Citation: | Kang Dongdong, Luo Kai, Runge Keith, Trickey S. B.. Two-temperature warm dense hydrogen as a test of quantum protons driven by orbital-free density functional theory electronic forces[J]. Matter and Radiation at Extremes, 2020, 5(6): 064403. doi: 10.1063/5.0025164 |
[1] |
S. T. Weir, A. C. Mitchell, and W. J. Nellis, “Metallization of fluid molecular hydrogen at 140 GPa (1.4 Mbar),” Phys. Rev. Lett. 76, 1860 (1996).10.1103/physrevlett.76.1860 doi: 10.1103/physrevlett.76.1860
|
[2] |
P. M. Celliers, G. W. Collins, L. B. Da Silva et al., “Shock-induced transformation of liquid deuterium into a metallic fluid,” Phys. Rev. Lett. 84, 5564 (2000).10.1103/physrevlett.84.5564 doi: 10.1103/physrevlett.84.5564
|
[3] |
H. U. Rahman, F. J. Wessel, P. Ney et al., “Shock waves in a Z-pinch and the formation of high energy density plasma,” Phys. Plasmas 19, 122701 (2012).10.1063/1.4769264 doi: 10.1063/1.4769264
|
[4] |
M. D. Knudson, M. P. Desjarlais, A. Becker et al., “Direct observation of an abrupt insulator-to-metal transition in dense liquid deuterium,” Science 348, 1455 (2015).10.1126/science.aaa7471 doi: 10.1126/science.aaa7471
|
[5] |
M. D. Knudson and M. P. Desjarlais, “High-precision shock wave measurements of deuterium: Evaluation of exchange-correlation functionals at the molecular-to-atomic transition,” Phys. Rev. Lett. 118, 035501 (2017).10.1103/physrevlett.118.035501 doi: 10.1103/physrevlett.118.035501
|
[6] |
P. Loubeyre, S. Brygoo, J. Eggert et al., “Extended data set for the equation of state of warm dense hydrogen isotopes,” Phys. Rev. B 86, 144115 (2012).10.1103/physrevb.86.144115 doi: 10.1103/physrevb.86.144115
|
[7] |
A. L. Kritcher, T. Döppner, D. Swift et al., “Probing matter at Gbar pressures at the NIF,” High Energy Density Phys. 10, 27 (2014).10.1016/j.hedp.2013.11.002 doi: 10.1016/j.hedp.2013.11.002
|
[8] |
R. Nora, W. Theobald, R. Betti et al., “Gigabar spherical shock generation on the OMEGA laser,” Phys. Rev. Lett. 114, 045001 (2015).10.1103/physrevlett.114.045001 doi: 10.1103/physrevlett.114.045001
|
[9] |
P. Sperling, E. J. Gamboa, H. J. Lee et al., “Free-electron x-ray laser measurements of collisional-damped plasmons in isochorically heated warm dense matter,” Phys. Rev. Lett. 115, 115001 (2015).10.1103/physrevlett.115.115001 doi: 10.1103/physrevlett.115.115001
|
[10] |
M. S. Murillo and M. W. C. Dharma-wardana, “Temperature relaxation in hot dense hydrogen,” Phys. Rev. Lett. 100, 205005 (2008).10.1103/physrevlett.100.205005 doi: 10.1103/physrevlett.100.205005
|
[11] |
Q. Ma, J. Dai, D. Kang et al., “Molecular dynamics simulation of electroneion temperature relaxation in dense hydrogen: A scheme of truncated Coulomb potential,” High Energy Density Phys. 13, 34 (2014).10.1016/j.hedp.2014.09.004 doi: 10.1016/j.hedp.2014.09.004
|
[12] |
Q. Ma, J. Dai, D. Kang et al., “Extremely low electron-ion temperature relaxation rates in warm dense hydrogen: Interplay between quantum electrons and coupled ions,” Phys. Rev. Lett. 122, 015001 (2019).10.1103/physrevlett.122.015001 doi: 10.1103/physrevlett.122.015001
|
[13] |
Q. Zeng and J. Dai, “Structural transition dynamics of the formation of warm dense gold: From an atomic scale view,” Sci. China-Phys. Mech. Astron. 63, 263011 (2020).10.1007/s11433-019-1466-2 doi: 10.1007/s11433-019-1466-2
|
[14] |
S. I. Anisimov, B. L. Kapeliovich, and T. L. Perel’man, “Electron emission from metal sufraces exposed to ultrashort laser pulses,” Sov. Phys. JETP 39, 375 (1974).
