Follow us on Wechat

用微信扫码二维码

分享至好友和朋友圈

Volume 6 Issue 2
Mar.  2021
Turn off MathJax
Article Contents
Hou Yong, Jin Yang, Zhang Ping, Kang Dongdong, Gao Cheng, Redmer Ronald, Yuan Jianmin. Ionic self-diffusion coefficient and shear viscosity of high-Z materials in the hot dense regime[J]. Matter and Radiation at Extremes, 2021, 6(2): 026901. doi: 10.1063/5.0024409
Citation: Hou Yong, Jin Yang, Zhang Ping, Kang Dongdong, Gao Cheng, Redmer Ronald, Yuan Jianmin. Ionic self-diffusion coefficient and shear viscosity of high-Z materials in the hot dense regime[J]. Matter and Radiation at Extremes, 2021, 6(2): 026901. doi: 10.1063/5.0024409

Ionic self-diffusion coefficient and shear viscosity of high-Z materials in the hot dense regime

doi: 10.1063/5.0024409
More Information
  • Corresponding author: a)Author to whom correspondence should be addressed: yonghou@nudt.edu.cn
  • Received Date: 2020-08-25
  • Accepted Date: 2020-12-30
  • Available Online: 2021-03-01
  • Publish Date: 2021-03-15
  • High-Z materials exhibit a broad range of variation of the charge state in the hot dense regime, and so ionic structures become complex with increasing density and temperature owing to ionization. Taking high-Z uranium as example, we study its electronic and ionic structures in the hot dense regime by combining an average-atom model with the hypernetted chain approximation. The electronic structure is described by solving the Dirac equation, taking account of relativistic effects, including broadening of the energy levels, and the effect of other ions via correlation functions. On the basis of the electronic distribution around a nucleus, the ion pair potential is constructed using the modified Gordon–Kim model in the frame of temperature-dependent density functional theory. Because of the presence of ion–ion strong coupling, the bridge function is included in the hypernetted chain approximation, which is used to calculate the correlation functions. To take account of the influence on transport properties of the strong correlation of electrons with highly charged ions, we perform both classical and Langevin molecular dynamics simulations to determine ion self-diffusion coefficients and the shear viscosity, using the Green–Kubo relation and an ion–ion pair potential with good convergence. We show that the influence of electron–ion collisions on transport properties becomes more important as the free electron density increases owing to thermal ionization.
  • loading
  • [1]
    S. P. Regan, V. N. Goncharov, T. C. Sangster et al., “The National direct-drive inertial confinement fusion program,” Nucl. Fusion 59, 032007 (2019).10.1088/1741-4326/aae9b5
    [2]
    T. S. Duffy and R. F. Smith, “Ultra-high pressure dynamic compression of geological materials,” Front. Earth Sci. 7, 23 (2019).10.3389/feart.2019.00023
    [3]
    M. D. Knudson, M. P. Desjarlais, R. W. Lemke et al., “Probing the interiors of the ice giants: Shock compression of water to 700 GPa and 3.8 g/cm3,” Phys. Rev. Lett. 108, 091102 (2012).10.1103/physrevlett.108.091102
    [4]
    D. C. Swift, J. H. Eggert, D. G. Hicks et al., “Mass-radius relationships for exoplanets,” Astrophys. J. 744, 59 (2012).10.1088/0004-637x/744/1/59
    [5]
    F. Zhang, H. B. Cai, W. M. Zhou et al., “Enhanced energy coupling for indirect-drive fast-ignition fusion targets,” Nat. Phys. 16, 810 (2020).10.1038/s41567-020-0878-9
