Follow us on Wechat

用微信扫码二维码

分享至好友和朋友圈

Volume 6 Issue 2
Mar.  2021
Turn off MathJax
Article Contents
Gus’kov S. Yu., Kuchugov P. A., Vergunova G. A.. Extreme matter compression caused by radiation cooling effect in gigabar shock wave driven by laser-accelerated fast electrons[J]. Matter and Radiation at Extremes, 2021, 6(2): 020301. doi: 10.1063/5.0026002
Citation: Gus’kov S. Yu., Kuchugov P. A., Vergunova G. A.. Extreme matter compression caused by radiation cooling effect in gigabar shock wave driven by laser-accelerated fast electrons[J]. Matter and Radiation at Extremes, 2021, 6(2): 020301. doi: 10.1063/5.0026002

Extreme matter compression caused by radiation cooling effect in gigabar shock wave driven by laser-accelerated fast electrons

doi: 10.1063/5.0026002
More Information
  • Corresponding author: a)Author to whom correspondence should be addressed: pkuchugov@gmail.com
  • Received Date: 2020-08-20
  • Accepted Date: 2020-12-19
  • Available Online: 2021-03-01
  • Publish Date: 2021-03-15
  • Heating a solid material with laser-accelerated fast electrons is a particularly useful method for generating a plane powerful shock wave with a pressure of several hundred or even thousands of Mbar in the laboratory. Behind the front of such a powerful shock wave, dense plasma is heated to a temperature of several keV. Then, a high rate of radiation energy loss occurs even in low-Z plasmas. In this paper, the strong compression of matter due to radiation cooling in a Gbar shock wave driven by fast electrons is studied using both computational and theoretical approaches. It is shown that the effect of radiation cooling leads to compression of matter in the peripheral region of the shock wave to a density several times greater than the density at its front. Heating a solid material by a petawatt flux of laser-accelerated fast electrons offers the opportunity to surpass the gigabar pressure level of plane shock waves generated by the impact of laser-accelerated pellets. Higher pressures of about 100 Gbar can be achieved under laboratory conditions only when a spherical target is imploded under the action of a terawatt laser pulse.
  • loading
  • [1]
    S. Gus’kov, X. Ribeyre, M. Touati, J.-L. Feugeas, P. Nicolaï, and V. Tikhonchuk, “Ablation pressure driven by an energetic electron beam in a dense plasma,” Phys. Rev. Lett. 109, 255004 (2012).10.1103/physrevlett.109.255004
    [2]
    X. Ribeyre, S. Gus’kov, J.-L. Feugeas, P. Nicolaï, and V. T. Tikhonchuk, “Dense plasma heating and Gbar shock formation by a high intensity flux of energetic electrons,” Phys. Plasmas 20, 062705 (2013).10.1063/1.4811473
    [3]
    S. Y. Gus’kov, “On the possibility of laboratory shock wave studies of the equation of state of a material at gigabar pressures with beams of laser-accelerated particles,” JETP Lett. 100, 71–74 (2014).10.1134/s0021364014140069
    [4]
    R. Cauble, D. W. Phillion, T. J. Hoover, N. C. Holmes, J. D. Kilkenny, and R. W. Lee, “Demonstration of 0.75 Gbar planar shocks in x-ray driven colliding foils,” Phys. Rev. Lett. 70, 2102–2105 (1993).10.1103/physrevlett.70.2102
    [5]
    M. Karasik, J. L. Weaver, Y. Aglitskiy, T. Watari, Y. Arikawa, T. Sakaiya, J. Oh, A. L. Velikovich, S. T. Zalesak, J. W. Bates, S. P. Obenschain, A. J. Schmitt, M. Murakami, and H. Azechi, “Acceleration to high velocities and heating by impact using Nike KrF laser,” Phys. Plasmas 17, 056317 (2010).10.1063/1.3399786
    [6]
    S. Y. Gus’kov, N. P. Zaretskii, and P. A. Kuchugov, “Features and limiting characteristics of the heating of a substance by a laser-accelerated fast electron beam,” JETP Lett. 111, 135–138 (2020).10.1134/s0021364020030078
    [7]
    R. S. Pease, “Equilibrium characteristics of a pinched gas discharge cooled by bremsstrahlung radiation,” Proc. Phys. Soc., Sect. B 70, 11–23 (1957).10.1088/0370-1301/70/1/304
    [8]
    V. V. Vikhrev, “Contraction of Z-pinch as a result of losses to radiation,” JETP Lett 27(2), 95–98 (1978).
    [9]
    L. Bernal and H. Bruzzone, “Radiative collapses in z-pinches with axial mass losses,” Plasma Phys. Controlled Fusion 44, 95–98 (2002).10.1088/0741-3335/44/2/306
