Follow us on Wechat

用微信扫码二维码

分享至好友和朋友圈

Volume 6 Issue 2
Mar.  2021
Turn off MathJax
Article Contents
Manuel M. J.-E., Khiar B., Rigon G., Albertazzi B., Klein S. R., Kroll F., Brack F. -E., Michel T., Mabey P., Pikuz S., Williams J. C., Koenig M., Casner A., Kuranz C. C.. On the study of hydrodynamic instabilities in the presence of background magnetic fields in high-energy-density plasmas[J]. Matter and Radiation at Extremes, 2021, 6(2): 026904. doi: 10.1063/5.0025374
Citation: Manuel M. J.-E., Khiar B., Rigon G., Albertazzi B., Klein S. R., Kroll F., Brack F. -E., Michel T., Mabey P., Pikuz S., Williams J. C., Koenig M., Casner A., Kuranz C. C.. On the study of hydrodynamic instabilities in the presence of background magnetic fields in high-energy-density plasmas[J]. Matter and Radiation at Extremes, 2021, 6(2): 026904. doi: 10.1063/5.0025374

On the study of hydrodynamic instabilities in the presence of background magnetic fields in high-energy-density plasmas

doi: 10.1063/5.0025374
More Information
  • Corresponding author: a)Author to whom correspondence should be addressed: manuelm@fusion.gat.com
  • Received Date: 2020-08-19
  • Accepted Date: 2021-01-26
  • Available Online: 2021-03-01
  • Publish Date: 2021-03-15
  • Blast-wave-driven hydrodynamic instabilities are studied in the presence of a background B-field through experiments and simulations in the high-energy-density (HED) physics regime. In experiments conducted at the Laboratoire pour l’utilisation des lasers intenses (LULI), a laser-driven shock-tube platform was used to generate a hydrodynamically unstable interface with a prescribed sinusoidal surface perturbation, and short-pulse x-ray radiography was used to characterize the instability growth with and without a 10-T B-field. The LULI experiments were modeled in FLASH using resistive and ideal magnetohydrodynamics (MHD), and comparing the experiments and simulations suggests that the Spitzer model implemented in FLASH is necessary and sufficient for modeling these planar systems. These results suggest insufficient amplification of the seed B-field, due to resistive diffusion, to alter the hydrodynamic behavior. Although the ideal-MHD simulations did not represent the experiments accurately, they suggest that similar HED systems with dynamic plasma-β (=2μ0ρv2/B2) values of less than ∼100 can reduce the growth of blast-wave-driven Rayleigh–Taylor instabilities. These findings validate the resistive-MHD FLASH modeling that is being used to design future experiments for studying B-field effects in HED plasmas.
  • loading
  • [1]
    J. Nuckolls, L. Wood, A. Thiessen et al., “Laser compression of matter to super-high densities: Thermonuclear (CTR) applications,” Nature 239, 139 (1972).10.1038/239139a0
    [2]
    O. A. Hurricane, D. A. Callahan, D. T. Casey et al., “Fuel gain exceeding unity in an inertially confined fusion implosion,” Nature 506(7488), 343 (2014).10.1038/nature13008
    [3]
    A. R. Miles, “The blast-wave-driven instability as a vehicle for understanding supernova explosion structure,” Astrophys. J. 696(1), 498 (2009).10.1088/0004-637x/696/1/498
    [4]
    C. C. Kuranz, H.-S. Park, C. M. Huntington et al., “How high energy fluxes may affect Rayleigh-Taylor instability growth in young supernova remnants,” Nat. Commun. 9(1), 1564 (2018).10.1038/s41467-018-03548-7
    [5]
    J. J. Hester, J. M. Stone, P. A. Scowen et al., “WFPC2 studies of the Crab Nebula III magnetic Rayleigh-Taylor instabilities and the origin of the filaments,” Astrophys. J. 456, 225 (1996).10.1086/176643
    [6]
    B. I. Jun, “Interaction of a pulsar wind with the expanding supernova remnant,” Astrophys. J. 499(1), 282 (1998).10.1086/305627
    [7]
    J. J. Hester, “The Crab Nebula: An astrophysical Chimera,” Annu. Rev. Astron. Astrophys. 46(1), 127 (2008).10.1146/annurev.astro.45.051806.110608
    [8]
    G. Taylor, “The instability of liquid surfaces when accelerated in a direction perpendicular to their planes I,” Proc. R. Soc. London 201(1065), 192 (1950).10.1098/rspa.1950.0052
    [9]
    R. Betti, V. N. Goncharov, R. L. McCrory et al., “Growth rates of the ablative Rayleigh–Taylor instability in inertial confinement fusion,” Phys. Plasmas 5(5), 1446 (1998).10.1063/1.872802
    [10]
    H. Takabe, K. Mima, L. Montierth et al., “Self-consistent growth rate of the Rayleigh–Taylor instability in an ablatively accelerating plasma,” Phys. Fluids 28(12), 3676 (1985).10.1063/1.865099
    [11]
    T. K. Nymark, C. Fransson, and C. Kozma, “X-ray emission from radiative shocks in type II supernovae,” Astron. Astrophys. 449(1), 171 (2006).10.1051/0004-6361:20054169
    [12]