    [6]
    B. A. Remington, R. P. Drake, and D. D. Ryutov, “Experimental astrophysics with high power lasers and Z pinches,” Rev. Mod. Phys. 78, 755 (2006).10.1103/revmodphys.78.755
    [7]
    D. Batani, M. Koenig, J. L. Miquel et al., “Development of the PETawatt Aquitaine laser system and new perspectives in physics,” Phys. Scr. T161, 014016 (2014).10.1088/0031-8949/2014/t161/014016
    [8]
    E. M. Campbell and W. J. Hogan, “The national ignition facility-applications for inertial fusion energy and high-energy-density science,” Plasma Phys. Control. Fusion 41, B39 (1999).10.1088/0741-3335/41/12b/303
    [9]
    J. A. Gaffney, S. X. Hu, P. Arnault et al., “A review of equation-of-state models for inertial confinement fusion materials,” High Energy Density Phys. 28, 7–24 (2018).10.1016/j.hedp.2018.08.001
    [10]
    J. Nilsen, A. L. Kritcher, M. E. Martin et al., “Understanding the effects of radiative preheat and self-emission from shock heating on equation of state measurement at 100 s of Mbar using spherically converging shock waves in a NIF hohlraum,” Matter Radiat. Extremes 5, 018401 (2020).10.1063/1.5131748
    [11]
    H. Liu, H. Song, Q. Zhang et al., “Validation for equation of state in wide regime: Copper as prototype,” Matter Radiat. Extremes 1, 123 (2016).10.1016/j.mre.2016.03.002
    [12]
    S. D. Bergeson, S. D. Baalrud, C. L. Ellison et al., “Exploring the crossover between high-energy-density plasma and ultracold neutral plasma physics,” Phys. Plasmas 26, 100501 (2019).10.1063/1.5119144
    [13]
    Y. Hou, J. Dai, D. Kang et al., “Equations of state and transport properties of mixtures in the warm dense regime,” Phys. Plasmas 22, 022711 (2015).10.1063/1.4913424
    [14]
    E. R. Meyer, J. D. Kress, L. A. Collins, and C. Ticknor, “Effect of correlation on viscosity and diffusion in molecular-dynamics simulations,” Phys. Rev. E 90, 043101 (2014).10.1103/physreve.90.043101
    [15]
    S. D. Baalrud and J. Daligault, “Effective potential theory for transport coefficients across coupling regimes,” Phys. Rev. Lett. 110, 235001 (2013).10.1103/physrevlett.110.235001
    [16]
    J. D. Kress, J. S. Cohen, D. P. Kilcrease et al., “Orbital-free molecular dynamics simulations of transport properties in dense-plasma uranium,” High Energy Density Phys. 7, 155–160 (2011).10.1016/j.hedp.2011.03.007
    [17]
    B. B. L. Witte, L. B. Fletcher, E. Galtier et al., “Warm dense matter demonstrating non-Drude conductivity from observations of nonlinear plasmon damping,” Phys. Rev. Lett. 118, 225001 (2017).10.1103/physrevlett.118.225001
    [18]
    B. B. L. Witte, P. Sperling, M. French et al., “Observations of non-linear plasmon damping in dense plasmas,” Phys. Plasmas 25, 056901 (2018).10.1063/1.5017889
    [19]
    M. W. C. Dharma-wardana and D. D. Klug, “Isochoric, isobaric, and ultrafast conductivities of aluminum, lithium, and carbon in the warm dense matter regime,” Phys. Rev. E 96, 053206 (2017).10.1103/physreve.96.053206
    [20]
    C. E. Starrett, “Kubo-Greenwood approach to conductivity in dense plasmas with average atom models,” High Energy Density Phys. 19, 58–64 (2016).10.1016/j.hedp.2016.04.001
    [21]
    W. R. Johnson and J. Nilsen, “Average-atom treatment of relaxation time in x-ray Thomson scattering from warm dense matter,” Phys. Rev. E 93, 033205 (2016).10.1103/physreve.93.033205
