Citation: | Yao Peilin, Cai Hongbo, Yan Xinxin, Zhang Wenshuai, Du Bao, Tian Jianmin, Zhang Enhao, Wang Xuewu, Zhu Shaoping. Kinetic study of transverse electron-scale interface instability in relativistic shear flows[J]. Matter and Radiation at Extremes, 2020, 5(5): 054403. doi: 10.1063/5.0017962 |
[1] |
S. Chandrasekhar, Hydrodynamic and Hydromagnetic Stability (Oxford University Press, 1961).
|
[2] |
E. Liang, W. Fu, M. Boettcher et al., “Relativistic positron-electron-ion shear flows and application to gamma-ray bursts,” Astrophys. J. Lett. 779, L27 (2013).10.1088/2041-8205/779/2/l27 doi: 10.1088/2041-8205/779/2/l27
|
[3] |
E. P. Alves, T. Grismayer, R. A. Fonseca et al., “Electron-scale shear instabilities: Magnetic field generation and particle acceleration in astrophysical jets,” New J. Phys. 16, 035007 (2014).10.1088/1367-2630/16/3/035007 doi: 10.1088/1367-2630/16/3/035007
|
[4] |
Y. Zhou, “Rayleigh–Taylor and Richtmyer–Meshkov instability induced flow, turbulence, and mixing. I,” Phys. Rep. 723-725, 1–136 (2017).10.1016/j.physrep.2017.07.005 doi: 10.1016/j.physrep.2017.07.005
|
[5] |
V. A. Smalyuk, J. F. Hansen, O. A. Hurricane et al., “Experimental observations of turbulent mixing due to Kelvin-Helmholtz instability on the OMEGA laser facility,” Phys. Plasmas 19, 092702 (2012).10.1063/1.4752015 doi: 10.1063/1.4752015
|
[6] |
L. F. Wang, W. H. Ye, W.-S. Don et al., “Formation of large-scale structures in ablative Kelvin-Helmholtz instability,” Phys. Plasmas 17, 122308 (2010).10.1063/1.3524550 doi: 10.1063/1.3524550
|
[7] |
E. M. Campbell, V. N. Goncharov, T. C. Sangster et al., “Laser-direct-drive program: Promise, challenge, and path forward,” Matter Radiat. Extremes 2, 37–54 (2017).10.1016/j.mre.2017.03.001 doi: 10.1016/j.mre.2017.03.001
|
[8] |
E. Liang, M. Boettcher, and I. Smith, “Magnetic field generation and particle energization at relativistic shear boundaries in collisionless electron-positron plasmas,” Astrophys. J. Lett. 766, L19 (2013).10.1088/2041-8205/766/2/l19 doi: 10.1088/2041-8205/766/2/l19
|
[9] |
K.-I. Nishikawa, P. E. Hardee, I. Duţan et al., “Magnetic field generation in core-sheath jets via the kinetic Kelvin-Helmholtz instability,” Astrophys. J. 793, 60 (2014).10.1088/0004-637x/793/1/60 doi: 10.1088/0004-637x/793/1/60
|
[10] |
E. Liang, W. Fu, and M. Böttcher, “Relativistic shear flow between electron–ion and electron–positron plasmas and astrophysical applications,” Astrophys. J. 847, 90 (2017).10.3847/1538-4357/aa8772 doi: 10.3847/1538-4357/aa8772
|
[11] |
W. H. Ye, L. F. Wang, C. Xue et al., “Competitions between Rayleigh–Taylor instability and Kelvin–Helmholtz instability with continuous density and velocity profiles,” Phys. Plasmas 18, 022704 (2011).10.1063/1.3552106 doi: 10.1063/1.3552106
|
[12] | |
[13] |
R. M. Kulsrud and E. G. Zweibel, “On the origin of cosmic magnetic fields,” Rep. Prog. Phys. 71, 046901 (2008).10.1088/0034-4885/71/4/046901 doi: 10.1088/0034-4885/71/4/046901
|
[14] |
W. Zhang, A. MacFadyen, and P. Wang, “Three-dimensional relativistic magnetohydrodynamic simulations of the Kelvin-Helmholtz instability: Magnetic field amplification by a turbulent dynamo,” Astrophys. J. Lett. 692, L40–L44 (2009).10.1088/0004-637x/692/1/l40 doi: 10.1088/0004-637x/692/1/l40
