Follow us on Wechat

用微信扫码二维码

分享至好友和朋友圈

Volume 5 Issue 6
Nov.  2020
Turn off MathJax
Article Contents
Rosmej F. B., Vainshtein L. A., Astapenko V. A., Lisitsa V. S.. Statistical and quantum photoionization cross sections in plasmas: Analytical approaches for any configurations including inner shells[J]. Matter and Radiation at Extremes, 2020, 5(6): 064202. doi: 10.1063/5.0022751
Citation: Rosmej F. B., Vainshtein L. A., Astapenko V. A., Lisitsa V. S.. Statistical and quantum photoionization cross sections in plasmas: Analytical approaches for any configurations including inner shells[J]. Matter and Radiation at Extremes, 2020, 5(6): 064202. doi: 10.1063/5.0022751

Statistical and quantum photoionization cross sections in plasmas: Analytical approaches for any configurations including inner shells

doi: 10.1063/5.0022751
More Information
  • Corresponding author: a)Author to whom correspondence should be addressed: frank.rosmej@sorbonne-universite.fr
  • Received Date: 2020-07-24
  • Accepted Date: 2020-09-24
  • Available Online: 2020-11-01
  • Publish Date: 2020-11-15
  • Statistical models combined with the local plasma frequency approach applied to the atomic electron density are employed to study the photoionization cross-section for complex atoms. It is demonstrated that the Thomas–Fermi atom provides surprisingly good overall agreement even for complex outer-shell configurations, where quantum mechanical approaches that include electron correlations are exceedingly difficult. Quantum mechanical photoionization calculations are studied with respect to energy and nl quantum number for hydrogen-like and non-hydrogen-like atoms and ions. A generalized scaled photoionization model (GSPM) based on the simultaneous introduction of effective charges for non-H-like energies and scaling charges for the reduced energy scale allows the development of analytical formulas for all states nl. Explicit expressions for nl = 1s, 2s, 2p, 3s, 3p, 3d, 4s, 4p, 4d, 4f, and 5s are obtained. Application to H-like and non-H-like atoms and ions and to neutral atoms demonstrates the universality of the scaled analytical approach including inner-shell photoionization. Likewise, GSPM describes the near-threshold behavior and high-energy asymptotes well. Finally, we discuss the various models and the correspondence principle along with experimental data and with respect to a good compromise between generality and precision. The results are also relevant to large-scale integrated light–matter interaction simulations, e.g., X-ray free-electron laser interactions with matter or photoionization driven by a broadband radiation field such as Planckian radiation.
  • loading
  • [1]
    F. F. Chen, Plasma Physics and Controlled Fusion, 2nd ed. (Plenum Press, 1984).
    [2]
    S. Ichimaru, Statistical Plasma Physics Vol. I: Basic Principles (Westview Press, 2004).
    [3]
    S. Ichimaru, Statistical Plasma Physics Vol. II: Condensed Plasmas (Westview Press, 2004).
    [4]
    A. Unsöld, Physik der Sternatmosphären (Springer, Berlin, 1955).
    [5]
    D. Mihalas, Stellar Atmospheres (W. H. Freeman and Company, 1970).
    [6]
    A. K. Pradhan and S. N. Nahar, Atomic Astrophysics and Spectroscopy (Cambridge University Press, Cambridge, 2011).
    [7]
    R. P. Drake, High-Energy-Density-Physics (Springer, 2006).
    [8]
    S. Atzeni and J. Meyer-ter-Vehn, The Physics of Inertial Fusion (Oxford Science Publications, 2004).
    [9]
    R. Geneaux, H. J. B. Marroux, A. Guggenmos et al., “Transient absorption spectroscopy using high harmonic generation: A review of ultrafast X-ray dynamics in molecules and solids,” Philos. Trans. R. Soc. A 377, 20170463 (2019).10.1098/rsta.2017.0463 doi: 10.1098/rsta.2017.0463
    [10]
    [11]
    [12]
    [13]
    E. Galtier, F. B. Rosmej, D. Riley et al., “Decay of crystalline order and equilibration during solid-to-plasma transition induced by 20-fs microfocused 92 eV free electron laser pulses,” Phys. Rev. Lett. 106, 164801 (2011).10.1103/physrevlett.106.164801 doi: 10.1103/physrevlett.106.164801
    [14]
    F. B. Rosmej, “Exotic states of high density matter driven by intense XUV/X-ray free electron lasers,” in Free Electron Laser, edited by S. Varró (InTech, 2012), pp. 187–212, ISBN: 978-953-51-0279-3.
    [15]
    B. Deschaud, O. Peyrusse, and F. B. Rosmej, “Simulation of XFEL induced fluorescence spectra of hollow ions and studies of dense plasma effects,” Phys. Plasmas 27, 063303 (2020).10.1063/5.0011193 doi: 10.1063/5.0011193