    [22]
    J. C. Pain and G. Dejonghe, “Electrical resistivity in warm dense plasmas beyond the average-atom model,” Contrib. Plasma Phys. 50, 39–45 (2010).10.1002/ctpp.201010010
    [23]
    M. Bethkenhagen, B. B. L. Witte, M. Schörner et al., “Carbon ionization at gigabar pressures: An ab initio perspective on astrophysical high-density plasmas,” Phys. Rev. Res. 2, 023260 (2020).10.1103/physrevresearch.2.023260
    [24]
    J. E. Bailey, T. Nagayama, G. P. Loisel et al., “A higher-than-predicted measurement of iron opacity at solar interior temperatures,” Nature 517, 56–59 (2015).10.1038/nature14048
    [25]
    T. Nagayama, J. E. Bailey, G. P. Loisel et al., “Systematic study of L-Shell opacity at stellar interior temperatures,” Phys. Rev. Lett. 122, 235001 (2019).10.1103/physrevlett.122.235001
    [26]
    P. Liu, C. Gao, Y. Hou et al., “Transient space localization of electrons ejected from continuum atomic processes in hot dense plasma,” Commun. Phys. 1, 95 (2018).10.1038/s42005-018-0093-5
    [27]
    O. Renner and F. B. Rosmej, “Challenges of x-ray spectroscopy in investigations of matter under extreme conditions,” Matter Radiat. Extremes 4, 024201 (2019).10.1063/1.5086344
    [28]
    A. B. Zylstra, J. A. Frenje, P. E. Grabowski et al., “Measurement of charged-particle stopping in warm dense plasma,” Phys. Rev. Lett. 114, 211002 (2015).10.1103/physrevlett.114.211002
    [29]
    C. Deutsch, “Correlated ion stopping in dense plasmas,” Matter Radiat. Extremes 4, 034201 (2019).10.1063/1.5088127
    [30]
    J. Clérouin, G. Robert, and P. Arnault, “Behavior of the coupling parameter under isochoric heating in a high-Z plasma,” Phys. Rev. E. 87, 061101(R) (2013).10.1103/physreve.87.061101
    [31]
    P. Arnault, J. Clérouin, and G. Robert, “Thomas-Fermi Z-scaling laws and coupling stabilization for plasmas,” Phys. Rev. E. 88, 063106 (2013).10.1103/physreve.88.063106
    [32]
    J. Clérouin, P. Arnault, G. Robert, J. D. Kress, and L. A. Collins, “Self-organization in dense plasmas: The Gamma-Plateau,” Contrib. Plasma Phys. 55, 159–163 (2015).10.1002/ctpp.201400064
    [33]
    N. D. Mermin, “Thermal properties of the inhomogeneous electron gas,” Phys. Rev. 137, A1441 (1965).10.1103/physrev.137.a1441
    [34]
    S. X. Hu, V. V. Karasiev, V. Recoules et al., “Interspecies radiative transition in warm and superdense plasma mixtures,” Nat. Commun. 11, 1989 (2020).10.1038/s41467-020-15916-3
    [35]
    H. R. Rüter and R. Redmer, “Ab initio simulations for the ion-ion structure factor of warm dense aluminum,” Phys. Rev. Lett. 112, 145007 (2014).10.1103/physrevlett.112.145007
    [36]
    S. Mazevet, F. Lambert, F. Bottin et al., “Ab initio molecular dynamics simulations of dense boron plasmas up to the semiclassical Thomas-Fermi regime,” Phys. Rev. E 75, 056404 (2007).10.1103/physreve.75.056404
    [37]
    T. D. Kühne, M. Krack, F. R. Mohamed, and M. Parrinello, “Efficient and accurate Car-Parrinello-like approach to Born-Oppenheimer molecular dynamics,” Phys. Rev. Lett. 98, 066401 (2007).10.1103/physrevlett.98.066401
    [38]
    M. P. Desjarlais, “Density-functional calculations of the liquid deuterium Hugoniot, reshock, and reverberation timing,” Phys. Rev. B 68, 064204 (2003).10.1103/physrevb.68.064204
    [39]
