Huang H., Zhang Z. M., Zhang B., Hong W., He S. K., Meng L. B., Qi W., Cui B., Zhou W. M.. Investigation of magnetic inhibition effect on ion acceleration at high laser intensities[J]. Matter and Radiation at Extremes, 2021, 6(4): 044401. doi: 10.1063/5.0029163
Citation: Huang H., Zhang Z. M., Zhang B., Hong W., He S. K., Meng L. B., Qi W., Cui B., Zhou W. M.. Investigation of magnetic inhibition effect on ion acceleration at high laser intensities[J]. Matter and Radiation at Extremes, 2021, 6(4): 044401. doi: 10.1063/5.0029163

Investigation of magnetic inhibition effect on ion acceleration at high laser intensities

doi: 10.1063/5.0029163
More Information
  • Corresponding author: a)Authors to whom correspondence should be addressed: zmzhang_zju@sina.com and zhouwm@caep.cn; a)Authors to whom correspondence should be addressed: zmzhang_zju@sina.com and zhouwm@caep.cn
  • Received Date: 2020-09-10
  • Accepted Date: 2021-04-12
  • Available Online: 2021-07-01
  • Publish Date: 2021-07-15
  • The irradiation of a target with high laser intensity can lead to self-generation of an intense magnetic field (B-field) on the target surface. It has therefore been suggested that the sheath-driven acceleration of high-energy protons would be significantly hampered by the magnetization effect of this self-generated B-field at high enough laser intensities. In this paper, particle-in-cell simulations are used to study this magnetization effect on sheath-driven proton acceleration. It is shown that the inhibitory effect of the B-field on ion acceleration is not as significant as previously thought. Moreover, it is shown that the magnetization effect plays a relatively limited role in high-energy proton acceleration, even at high laser intensities when the mutual coupling and competition between self-generated electric (E-) and B-fields are considered in a realistic sheath acceleration scenario. A theoretical model including the v × B force is presented and confirms that the rate of reduction in proton energy depends on the strength ratio between B- and E-fields rather than on the strength of the B-field alone, and that only a small percentage of the proton energy is affected by the self-generated B-field. Finally, it is shown that the degraded scaling of proton energy at high laser intensities can be explained by the decrease in acceleration time caused by the increased sheath fields at high laser intensities rather than by the magnetic inhibitory effect, because of the longer growth time scale of the latter. This understanding of the magnetization effect may pave the way to the generation of high-energy protons by sheath-driven acceleration at high laser intensities.
  • loading
  • [1]
    A. Yogo, K. Sato, M. Nishikino et al., “Application of laser-accelerated protons to the demonstration of DNA double-strand breaks in human cancer cells,” Appl. Phys. Lett. 94, 181502 (2009).10.1063/1.3126452
    [2]
    K. Zeil, M. Baumann, E. Beyreuther et al., “Dose-controlled irradiation of cancer cells with laser-accelerated proton pulses,” Appl. Phys. B 110, 437–444 (2013).10.1007/s00340-012-5275-3
    [3]
    H. Chen, S. C. Wilks, J. D. Bonlie et al., “Making relativistic positrons using ultraintense short pulse laser,” Phys. Plasmas 16, 122702 (2009).10.1063/1.3271355
    [4]
    M. Roth, I. Alber, V. Bagnoud et al., “Proton acceleration experiments and warm dense matter research using high power lasers,” Plasma Phys. Controlled Fusion 51, 124039 (2009).10.1088/0741-3335/51/12/124039
