Follow us on Wechat

用微信扫码二维码

分享至好友和朋友圈

Volume 5 Issue 5
Sep.  2020
Turn off MathJax
Article Contents
Yao Peilin, Cai Hongbo, Yan Xinxin, Zhang Wenshuai, Du Bao, Tian Jianmin, Zhang Enhao, Wang Xuewu, Zhu Shaoping. Kinetic study of transverse electron-scale interface instability in relativistic shear flows[J]. Matter and Radiation at Extremes, 2020, 5(5): 054403. doi: 10.1063/5.0017962
Citation: Yao Peilin, Cai Hongbo, Yan Xinxin, Zhang Wenshuai, Du Bao, Tian Jianmin, Zhang Enhao, Wang Xuewu, Zhu Shaoping. Kinetic study of transverse electron-scale interface instability in relativistic shear flows[J]. Matter and Radiation at Extremes, 2020, 5(5): 054403. doi: 10.1063/5.0017962

Kinetic study of transverse electron-scale interface instability in relativistic shear flows

doi: 10.1063/5.0017962
More Information
  • Corresponding author: a)Authors to whom correspondence should be addressed: Cai_hongbo@iapcm.ac.cn and Zhu_shaoping@iapcm.ac.cn; a)Authors to whom correspondence should be addressed: Cai_hongbo@iapcm.ac.cn and Zhu_shaoping@iapcm.ac.cn
  • Received Date: 2020-06-11
  • Accepted Date: 2020-07-28
  • Available Online: 2020-09-01
  • Publish Date: 2020-09-15
  • Interfacial magnetic field structures induced by transverse electron-scale shear instability (mushroom instability) are found to be strongly associated with electron and ion dynamics, which in turn will influence the development of the instability itself. We find that high-frequency electron oscillations are excited normal to the shear interface. Also, on a larger time scale, the bulk of the ions are gradually separated under the influence of local magnetic fields, eventually reaching an equilibrium related to the initial shear conditions. We present a theoretical model of this behavior. Such separation on the scale of the electron skin depth will prevent different ions from mixing and will thereafter restrain the growth of higher-order instabilities. We also analyze the role of electron thermal motion in the generation of the magnetic field, and we find an increase in the instability growth rate with increasing plasma temperature. These results have potential for providing a more realistic description of relativistic plasma flows.
  • loading
  • [1]
    S. Chandrasekhar, Hydrodynamic and Hydromagnetic Stability (Oxford University Press, 1961).
    [2]
    E. Liang, W. Fu, M. Boettcher et al., “Relativistic positron-electron-ion shear flows and application to gamma-ray bursts,” Astrophys. J. Lett. 779, L27 (2013).10.1088/2041-8205/779/2/l27 doi: 10.1088/2041-8205/779/2/l27
    [3]
    E. P. Alves, T. Grismayer, R. A. Fonseca et al., “Electron-scale shear instabilities: Magnetic field generation and particle acceleration in astrophysical jets,” New J. Phys. 16, 035007 (2014).10.1088/1367-2630/16/3/035007 doi: 10.1088/1367-2630/16/3/035007
    [4]
    Y. Zhou, “Rayleigh–Taylor and Richtmyer–Meshkov instability induced flow, turbulence, and mixing. I,” Phys. Rep. 723-725, 1–136 (2017).10.1016/j.physrep.2017.07.005 doi: 10.1016/j.physrep.2017.07.005
    [5]
    V. A. Smalyuk, J. F. Hansen, O. A. Hurricane et al., “Experimental observations of turbulent mixing due to Kelvin-Helmholtz instability on the OMEGA laser facility,” Phys. Plasmas 19, 092702 (2012).10.1063/1.4752015 doi: 10.1063/1.4752015
    [6]
    L. F. Wang, W. H. Ye, W.-S. Don et al., “Formation of large-scale structures in ablative Kelvin-Helmholtz instability,” Phys. Plasmas 17, 122308 (2010).10.1063/1.3524550 doi: 10.1063/1.3524550
    [7]
    E. M. Campbell, V. N. Goncharov, T. C. Sangster et al., “Laser-direct-drive program: Promise, challenge, and path forward,” Matter Radiat. Extremes 2, 37–54 (2017).10.1016/j.mre.2017.03.001 doi: 10.1016/j.mre.2017.03.001
    [8]
    E. Liang, M. Boettcher, and I. Smith, “Magnetic field generation and particle energization at relativistic shear boundaries in collisionless electron-positron plasmas,” Astrophys. J. Lett. 766, L19 (2013).10.1088/2041-8205/766/2/l19 doi: 10.1088/2041-8205/766/2/l19
    [9]
    K.-I. Nishikawa, P. E. Hardee, I. Duţan et al., “Magnetic field generation in core-sheath jets via the kinetic Kelvin-Helmholtz instability,” Astrophys. J. 793, 60 (2014).10.1088/0004-637x/793/1/60 doi: 10.1088/0004-637x/793/1/60
    [10]