    J. Dai, Y. Hou, and J. Yuan, “Unified first principles description from warm dense matter to ideal ionized gas plasma: Electron-ion collisions induced friction,” Phys. Rev. Lett. 104, 245001 (2010);10.1103/physrevlett.104.245001
    [40]
    J. Dai, Y. Hou, D. Kang et al., “Structure, equation of state, diffusion and viscosity of warm dense Fe under the conditions of a giant planet core,” New J. Phys. 15, 045003 (2013).10.1088/1367-2630/15/4/045003
    [41]
    S. Zhang, H. Wang, W. Kang et al., “Extended application of Kohn-Sham first-principles molecular dynamics method with plane wave approximation at high energy-From cold materials to hot dense plasmas,” Phys. Plasmas 23, 042707 (2016).10.1063/1.4947212
    [42]
    F. Lambert, J. Clérouin, and G. Zérah, “Very-high-temperature molecular dynamics,” Phys. Rev. E 73, 016403 (2006).10.1103/physreve.73.016403
    [43]
    F. Lambert and V. Recoules, “Plastic ablator and hydrodynamic instabilities: A first-principles set of microscopic coefficients,” Phys. Rev. E 86, 026405 (2012).10.1103/physreve.86.026405
    [44]
    L. Burakovsky, C. Ticknor, J. D. Kress et al., “Transport properties of lithium hydride at extreme conditions from orbital-free molecular dynamics,” Phys. Rev. E 87, 023104 (2013).10.1103/physreve.87.023104
    [45]
    T. Sjostrom and J. Daligault, “Fast and accurate quantum molecular dynamics of dense plasmas across temperature regimes,” Phys. Rev. Lett. 113, 155006 (2014).10.1103/physrevlett.113.155006
    [46]
    T. Sjostrom and J. Daligault, “Ionic and electronic transport properties in dense plasmas by orbital-free density functional theory,” Phys. Rev. E 92, 063304 (2015).10.1103/physreve.92.063304
    [47]
    C. E. Starrett, “Thomas-Fermi simulations of dense plasmas without pseudopotentials,” Phys. Rev. E 96, 013206 (2017).10.1103/physreve.96.013206
    [48]
    C. E. Starrett and D. Saumon, “Equation of state of dense plasmas with pseudoatom molecular dynamics,” Phys. Rev. E 93, 063206 (2016).10.1103/physreve.93.063206
    [49]
    C. E. Starrett, J. Daligault, and D. Saumon, “Pseudoatom molecular dynamics,” Phys. Rev. E 91, 013104 (2015).10.1103/physreve.91.013104
    [50]
    R. Bredow, Th. Bornath, W.-D. Kraeft, and R. Redmer, “Hypernetted chain calculation fo multi-component and non-equilibrium plasmas,” Contrib. Plasma Phys. 53, 276 (2013).10.1002/ctpp.201200117
    [51]
    K. Wünsch, P. Hilse, M. Schlanges, and D. O. Gericke, “Structure of strongly coupled multicomponent plasmas,” Phys. Rev. E 77, 056404 (2008).10.1103/physreve.77.056404
    [52]
    V. Schwarz, Th. Bornath, W.-D. Kraeft et al., “Hypernetted chain calculations for two component plasmas,” Contrib. Plasma Phys. 47, 324 (2007).10.1002/ctpp.200710043
    [53]
    V. Bezkrovniy, M. Schlanges, D. Kremp, and W.-D. Kraeft, “Reaction ensemble Monte Carlo technique and hypernetted chain approximation study of dense hydrogen,” Phys. Rev. E 69, 061204 (2004).10.1103/physreve.69.061204
    [54]
    M. Baus and J. Hansen, “Statistical mechanics of simple Coulomb systems,” Phys. Rep. 59, 1 (1980).10.1016/0370-1573(80)90022-8
    [55]
    Y. Fu, Y. Hou, D. Kang et al., “Multi-charge-state molecular dynamics and self-diffusion coefficient in the warm dense matter regime,” Phys. Plasmas 25, 012701 (2018).10.1063/1.5000757
    [56]