    G. Dimonte, “Spanwise homogeneous buoyancy-drag model for Rayleigh–Taylor mixing and experimental evaluation,” Phys. Plasmas 7(6), 2255 (2000).10.1063/1.874060
    [13]
    B.-I. Jun, M. L. Norman, and J. M. Stone, “A numerical study of Rayleigh-Taylor instability in magnetic fluids,” Astrophys. J. 453, 332 (1995).10.1086/176393
    [14]
    B. K. Shivamoggi, “Rayleigh-Taylor instability of a compressible plasma in a horizontal magnetic field,” Z. Angew. Math. Phys. 33(5), 693 (1982).10.1007/bf00944951
    [15]
    V. L. Trimble, “Motions and structure of the filamentary envelope of the Crab Nebula,” Ph.D. thesis, California Institute of Technology, 1968, CaltechETD:etd-05012008-085729.
    [16]
    N. Bucciantini, E. Amato, R. Bandiera et al., “Magnetic Rayleigh-Taylor instability for pulsar wind Nebulae in expanding supernova remnants,” Astron. Astrophys. 423(1), 253 (2004).10.1051/0004-6361:20040360
    [17]
    J. M. Stone and T. Gardiner, “The magnetic Rayleigh-Taylor instability in three dimensions,” Astrophys. J. 671, 1726 (2007).10.1086/523099
    [18]
    C. M. Huntington, A. Shimony, M. Trantham et al., “Ablative stabilization of Rayleigh-Taylor instabilities resulting from a laser-driven radiative shock,” Phys. Plasmas 25(5), 052118 (2018).10.1063/1.5022179
    [19]
    G. Rigon, A. Casner, B. Albertazzi et al., “Rayleigh-Taylor instability experiments on the LULI2000 laser in scaled conditions for young supernova remnants,” Phys. Rev. E 100 (2019).10.1103/PhysRevE.100.021201
    [20]
    K. A. Flippo, J. L. Kline, F. W. Doss et al., “Development of a Big Area BackLighter for high energy density experiments,” Rev. Sci. Instrum. 85(9), 093501 (2014).10.1063/1.4893349
    [21]
    E. Brambrink, S. Baton, M. Koenig et al., “Short-pulse laser-driven x-ray radiography,” High Power Laser Sci. Eng. 4, e30 (2016).10.1017/hpl.2016.31
    [22]
    B. Albertazzi, J. Béard, A. Ciardi et al., “Production of large volume, strongly magnetized laser-produced plasmas by use of pulsed external magnetic fields,” Rev. Sci. Instrum. 84(4), 043505 (2013).10.1063/1.4795551
    [23]
    A. Nishiguchi, T. Yabe, and M. G. Haines, “Nernst effect in laser-produced plasmas,” Phys. Fluids 28(12), 3683 (1985).10.1063/1.865100
    [24]
    P. Tzeferacos, M. Fatenejad, N. Flocke et al., “FLASH MHD simulations of experiments that study shock-generated magnetic fields,” High Energy Density Phys. 17, Part A, 24 (2015).10.1016/j.hedp.2014.11.003
    [25]
    Typical room-temperature conductors have resistivities of ∼10−8 Ω-m.
    [26]
    D. Batani, J. R. Davies, A. Bernardinello et al., “Explanations for the observed increase in fast electron penetration in laser shock compressed materials,” Phys. Rev. E 61(5), 5725 (2000).10.1103/PhysRevE.61.5725
    [27]
    T. Mattsson and M. P. Desjarlais, “Phase diagram and electrical conductivity of high energy-density water from density functional theory,” Phys. Rev. Lett. 97, 017801 (2006).10.1103/PhysRevLett.97.017801
    [28]
    M. J.-E. Manuel, A. B. Sefkow, C. C. Kuranz et al., “Magnetized disruption of inertially confined plasma flows,” Phys. Rev. Lett. 122(22), 225001 (2019).10.1103/PhysRevLett.122.225001
    [29]
    Apparent regions of reduced opacity at the leading edge of the flat interface is likely due to bandpass filtering, and does not hinder the ability to determine the interface location.
    [30]
    N. C. Swisher, C. C. Kuranz, D. Arnett et al., “Rayleigh-Taylor mixing in supernova experiments,” Phys. Plasmas 22(10), 102707 (2015).10.1063/1.4931927
    [31]
    The bright vertical lines are artifacts due to the x-ray radiography diagnostic. The initial line at 10ns is when the radiograph was taken, and subsequent lines come from reflections in the chamber propagating down the collection optics on to the streak camera.
    [32]
    Assuming a characteristic fluid velocity of ∼40 km/s.
    [33]
    B. Fryxell, C. C. Kuranz, R. P. Drake et al., “The possible effects of magnetic fields on laser experiments of Rayleigh-Taylor instabilities,” High Energy Density Phys. 6(2), 162 (2010).10.1016/j.hedp.2010.01.008
    [34]
    D. D. Ryutov, R. P. Drake, J. Kane et al., “Similarity criteria for the laboratory simulation of supernova hydrodynamics,” Astrophys. J. 518, 821 (1999).10.1086/307293
    [35]
    R. P. Drake, High-Energy-Density Physics: Foundation of Inertial Fusion and Experimental Astrophysics, 2nd ed. (Springer, Berlin; New York, 2018), ISBN: 3540293140 (hd.bd.).
    [36]
    R. A. Fesen and R. P. Kirshner, “The Crab Nebula I. Spectrophotometry of the filaments,” Astrophys. J. 258, 1 (1982).10.1086/160043
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(9)  / Tables(1)

    Article Metrics

    Article views (138) PDF downloads(17) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return