    [10]
    R. S. Craxton, K. S. Anderson, T. R. Boehly, V. N. Goncharov, D. R. Harding, J. P. Knauer, R. L. McCrory, P. W. McKenty, D. D. Meyerhofer, J. F. Myatt, A. J. Schmitt, J. D. Sethian, R. W. Short, S. Skupsky, W. Theobald, W. L. Kruer, K. Tanaka, R. Betti, T. J. B. Collins, J. A. Delettrez, S. X. Hu, J. A. Marozas, A. V. Maximov, D. T. Michel, P. B. Radha, S. P. Regan, T. C. Sangster, W. Seka, A. A. Solodov, J. M. Soures, C. Stoeckl, and J. D. Zuegel, “Direct-drive inertial confinement fusion: A review,” Phys. Plasmas 22, 110501 (2015).10.1063/1.4934714
    [11]
    I. E. Golovkin, J. J. MacFarlane, P. R. Woodruff, J. E. Bailey, G. Rochau, K. Peterson, T. A. Mehlhorn, and R. C. Mancini, “Spectroscopic analysis and NLTE radiative cooling effects in ICF capsule implosions with mid- dopants,” J. Quant. Spectrosc. Radiat. Transfer 99, 199–208 (2006).10.1016/j.jqsrt.2005.05.015
    [12]
    J. M. Blondin and D. F. Cioffi, “The growth of density perturbations in radiative shocks,” Astrophys. J. 345, 853 (1989).10.1086/167955
    [13]
    J. Laming, “Relationship between oscillatory thermal instability and dynamical thin-shell overstability of radiative shocks,” Phys. Rev. E 70, 057402 (2004).10.1103/physreve.70.057402
    [14]
    F. N. Beg, A. R. Bell, A. E. Dangor, C. N. Danson, A. P. Fews, M. E. Glinsky, B. A. Hammel, P. Lee, P. A. Norreys, and M. Tatarakis, “A study of picosecond laser–solid interactions up to 1019 w cm−2,” Phys. Plasmas 4, 447–457 (1997).10.1063/1.872103
    [15]
    M. G. Haines, M. S. Wei, F. N. Beg, and R. B. Stephens, “Hot-electron temperature and laser-light absorption in fast ignition,” Phys. Rev. Lett. 102, 045008 (2009).10.1103/physrevlett.102.045008
    [16]
    S. Atzeni, A. Schiavi, and J. R. Davies, “Stopping and scattering of relativistic electron beams in dense plasmas and requirements for fast ignition,” Plasma Phys. Controlled Fusion 51, 015016 (2008).10.1088/0741-3335/51/1/015016
    [17]
    J. J. Honrubia and J. Meyer-ter-Vehn, “Three-dimensional fast electron transport for ignition-scale inertial fusion capsules,” Nucl. Fusion 46(11), L25–L28 (2006).10.1088/0029-5515/46/11/l02
    [18]
    Y. V. Afanasiev and S. Y. Gus’kov, “Energy transfer to the plasma in laser targets,” in Nuclear Fusion by Inertial Confinement: A Comprehensive Treatise (CRC Press, 1993), pp. 99–119.
    [19]
    J. Lindl, “Development of the indirect-drive approach to inertial confinement fusion and the target physics basis for ignition and gain,” Phys. Plasmas 2, 3933–4024 (1995).10.1063/1.871025
    [20]
    Y. B. Zel’dovich and Y. P. Raizer, in Physics of Shock Waves and High-Temperature Hydrodynamic Phenomena, edited by W. D. Hayes and R. F. Probstein (Academic Press, 1967).
    [21]
    N. V. Zmitrenko, V. Y. Karpov, A. P. Fadeev, I. I. Shelaputin, and G. V. Shpatakovskaya, “Description of the physical processes in the DIANA program for calculations of problems of laser fusion,” Ser. Methods Software Numer. Solution Probl. Math. Phys. 2(13), 34–37 (1983).
    [22]
    S. Y. Gus’kov, P. A. Kuchugov, R. A. Yakhin, and N. V. Zmitrenko, “Effect of ‘wandering’ and other features of energy transfer by fast electrons in a direct-drive inertial confinement fusion target,” Plasma Phys. Controlled Fusion 61, 055003 (2019).10.1088/1361-6587/ab0641
    [23]
    S. Y. Gus’kov, P. A. Kuchugov, R. A. Yakhin, and N. V. Zmitrenko, “Effect of fast electrons on the gain of a direct-drive laser fusion target,” Plasma Phys. Controlled Fusion 61, 105014 (2019).10.1088/1361-6587/ab400e
    [24]
    G. A. Vergunova and V. B. Rozanov, “Influence of intrinsic X-ray emission on the processes in low-density laser targets,” Laser Part. Beams 17, 579–583 (1999).10.1017/s0263034699173270
    [25]
    V. B. Rozanov and G. A. Vergunova, “Investigation of compression of indirect-drive targets under conditions of the NIF facility using one-dimensional modelling,” Quantum Electron. 50, 162–168 (2020).10.1070/qel17202
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(3)

    Article Metrics

    Article views (145) PDF downloads(6) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return