    Y. Hou, F. Jin, and J. Yuan, “Influence of the electronic energy level broadening on the ionization of atoms in hot and dense plasmas: An average atom model demonstration,” Phys. Plasmas 13, 093301 (2006).10.1063/1.2338023
    [57]
    Y. Hou, F. Jin, and J. Yuan, “Energy level broadening effect on the equation of state of hot dense Al and Au plasma,” J. Phys.: Condens. Matter 19, 425204 (2007).10.1088/0953-8984/19/42/425204
    [58]
    Y. Hou, R. Bredow, J. Yuan, and R. Redmer, “Average-atom model combined with the hypernetted chain approximation applied to warm dense matter,” Phys. Rev. E 91, 033114 (2015).10.1103/physreve.91.033114
    [59]
    Y. Hou, Y. Fu, R. Bredow et al., “Average-atom model for two-temperature states and ionic transport properties of aluminum in the warm dense matter regime,” High Energy Density Phys. 22, 21–26 (2017).10.1016/j.hedp.2017.01.003
    [60]
    Y. Hou and J. Yuan, “Alternative ion-ion pair-potential model applied to molecular dynamics simulations of hot and dense plasmas: Al and Fe as examples,” Phys. Rev. E 79, 016402 (2009).10.1103/physreve.79.016402
    [61]
    M. P. Allen and D. J. Tildesley, Computer Simulation of Liquids (Clarendon Press, Oxford, 1987).
    [62]
    D. Saumon, C. E. Starrett, J. D. Kress, and J. Clérouin, “The quantum hypernetted chain model of warm dense matter,” High Energy Density Phys. 8, 150 (2012).10.1016/j.hedp.2011.11.002
    [63]
    H. Iyetomi, S. Ogata, and S. Ichimaru, “Bridge functions and improvement on the hypernetted-chain approximation for classical one-component plasmas,” Phys. Rev. A 46, 1051 (1992).10.1103/physreva.46.1051
    [64]
    A. Diaw and M. S. Murillo, “A dynamic density functional theory approach to diffusion in white dwarfs and neutron star envelopes,” Astrophys. J. 829, 16 (2016).10.3847/0004-637x/829/1/16
    [65]
    N. Desbiens, P. Arnault, and J. Clérouin, “Parametrization of pair correlation function and static structure factor of the one component plasma across coupling regimes,” Phys. Plasmas 23, 092120 (2016).10.1063/1.4963388
    [66]
    C. Deutsch, M. M. Gombert, and H. Minoo, “Classical modelization of symmetry effects in the dense high-temperature electron gas,” Phys. Lett. A 66, 381 (1978).10.1016/0375-9601(78)90066-x
    [67]
    J. P. Hansen and I. R. McDonald, “Microscopic simulation of a hydrogen plasmas,” Phys. Rev. Lett. 41, 1379 (1978).10.1103/physrevlett.41.1379
    [68]
    A. Esser and G. Röpke, “Debye-Onsager relaxation effect in fully ionized plasmas,” Phys. Rev. E 58, 2446 (1998).10.1103/physreve.58.2446
    [69]
    P. Mabey, S. Richardson, T. G. White et al., “A strong diffusive ion model in dense ionized matter predicted by Langevin dynamics,” Nat. Commun. 8, 14125 (2017).10.1038/ncomms14125
    [70]
    A. V. Plyukhin, “Generalized Fokker-Planck equation, Brownian motion, and ergodicity,” Phys. Rev. E 77, 061136 (2008).10.1103/physreve.77.061136
    [71]
    R. G. Gordon and Y. S. Kim, “Theory for the forces between closed-shell atoms and molecules,” J. Chem. Phys. 56, 3122 (1972).10.1063/1.1677649
    [72]
    Y. S. Kim and R. G. Gordon, “Theory of binding of ionic crystals: Application to alkali-halide and alkaline-earth-dihalide crystals,” Phys. Rev. B 9, 3548 (1974).10.1103/physrevb.9.3548
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(6)

    Article Metrics

    Article views (127) PDF downloads(7) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return