    [5]
    M. Roth, T. E. Cowan, M. H. Key et al., “Fast ignition by intense laser-acceleated proton beams,” Phys. Rev. Lett. 86, 436–439 (2001).10.1103/physrevlett.86.436
    [6]
    J. C. Fernández, J. J. Honrubia, B. J. ALbright et al., “Progress and prospects of ion-driven fast ignition,” Nucl. Fusion 49, 065004 (2009).10.1088/0029-5515/49/6/065004
    [7]
    J. C. Fernández, B. J. ALbright, F. N. Beg et al., “Fast ignition with laser-driven proton and ion beams,” Nucl. Fusion 54, 054006 (2014).10.1088/0029-5515/54/5/054006
    [8]
    A. Macchi, M. Borghesi, and M. Passoni, “Ion acceleration by superintense laser-plasma interaction,” Rev. Mod. Phys. 85, 751–793 (2013).10.1103/revmodphys.85.751
    [9]
    B. Qiao, M. Zepf, M. Borghesi et al., “Stable GeV ion-beam acceleration from thin foils by circularly polorized laser pulse,” Phys. Rev. Lett. 102, 145002 (2009).10.1103/physrevlett.102.145002
    [10]
    T.-P. Yu, A. Pukhov, G. Shvets et al., “Stable laser-driven proton beam acceleration from a two-ion species ultra thin foil,” Phys. Rev. Lett. 105, 065002 (2010).10.1103/physrevlett.105.065002
    [11]
    S. C. Wilks, A. B. Langdon, T. E. Cowan et al., “Energetic proton generation in ultra-intense laser-solid interactions,” Phys. Plasma 8, 542 (2001).10.1063/1.1333697
    [12]
    B. M. Hegelich, B. J. Albright, J. Cobble et al., “Laser acceleration of quasi-monoenergetic MeV ion beams,” Nature 439, 441–444 (2006).10.1038/nature04400
    [13]
    F. Wagner, O. Deppert, C. Brabetz et al., “Maximum proton energy above 85 MeV from the relativistic interaction of laser pulses with micrometer thick CH2 targets,” Phys. Rev. Lett. 116, 205002 (2016).10.1103/physrevlett.116.205002
    [14]
    A. Higginson, R. J. Gray, M. King et al., “Near-100 MeV protons via a laser-driven transparency-enhanced hybrid acceleration scheme,” Nat. Commun. 9, 724 (2018).10.1038/s41467-018-03063-9
    [15]
    M. Nakatsutsumi, Y. Sentoku, A. Korzhimanov et al., “Self-generated surface magnetic fields inhibit laserdriven sheath acceleration of high-energy protons,” Nat. Commun. 9, 280 (2018).10.1038/s41467-017-02436-w
    [16]
    M. Nakatsutsumi, A. Kon, S. Buffechoux et al., “Fast focusing of short-pulse lasers by innovative plasma optics toward extreme intensity,” Opt. Lett. 35, 2314–2316 (2010).10.1364/ol.35.002314
    [17]
    W. Schumaker, N. Nakanii, C. McGuffey et al., “Ultrafast electron radiography of magnetic fields in high-intensity laser-solid interactions,” Phys. Rev. Lett. 110, 015003 (2013).10.1103/physrevlett.110.015003
    [18]
    B. Albertazzi, S. N. Chen, P. Antici et al., “Dynamics and structure of self-generated magnetics fields on solids following high contrast, high intensity laser irradiation,” Phys. Plasma 22, 123108 (2015).10.1063/1.4936095
    [19]
    Z. M. Zhang, X. T. He, Z. M. Sheng et al., “Hundreds MeV monoenergetic proton bunch from interaction of 1020−21 W/cm2 circularly polarized laser pulse with tailored complex target,” Appl. Phys. Lett. 100, 134103 (2012).10.1063/1.3696885
    [20]
    P. Mora, “Plasma expansion into a vacuum,” Phys. Rev. Lett. 90, 185002 (2003).10.1103/physrevlett.90.185002
    [21]
    J. Fuchs, P. Antici, E. d’Humières et al., “Laser-driven proton scaling laws and new paths towards energy increase,” Nat. Phys. 2, 48–54 (2006).10.1038/nphys199
    [22]
    M. G. Haines, “Saturation mechanisms for the generated magnetic field in nonuniform laser-matter irradiation,” Phys. Rev. Lett. 78, 254–257 (1997).10.1103/physrevlett.78.254