|
[15] |
J. Hohlfeld, S.-S. Wellershoff, J. Güdde et al., “Electron and lattice dynamics following optical excitation of metals,” Chem. Phys. 251, 237 (2000).10.1016/s0301-0104(99)00330-4 doi: 10.1016/s0301-0104(99)00330-4
|
[16] |
M. S. Murillo, “Using Fermi statistics to create strongly coupled ion plasmas in atom traps,” Phys. Rev. Lett. 87, 115003 (2001).10.1103/physrevlett.87.115003 doi: 10.1103/physrevlett.87.115003
|
[17] |
M. Lyon, S. D. Bergeson, G. Hart et al., “Stronly-coupled plasmas formed from laser-heated solids,” Sci. Rep. 5, 15693 (2015).10.1038/srep15693 doi: 10.1038/srep15693
|
[18] |
J. Clérouin, G. Robert, P. Arnault et al., “Evidence for out-of-equilibrium states in warm dense matter probed by x-ray Thomson scattering,” Phys. Rev. E 91, 011101(R) (2015).10.1103/physreve.91.011101 doi: 10.1103/physreve.91.011101
|
[19] |
R. N. Barnett and U. Landman, “Born-Oppenheimer molecular-dynamics simulations of finite systems: Structure and dynamics of (H2O)2,” Phys. Rev. B 48, 2081 (1993).10.1103/physrevb.48.2081 doi: 10.1103/physrevb.48.2081
|
[20] |
D. Marx and J. Hutter, “Ab initio molecular dynamics: Theory and implementation,” in Modern Methods and Algorithms of Quantum Chemistry, edited by J. Grotendorst (John von Neumann Institute for Computing, Jülich, 2000), p. 301ff.
|
[21] |
J. S. Tse, “Ab initio molecular dynamics with density functional theory,” Annu. Rev. Phys. Chem. 53, 249 (2002).10.1146/annurev.physchem.53.090401.105737 doi: 10.1146/annurev.physchem.53.090401.105737
|
[22] |
D. Marx and J. Hutter, Ab Initio Molecular Dynamics: Basic Theory and Advanced Methods (Cambridge University Press, Cambridge, 2009).
|
[23] |
N. J. Hartley, P. Belancourt, D. A. Chapman et al., “Electron-ion temperature equilibration in warm dense tantalum,” High Energy Density Phys. 14, 1 (2015).10.1016/j.hedp.2014.10.003 doi: 10.1016/j.hedp.2014.10.003
|
[24] |
A. Ng, P. Sterne, S. Hansen et al., “Dc conductivity of two-temperature warm dense gold,” Phys. Rev. E 94, 033213 (2016).10.1103/physreve.94.033213 doi: 10.1103/physreve.94.033213
|
[25] |
T. Ogitsu, A. Fernandez-Pañella, S. Hamel et al., “Ab initio modeling of nonequilibrium electron-ion dynamics of iron in the warm dense matter regime,” Phys. Rev. B 97, 214203 (2018).10.1103/physrevb.97.214203 doi: 10.1103/physrevb.97.214203
|
[26] |
L. Harbour, G. D. Förster, M. W. C. Dharma-wardana et al., “Ion-ion dynamic structure factor, acoustic modes, and equation of state of two-temperature warm dense aluminum,” Phys. Rev. E 97, 043210 (2018).10.1103/physreve.97.043210 doi: 10.1103/physreve.97.043210
|
[27] |
Zh. A. Moldabekov, S. Groth, T. Dornheim et al., “Structural characteristics of strongly coupled ions in a dense quantum plasma,” Phys. Rev. E 98, 023207 (2018).10.1103/physreve.98.023207 doi: 10.1103/physreve.98.023207
|
[28] |
N. Nettelmann, B. Holst, A. Kietzmann et al., “Ab initio equation of state data for hydrogen, helium, and water and the internal structure of Jupiter,” Astrophys. J. 683, 1217–1228 (2008).10.1086/589806 doi: 10.1086/589806
|
[29] |