|
[15] |
L. Yin, B. J. Albright, E. L. Vold et al., “Plasma kinetic effects on interfacial mix and burn rates in multispatial dimensions,” Phys. Plasmas 26, 062302 (2019).10.1063/1.5109257 doi: 10.1063/1.5109257
|
[16] |
B. Srinivasan, G. Dimonte, and X.-Z. Tang, “Magnetic field generation in Rayleigh-Taylor unstable inertial confinement fusion plasmas,” Phys. Rev. Lett. 108, 165002 (2012).10.1103/physrevlett.108.165002 doi: 10.1103/physrevlett.108.165002
|
[17] |
E. P. Alves, T. Grismayer, S. F. Martins et al., “Large-scale magnetic field generation via the kinetic Kelvin-Helmholtz instability in unmagnetized scenarios,” Astrophys. J. Lett. 746, L14 (2012).10.1088/2041-8205/746/2/l14 doi: 10.1088/2041-8205/746/2/l14
|
[18] |
Y. Li, R. Samtaney, and V. Wheatley, “The Richtmyer-Meshkov instability of a double-layer interface in convergent geometry with magnetohydrodynamics,” Matter Radiat. Extremes 3, 207–218 (2018).10.1016/j.mre.2018.01.003 doi: 10.1016/j.mre.2018.01.003
|
[19] |
T. Grismayer, E. P. Alves, R. A. Fonseca et al., “dc-magnetic-field generation in unmagnetized shear flows,” Phys. Rev. Lett. 111, 015005 (2013).10.1103/physrevlett.111.015005 doi: 10.1103/physrevlett.111.015005
|
[20] |
E. P. Alves, T. Grismayer, R. A. Fonseca et al., “Transverse electron-scale instability in relativistic shear flows,” Phys. Rev. E 92, 021101 (2015).10.1103/physreve.92.021101 doi: 10.1103/physreve.92.021101
|
[21] |
E. Liang, W. Fu, M. Böttcher et al., “Scaling of relativistic shear flows with the bulk lorentz factor,” Astrophys. J. 854, 129 (2018).10.3847/1538-4357/aaa7f5 doi: 10.3847/1538-4357/aaa7f5
|
[22] |
R. Pausch, M. Bussmann, A. Huebl et al., “Identifying the linear phase of the relativistic Kelvin-Helmholtz instability and measuring its growth rate via radiation,” Phys. Rev. E 96, 013316 (2017).10.1103/physreve.96.013316 doi: 10.1103/physreve.96.013316
|
[23] |
H.-b. Cai, K. Mima, W.-m. Zhou et al., “Enhancing the number of high-energy electrons deposited to a compressed pellet via double cones in fast ignition,” Phys. Rev. Lett. 102, 245001 (2009).10.1103/physrevlett.102.245001 doi: 10.1103/physrevlett.102.245001
|
[24] |
X.-X. Yan, H.-B. Cai, W.-S. Zhang et al., “Anomalous mix induced by a collisionless shock wave in an inertial confinement fusion hohlraum,” Nucl. Fusion 59, 106016 (2019).10.1088/1741-4326/ab32cf doi: 10.1088/1741-4326/ab32cf
|
[25] |
T. J. Boyd, T. J. M. Boyd, and J. J. Sanderson, The Physics of Plasmas (Cambridge University Press, 2003).
|
[26] |
R. C. Davidson, “Nonlinear development of electromagnetic instabilities in anisotropic plasmas,” Phys. Fluids 15, 317 (1972).10.1063/1.1693910 doi: 10.1063/1.1693910
|
[27] |
E. D. Miller and B. N. Rogers, “Relativistic thermal electron scale instabilities in sheared flow plasma,” J. Plasma Phys. 82, 905820205 (2016).10.1017/s0022377816000180 doi: 10.1017/s0022377816000180
|
[28] |
M. G. Silveirinha, “Theory of quantum friction,” New J. Phys. 16, 063011 (2014).10.1088/1367-2630/16/6/063011 doi: 10.1088/1367-2630/16/6/063011
|