    [23]
    F. Califano, F. Pegoraro, and S. V. Bulanov, “Spatial structure and time evolution of the Weibel instability in collisionless inhomogeneous plasmas,” Phys. Rev. E 56, 963–969 (1997).10.1103/physreve.56.963
    [24]
    P. Antici, L. Gremillet, T. Grismayer et al., “Modeling target bulk heating resulting from ultra-intense short pulse laser irradiation of solid density targets,” Phys. Plasma 20, 123116-1–123116-8 (2013).10.1063/1.4833618
    [25]
    M. Passoni and M. Lontano, “One-dimensional model of the electrostatic ion acceleration in the ultraintense laser–solid interaction,” Laser Particle Beams 22, 163–169 (2004).10.1017/s026303460422211x
    [26]
    M. Passoni and M. Lontano, “Theory of light-ion acceleration driven by a strong charge separation,” Phys. Rev. Lett. 101, 115001 (2008).10.1103/physrevlett.101.115001
    [27]
    M. Passoni, L. Bertagna, and A. Zani, “Energetic ions from next generation ultraintense ultrashort lasers: Scaling laws for target normal sheath acceleration,” Nucl. Instrum. Methods Phys. Res., Sect. A 620, 46–50 (2010).10.1016/j.nima.2010.01.058
    [28]
    P. Mora and R. Pellat, “Self-similar expansion of a plasma into a vacuum,” Phys. Flusids 22, 2300 (1979).10.1063/1.862541
    [29]
    J. E. Crow, P. L. Auer, and J. E. Allen, “Expansion of a plasma into a vacuum,” J. Plasma Phys. 14, 65–76 (1975).10.1017/s0022377800025538
    [30]
    Y. Omura, Y. Katoh, and D. Summers, “Theory and simulation of the generation of whistler-mode chorus,” J. Geophys. Res. 113, A04223, https://doi.org/10.1029/2007ja012622 (2008).10.1029/2007ja012622
    [31]
    A. Debayle, J. J. Honrubia, E. d’Humières et al., “Divergence of laser-driven relativistic electron beams,” Phys. Rev. E 82, 036405 (2010).10.1103/physreve.82.036405
    [32]
    V. Ovchinnikov, D. W. Schumacher, M. Mcmahon et al., “Effects of preplasma scale length and laser intensity on the divergence of laser generated hot electrons,” Phys. Rev. Lett. 110, 065007 (2013).10.1103/physrevlett.110.065007
    [33]
    M. Borghesi, A. Bigongiari, S. Kar et al., “Laser-driven proton acceleration: Source optimization and radiographic applications,” Plasma Phys. Controlled Fusion 50, 124040 (2008).10.1088/0741-3335/50/12/124040
    [34]
    M. Borghesi, J. Fuchs, S. V. Bulanov et al., “Fast ion generation by high-intensity laser irradiation of solid targets and applications,” Fusion Sci. Technol. 49, 412–439 (2006).10.13182/fst06-a1159
    [35]
    S. C. Wilks, W. L. Kruer, M. Tabak et al., “Absorption of ultra-intense laser pulses,” Phys. Rev. Lett. 69, 1383–1386 (1992).10.1103/physrevlett.69.1383
    [36]
    Z. Guo, L. H. Yu, J. Y. Wang et al., “Improvement of the focusing ability by double deformable mirrors for 10-PW-level Ti: Sapphire chirped pulse amplification laser system,” Opt. Express 26, 026776 (2018).10.1364/oe.26.026776
    [37]
    J. W. Yoon, C. Jeon, J. Shin et al., “Achieving the laser intensity of 5.5 × 1022 W/cm2 with a wavefront-corrected multi-PW laser,” Opt. Express 27, 020412 (2019).10.1364/oe.27.020412
    [38]
    X. M. Zeng, K. N. Zhou, Y. L. Zuo et al., “Multi-petawatt laser facility fully based on optical parametric chriped pulse amplification,” Opt. Lett. 42, 2014 (2017).10.1364/ol.42.002014
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(5)

    Article Metrics

    Article views (174) PDF downloads(11) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return