J. D. Lindl, P. Amendt, R. L. Berger et al., “The physics basis for ignition using indirect-drive targets on the National Ignition Facility,” Phys. Plasmas 11, 339 (2004).10.1063/1.1578638 doi: 10.1063/1.1578638
|
[30] |
D. Kang, Y. Hou, Q. Zeng et al., “Unified first-principles equations of state of deuterium-tritium mixtures in the global inertial confinement fusion region,” Matter Radiat. Extremes 5, 055401 (2020).10.1063/5.0008231 doi: 10.1063/5.0008231
|
[31] |
U. Zastrau, P. Sperling, M. Harmand et al., “Resolving ultrafast heating of dense cryogenic hydrogen,” Phys. Rev. Lett. 112, 105002 (2014).10.1103/physrevlett.112.105002 doi: 10.1103/physrevlett.112.105002
|
[32] |
U. Zastrau, P. Sperling, A. Becker et al., “Equilibration dynamics and conductivity of warm dense hydrogen,” Phys. Rev. E 90, 013104 (2014).10.1103/physreve.90.013104 doi: 10.1103/physreve.90.013104
|
[33] |
U. Zastrau, P. Sperling, C. Fortmann-Grote et al., “Ultrafast electron kinetics in short pulse laser-driven dense hydrogen,” J. Phys. B: At., Mol. Opt. Phys. 48, 224004 (2015).10.1088/0953-4075/48/22/224004 doi: 10.1088/0953-4075/48/22/224004
|
[34] |
N. D. Mermin, “Thermal properties of the inhomogeneous electron gas,” Phys. Rev. 137, A1441 (1965).10.1103/physrev.137.a1441 doi: 10.1103/physrev.137.a1441
|
[35] |
D. M. Ceperley, “Path integrals in the theory of condensed helium,” Rev. Mod. Phys. 67, 279 (1995).10.1103/revmodphys.67.279 doi: 10.1103/revmodphys.67.279
|
[36] |
M. Zaghoo, R. J. Husband, and I. F. Silvera, “Striking isotope effect on the metallization phase lines of liquid hydrogen and deuterium,” Phys. Rev. B 98, 104102 (2018).10.1103/physrevb.98.104102 doi: 10.1103/physrevb.98.104102
|
[37] |
S. Biermann, D. Hohl, and D. Marx, “Quantum effects in solid hydrogen at ultra-high pressure,” Solid State Commun. 108, 337 (1998).10.1016/s0038-1098(98)00388-3 doi: 10.1016/s0038-1098(98)00388-3
|
[38] |
H. Kitamura, S. Tsuneyuki, T. Ogitsu et al., “Quantum distribution of protons in solid molecular hydrogen at megabar pressures,” Nature 404, 259 (2000).10.1038/35005027 doi: 10.1038/35005027
|
[39] |
G. Geneste, M. Torrent, F. Bottin et al., “Strong isotope effect in phase II of dense solid hydrogen and deuterium,” Phys. Rev. Lett. 109, 155303 (2012).10.1103/physrevlett.109.155303 doi: 10.1103/physrevlett.109.155303
|
[40] |
F. J. Bermejo, K. Kinugawa, J. Dawidowski et al., “Beyond classical molecular dynamics: Simulation of quantum-dynamics effects at finite temperatures; the case of condensed molecular hydrogen,” Chem. Phys. 317, 198 (2005).10.1016/j.chemphys.2005.04.010 doi: 10.1016/j.chemphys.2005.04.010
|
[41] |
J. Chen, X.-Z. Li, Q. Zhang et al., “Quantum simulation of low-temperature metallic liquid hydrogen,” Nat. Commun. 4, 2064 (2013).10.1038/ncomms3064 doi: 10.1038/ncomms3064
|
[42] |
H. Y. Geng, R. Hoffmann, and Q. Wu, “Lattice stability and high-pressure melting mechanism of dense hydrogen up to 1.5 TPa,” Phys. Rev. B 92, 104103 (2015).10.1103/physrevb.92.104103 doi: 10.1103/physrevb.92.104103
|
[43] |