    [16]
    F. B. Rosmej, V. A. Astapenko, and V. S. Lisitsa, Plasma Atomic Physics (Springer, 2021), ISBN 978-3-030-05966-8.
    [17]
    F. B. Rosmej, X-ray Free Electron Laser and Atomic Physics in Dense Plasmas, Springer Proceeding of the CAMNP-2019, edited by M. Mohan (Springer, 2020).
    [18]
    B. Deschaud, O. Peyrusse, and F. B. Rosmej, “Generalized atomic physics processes when intense femtosecond XUV- and X-ray radiation is interacting with solids,” Europhys. Lett. 108, 53001 (2014).10.1209/0295-5075/108/53001 doi: 10.1209/0295-5075/108/53001
    [19]
    M. Ya. Amusia, Atomic Photoeffect (Springer, 1990).
    [20]
    R. D. Cowan, The Theory of Atomic Structure and Spectra (University of California Press, 1981).
    [21]
    I. I. Sobelmann, Theory of Atomic Spectra (Alpha Science Int. Limited, 2006).
    [22]
    I. I. Sobelman, Introduction to the Theory of Atomic Spectra (Pergamon, Oxford, 1972).
    [23]
    W. Brandt and S. Lundqvist, “Atomic oscillations in the statistical approximation,” Phys. Rev. 139, A612 (1965).10.1103/physrev.139.a612 doi: 10.1103/physrev.139.a612
    [24]
    J. M. Rost, “Analytical total photo cross section for atoms,” J. Phys. B.: At., Mol. Opt. Phys. 28, L601 (1995).10.1088/0953-4075/28/19/002 doi: 10.1088/0953-4075/28/19/002
    [25]
    A. Sommefeld, Atombau und Spektrallinien: Band I und II (Harri Deutsch, Frankfurt, 1978).
    [26]
    V. I. Kogan, A. B. Kukushkin, and V. S. Lisitsa, “Kramers electrodynamics and electron-atomic radiative-collisional processes,” Phys. Rep. 213, 1–116 (1992).10.1016/0370-1573(92)90161-r doi: 10.1016/0370-1573(92)90161-r
    [27]
    V. P. Shevelko and L. A. Vainshtein, Atomic Physics for Hot Plasmas (IOP Publishing, Bristol, 1993).
    [28]
    L. A. Vainshtein and V. P. Shevelko, Program ATOM, Preprint No. 43 (Lebedev Physical Institute, Moscow, 1996).
    [29]
    X. Li and F. B. Rosmej, “Analytical approach to level delocalization and line shifts in finite temperature dense plasmas,” Phys. Lett. A 384, 126478 (2020).10.1016/j.physleta.2020.126478 doi: 10.1016/j.physleta.2020.126478
    [30]
    M. Yan, H. R. Sadeghpour, and A. Dalgarno, “Photoionization cross sections of He and H2,” Astrophys. J. 496, 1044 (1998).10.1086/305420 doi: 10.1086/305420
    [31]
    J. B. West and G. V. Marr, “The absolute photoionization cross sections of helium, neon, argon and krypton in the extreme vacuum ultraviolet region of the spectrum,” Proc. R. Soc. London A 349, 397 (1975).10.1098/rspa.1976.0081 doi: 10.1098/rspa.1976.0081
    [32]
    J. A. R. Samson and W. C. Stolte, “Precision measurements of the total photoionization cross-sections of He, Ne, Ar, Kr, and Xe,” J. Electron Spectrosc. Relat. Phenom. 123, 265 (2002).10.1016/S0368-2048(02)00026-9 doi: 10.1016/S0368-2048(02)00026-9
    [33]
    A. Daldgarno and H. R. Sadeghpour, “Double photoionization of atomic helium and its isoelectronic partners at x-ray energies,” Phys. Rev. A 46, R3591 (1992).10.1103/physreva.46.r3591 doi: 10.1103/physreva.46.r3591
    [34]
    R. C. Forrey, H. R. Sadeghpour, J. D. Baker et al., “Double photoionization of excited 1S and 3S states of the helium isoelectronic sequence,” Phys. Rev. A 51, 2112 (1995).10.1103/physreva.51.2112 doi: 10.1103/physreva.51.2112
    [35]
    M. Ya. Amusia, N. A. Cherepkov, L. V. Chernysheva et al., “Calculation of the photo-ionization cross section for argon in the Hartree-Fock approximation,” Sov. Phys. JETP 29, 1018 (1969), available at http://www.jetp.ac.ru/cgi-bin/e/index/e/29/6/p1018?a=list.
    [36]
    A. C. Thomson, J. Kirz, D. T. Attwood et al., X-Ray Data Booklet, 3rd ed. (Center for X-Ray Optics and Advanced Light Source, 2009), http://xdb.lbl.gov.
    [37]
    A. Sommerfeld, “Asymptotische integration der differentialgleichung des Thomas Fermischen atoms,” Z. Phys. 78, 283 (1932).10.1007/bf01342197 doi: 10.1007/bf01342197
    [38]
    W. H. Press, S. A. Teukolsky, W. T. Vetterling et al., Numerical Recipes, 3rd ed. (Cambridge University Press, Cambridge, 2007).
    [39]
    M. Dozières, F. Thaïs, S. Bastiani-Ceccotti et al., “Simultaneous X-ray and XUV absorption measurements in laser produced plasma close to LTE,” High Energy Density Phys. 31, 83 (2019).10.1016/j.hedp.2019.03.007 doi: 10.1016/j.hedp.2019.03.007
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(14)  / Tables(1)

    Article Metrics

    Article views (351) PDF downloads(16) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return