    E. Liang, W. Fu, and M. Böttcher, “Relativistic shear flow between electron–ion and electron–positron plasmas and astrophysical applications,” Astrophys. J. 847, 90 (2017).10.3847/1538-4357/aa8772 doi: 10.3847/1538-4357/aa8772
    [11]
    W. H. Ye, L. F. Wang, C. Xue et al., “Competitions between Rayleigh–Taylor instability and Kelvin–Helmholtz instability with continuous density and velocity profiles,” Phys. Plasmas 18, 022704 (2011).10.1063/1.3552106 doi: 10.1063/1.3552106
    [12]
    [13]
    R. M. Kulsrud and E. G. Zweibel, “On the origin of cosmic magnetic fields,” Rep. Prog. Phys. 71, 046901 (2008).10.1088/0034-4885/71/4/046901 doi: 10.1088/0034-4885/71/4/046901
    [14]
    W. Zhang, A. MacFadyen, and P. Wang, “Three-dimensional relativistic magnetohydrodynamic simulations of the Kelvin-Helmholtz instability: Magnetic field amplification by a turbulent dynamo,” Astrophys. J. Lett. 692, L40–L44 (2009).10.1088/0004-637x/692/1/l40 doi: 10.1088/0004-637x/692/1/l40
    [15]
    L. Yin, B. J. Albright, E. L. Vold et al., “Plasma kinetic effects on interfacial mix and burn rates in multispatial dimensions,” Phys. Plasmas 26, 062302 (2019).10.1063/1.5109257 doi: 10.1063/1.5109257
    [16]
    B. Srinivasan, G. Dimonte, and X.-Z. Tang, “Magnetic field generation in Rayleigh-Taylor unstable inertial confinement fusion plasmas,” Phys. Rev. Lett. 108, 165002 (2012).10.1103/physrevlett.108.165002 doi: 10.1103/physrevlett.108.165002
    [17]
    E. P. Alves, T. Grismayer, S. F. Martins et al., “Large-scale magnetic field generation via the kinetic Kelvin-Helmholtz instability in unmagnetized scenarios,” Astrophys. J. Lett. 746, L14 (2012).10.1088/2041-8205/746/2/l14 doi: 10.1088/2041-8205/746/2/l14
    [18]
    Y. Li, R. Samtaney, and V. Wheatley, “The Richtmyer-Meshkov instability of a double-layer interface in convergent geometry with magnetohydrodynamics,” Matter Radiat. Extremes 3, 207–218 (2018).10.1016/j.mre.2018.01.003 doi: 10.1016/j.mre.2018.01.003
    [19]
    T. Grismayer, E. P. Alves, R. A. Fonseca et al., “dc-magnetic-field generation in unmagnetized shear flows,” Phys. Rev. Lett. 111, 015005 (2013).10.1103/physrevlett.111.015005 doi: 10.1103/physrevlett.111.015005
    [20]
    E. P. Alves, T. Grismayer, R. A. Fonseca et al., “Transverse electron-scale instability in relativistic shear flows,” Phys. Rev. E 92, 021101 (2015).10.1103/physreve.92.021101 doi: 10.1103/physreve.92.021101
    [21]
    E. Liang, W. Fu, M. Böttcher et al., “Scaling of relativistic shear flows with the bulk lorentz factor,” Astrophys. J. 854, 129 (2018).10.3847/1538-4357/aaa7f5 doi: 10.3847/1538-4357/aaa7f5
    [22]
    R. Pausch, M. Bussmann, A. Huebl et al., “Identifying the linear phase of the relativistic Kelvin-Helmholtz instability and measuring its growth rate via radiation,” Phys. Rev. E 96, 013316 (2017).10.1103/physreve.96.013316 doi: 10.1103/physreve.96.013316
    [23]
    H.-b. Cai, K. Mima, W.-m. Zhou et al., “Enhancing the number of high-energy electrons deposited to a compressed pellet via double cones in fast ignition,” Phys. Rev. Lett. 102, 245001 (2009).10.1103/physrevlett.102.245001 doi: 10.1103/physrevlett.102.245001
    [24]
    X.-X. Yan, H.-B. Cai, W.-S. Zhang et al., “Anomalous mix induced by a collisionless shock wave in an inertial confinement fusion hohlraum,” Nucl. Fusion 59, 106016 (2019).10.1088/1741-4326/ab32cf doi: 10.1088/1741-4326/ab32cf
    [25]
    T. J. Boyd, T. J. M. Boyd, and J. J. Sanderson, The Physics of Plasmas (Cambridge University Press, 2003).
    [26]
    R. C. Davidson, “Nonlinear development of electromagnetic instabilities in anisotropic plasmas,” Phys. Fluids 15, 317 (1972).10.1063/1.1693910 doi: 10.1063/1.1693910
    [27]
    E. D. Miller and B. N. Rogers, “Relativistic thermal electron scale instabilities in sheared flow plasma,” J. Plasma Phys. 82, 905820205 (2016).10.1017/s0022377816000180 doi: 10.1017/s0022377816000180
    [28]
    M. G. Silveirinha, “Theory of quantum friction,” New J. Phys. 16, 063011 (2014).10.1088/1367-2630/16/6/063011 doi: 10.1088/1367-2630/16/6/063011
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(7)  / Tables(1)

    Article Metrics

    Article views (144) PDF downloads(8) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return