M. A. Morales, J. M. McMahon, C. Pierleoni et al., “Nuclear quantum effects and nonlocal exchange-correlation functionals applied to liquid hydrogen at high pressure,” Phys. Rev. Lett. 110, 065702 (2013).10.1103/physrevlett.110.065702 doi: 10.1103/physrevlett.110.065702
|
[44] |
D. Kang, H. Sun, J. Dai et al., “Nuclear quantum dynamics in dense hydrogen,” Sci. Rep. 4, 5484 (2014).10.1038/srep05484 doi: 10.1038/srep05484
|
[45] |
D. Kang and J. Dai, “Dynamic electron-ion collisions and nuclear quantum effects in quantum simulation of warm dense matter,” J. Phys.: Condens. Matter 30, 073002 (2018).10.1088/1361-648x/aa9e29 doi: 10.1088/1361-648x/aa9e29
|
[46] |
S. Azadi, R. Singh, and T. D. Kühne, “Nuclear quantum effects induce metallization of dense solid molecular hydrogen,” J. Comput. Chem. 39, 262 (2018).10.1002/jcc.25104 doi: 10.1002/jcc.25104
|
[47] |
J. Hinz, V. V. Karasiev, S. X. Hu et al., “Fully consistent density functional theory determination of the insulator-metal transition boundary in warm dense hydrogen,” Phys. Rev. Res. 2, 032065 (2020).10.1103/physrevresearch.2.032065 doi: 10.1103/physrevresearch.2.032065
|
[48] |
B. Lu, D. Kang, D. Wang et al., “Towards the same line of liquid-liquid phase transition of dense hydrogen from various theoretical predictions,” Chin. Phys. Lett. 36, 103102 (2019).10.1088/0256-307x/36/10/103102 doi: 10.1088/0256-307x/36/10/103102
|
[49] |
W. Kohn and L. J. Sham, “Self-consistent equations including exchange and correlation effects,” Phys. Rev. 140, A1133 (1965).10.1103/physrev.140.a1133 doi: 10.1103/physrev.140.a1133
|
[50] |
S. Zhang, H. Wang, W. Kang et al., “Extended application of Kohn-Sham first-principles molecular dynamics method with plane wave approximation at high energy: From cold materials to hot dense plasmas,” Phys. Plasmas 23, 042707 (2016).10.1063/1.4947212 doi: 10.1063/1.4947212
|
[51] |
C. Gao, S. Zhang, W. Kang et al., “Validity boundary of orbital-free molecular dynamics method corresponding to thermal ionization of shell structure,” Phys. Rev. B 94, 205115 (2016).10.1103/physrevb.94.205115 doi: 10.1103/physrevb.94.205115
|
[52] |
V. V. Karasiev, T. Sjostrom, and S. B. Trickey, “Generalized-gradient-approximation noninteracting free-energy functionals for orbital-free density functional calculations,” Phys. Rev. B 86, 115101 (2012).10.1103/physrevb.86.115101 doi: 10.1103/physrevb.86.115101
|
[53] |
V. V. Karasiev, D. Chakraborty, O. A. Shukruto et al., “Nonempirical generalized gradient approximation free-energy functional for orbital-free simulations,” Phys. Rev. B 88, 161108(R) (2013).10.1103/physrevb.88.161108 doi: 10.1103/physrevb.88.161108
|
[54] |
K. Luo, V. V. Karasiev, and S. B. Trickey, “Towards accurate orbital-free simulations: A generalized gradient approximation for the noninteracting free energy density functional,” Phys. Rev. B 101, 075116 (2020).10.1103/physrevb.101.075116 doi: 10.1103/physrevb.101.075116
|
[55] |
T. Sjostrom and J. Daligault, “Gradient corrections to the exchange-correlation free energy,” Phys. Rev. B 90, 155109 (2014).10.1103/physrevb.90.155109 doi: 10.1103/physrevb.90.155109
|
[56] |
V. V. Karasiev, L. Calderín, and S. B. Trickey, “Importance of finite-temperature exchange correlation for warm dense matter calculations,” Phys. Rev. E 93, 063207 (2016).10.1103/physreve.93.063207 doi: 10.1103/physreve.93.063207
|
[57] |
V. V. Karasiev, S. X. Hu, M. Zaghoo et al., “Exchange-correlation thermal effects in shocked deuterium: Softening the principal Hugoniot and thermophysical properties,” Phys. Rev. B 99, 214110 (2019).10.1103/physrevb.99.214110 doi: 10.1103/physrevb.99.214110
|
[58] |
K. Ramakrishna, T. Dornheim, and J. Vorberger, “Influence of finite temperature exchange-correlation effects in hydrogen,” Phys. Rev. B 101, 195129 (2020).10.1103/physrevb.101.195129 doi: 10.1103/physrevb.101.195129
|
[59] |
F. J. Bermejo, K. Kinugawa, C. Cabrillo et al., “Quantum effects on liquid dynamics as evidenced by the presence of well-defined collective excitations in liquid para-hydrogen,” Phys. Rev. Lett. 84, 5359 (2000).10.1103/physrevlett.84.5359 doi: 10.1103/physrevlett.84.5359
|
[60] |
D. Chandler and P. G. Wolynes, “Exploiting the isomorphism between quantum theory and classical statistical mechanics of polyatomic fluids,” J. Chem. Phys. 74, 4078 (1981).10.1063/1.441588 doi: 10.1063/1.441588
|
[61] |
D. Marx and M. Parrinello, “Ab initio path integral molecular dynamics: Basic ideas,” J. Chem. Phys. 104, 4077 (1996).10.1063/1.471221 doi: 10.1063/1.471221
|
[62] |
M. Suzuki, “Fractal decomposition of exponential operators with applications to many-body theories and Monte Carlo simulations,” Phys. Lett. A 146, 319 (1990).10.1016/0375-9601(90)90962-n doi: 10.1016/0375-9601(90)90962-n
|
[63] |
R. P. Feynman and A. R. Hibbs, Quantum Mechanics and Path Intergrals (McGraw-Hill, New York, 1965).
|
[64] |
M. Parrinello and A. Rahman, “Study of an F center in molten KCl,” J. Chem. Phys. 80, 860 (1983).10.2172/5968486 doi: 10.2172/5968486
|
[65] |
M. E. Tuckerman, “Path integration via molecular dynamics,” in Quantum Simulations of Complex Many-Body Systems: From Theory to Algorithms, edited by J. Grotendorst, D. Marx, and A. Muramatsu (John von Neumann Institute for Computing, Jülich, 2002), pp. 269–298.
|
[66] |
I. R. Craig and D. E. Manolopoulos, “Quantum statistics and classical mechanics: Real time correlation functions from ring polymer molecular dynamics,” J. Chem. Phys. 121, 3368 (2004).10.1063/1.1777575 doi: 10.1063/1.1777575
|
[67] |
A. Pérez, M. E. Tuckerman, and M. H. Müser, “A comparative study of the centroid and ring-polymer molecular dynamics methods for approximating quantum time correlation functions from path integrals,” J. Chem. Phys. 130, 184105 (2009).10.1063/1.3126950 doi: 10.1063/1.3126950
|
[68] |
M. Rossi, M. Ceriotti, and D. E. Manolopoulos, “How to remove the spurious resonances from ring polymer molecular dynamics,” J. Chem. Phys. 140, 234116 (2014).10.1063/1.4883861 doi: 10.1063/1.4883861
|
[69] |
M. E. Tuckerman, D. Marx, M. L. Klein et al., “Efficient and general algorithms for path integral Car-Parrinello molecular dynamics,” J. Chem. Phys. 104, 5579 (1996).10.1063/1.471771 doi: 10.1063/1.471771
|
[70] |
K. Luo, V. V. Karasiev, and S. B. Trickey, “A simple generalized gradient approximation for the noninteracting kinetic energy density functional,” Phys. Rev. B 98, 041111(R) (2018).10.1103/physrevb.98.041111 doi: 10.1103/physrevb.98.041111
|
[71] |
V. V. Karasiev, T. Sjostrom, J. Dufty et al., “Accurate homogeneous electron gas exchange-correlation free energy for local spin-density calculations,” Phys. Rev. Lett. 112, 076403 (2014).10.1103/physrevlett.112.076403 doi: 10.1103/physrevlett.112.076403
|
[72] |
S. Groth, T. Dornheim, T. Sjostrom et al., “Ab initio exchange-correlation free energy of the uniform electron gas at warm dense matter conditions,” Phys. Rev. Lett. 119, 135001 (2017).10.1103/physrevlett.119.135001 doi: 10.1103/physrevlett.119.135001
|
[73] |
V. V. Karasiev, J. W. Dufty, and S. B. Trickey, “Nonempirical semilocal free-energy density functional for matter under extreme conditions,” Phys. Rev. Lett. 120, 076401 (2018).10.1103/physrevlett.120.076401 doi: 10.1103/physrevlett.120.076401
|
[74] |
C. Pierleoni, M. A. Morales, G. Rillo et al., “Liquid–liquid phase transition in hydrogen by coupled electron–ion Monte Carlo simulations,” Proc. Nat. Acad. Sci. U. S. A. 113, 4953 (2016).10.1073/pnas.1603853113 doi: 10.1073/pnas.1603853113
|
[75] |
V. Kapil, M. Rossi, O. Marsalek et al., “i-PI 2.0: A universal force engine for advanced molecular simulations,” Comput. Phys. Commun. 236, 214 (2019).10.1016/j.cpc.2018.09.020 doi: 10.1016/j.cpc.2018.09.020
|
[76] |
M. Chen, J. Xia, C. Huang et al., “Introducing PROFESS 3.0: An advanced program for orbital-free density functional theory molecular dynamics simulations,” Comput. Phys. Commun. 190, 228 (2015).10.1016/j.cpc.2014.12.021 doi: 10.1016/j.cpc.2014.12.021
|
[77] |
V. V. Karasiev, T. Sjostrom, and S. B. Trickey, “Finite-temperature orbital-free DFT molecular dynamics: Coupling Profess and Quantum Espresso,” Comput. Phys. Commun. 185, 3240 (2014).10.1016/j.cpc.2014.08.023 doi: 10.1016/j.cpc.2014.08.023
|
[78] |
V. V. Karasiev, S. B. Trickey, and J. W. Dufty, “Status of free-energy representations for the homogeneous electron gas,” Phys. Rev. B 99, 195134 (2019).10.1103/physrevb.99.195134 doi: 10.1103/physrevb.99.195134
|
[79] |
M. Ceriotti, M. Parrinello, T. E. Markland et al., “Efficient stochastic thermostatting of path integral molecular dynamics,” J. Chem. Phys. 133, 124104 (2010).10.1063/1.3489925 doi: 10.1063/1.3489925
|
[80] |
P. Giannozzi, O. Andreussi, T. Brumme et al., “Advanced capabilities for materials modelling with Quantum Espresso,” J. Phys.: Condens. Matter 29, 465901 (2017).10.1088/1361-648x/aa8f79 doi: 10.1088/1361-648x/aa8f79
|
[81] |
M. A. Morales, C. Pierleoni, and D. M. Ceperley, “Equation of state of metallic hydrogen from coupled electron-ion Monte Carlo simulations,” Phys. Rev. E 81, 021202 (2010).10.1103/physreve.81.021202 doi: 10.1103/physreve.81.021202
|
[82] |
E. Liberatore, C. Pierleoni, and D. M. Ceperley, “Liquid-solid transition in fully ionized hydrogen at ultra-high pressures,” J. Chem. Phys. 134, 184505 (2011).10.1063/1.3586808 doi: 10.1063/1.3586808
|
[83] |
R. W. Hall and B. J. Berne, “Nonergodicity in path integral molecular dynamics,” J. Chem. Phys. 81, 3641 (1984).10.1063/1.448112 doi: 10.1063/1.448112
|