Follow us on Wechat

用微信扫码二维码

分享至好友和朋友圈

Volume 5 Issue 6
Nov.  2020
Turn off MathJax
Article Contents
Ma Yue, Hua Jianfei, Liu Dexiang, He Yunxiao, Zhang Tianliang, Chen Jiucheng, Yang Fan, Ning Xiaonan, Yang Zhongshan, Zhang Jie, Pai Chih-Hao, Gu Yuqiu, Lu Wei. Region-of-interest micro-focus computed tomography based on an all-optical inverse Compton scattering source[J]. Matter and Radiation at Extremes, 2020, 5(6): 064401. doi: 10.1063/5.0016034
Citation: Ma Yue, Hua Jianfei, Liu Dexiang, He Yunxiao, Zhang Tianliang, Chen Jiucheng, Yang Fan, Ning Xiaonan, Yang Zhongshan, Zhang Jie, Pai Chih-Hao, Gu Yuqiu, Lu Wei. Region-of-interest micro-focus computed tomography based on an all-optical inverse Compton scattering source[J]. Matter and Radiation at Extremes, 2020, 5(6): 064401. doi: 10.1063/5.0016034

Region-of-interest micro-focus computed tomography based on an all-optical inverse Compton scattering source

doi: 10.1063/5.0016034
More Information
  • Corresponding author: a)Authors to whom correspondence should be addressed: jfhua@tsinghua.edu.cn and weilu@tsinghua.edu.cn; a)Authors to whom correspondence should be addressed: jfhua@tsinghua.edu.cn and weilu@tsinghua.edu.cn
  • Received Date: 2020-06-01
  • Accepted Date: 2020-09-08
  • Available Online: 2020-11-01
  • Publish Date: 2020-11-15
  • Micro-focus computed tomography (CT), which allows the hyperfine structure within objects to be reconstructed, is a powerful nondestructive testing tool in many fields. However, current x-ray sources for micro-focus CT are typically limited by their relatively low photon energy and low flux. An all-optical inverse Compton scattering source (AOCS) based on laser wakefield acceleration can generate intense quasi-monoenergetic x/gamma-ray pulses in the kilo- to megaelectronvolt range with micrometer-level source size, and its potential application for micro-focus CT has become very attractive in recent years because of the rapid progress made in laser wakefield acceleration. Reported here is a successful experimental demonstration of high-fidelity micro-focus CT using an AOCS (∼70 keV) by imaging and reconstructing a test object with complex inner structures. A region-of-interest CT method is adopted to utilize the relatively small field of view of the AOCS to ensure high spatial resolution. This demonstration of AOCS-based region-of-interest micro-focus CT is a key step toward its application in the field of hyperfine nondestructive testing.
  • loading
  • [1]
    L. Labate, P. Tomassini, and L. A. Gizzi, “Inverse Compton scattering x-ray sources,” in Handbook of X-Ray Imaging: Physics Technology (CRC Press, 2017), pp. 309–323.
    [2]
    J. M. Cole, D. R. Symes, N. C. Lopes et al., “High-resolution μCT of a mouse embryo using a compact laser-driven x-ray betatron source,” Proc. Natl. Acad. Sci. U. S. A. 115(25), 6335–6340 (2018).10.1073/pnas.1802314115 doi: 10.1073/pnas.1802314115
    [3]
    J. Wenz, S. Schleede, K. Khrennikov et al., “Quantitative x-ray phase-contrast microtomography from a compact laser-driven betatron source,” Nat. Commun. 6(1), 1–6 (2015).10.1038/ncomms8568 doi: 10.1038/ncomms8568
    [4]
    D. W. Holdsworth and M. M. Thornton, “Micro-CT in small animal and specimen imaging,” Trends Biotechnol. 20(8), S34–S39 (2002).10.1016/s0167-7799(02)02004-8 doi: 10.1016/s0167-7799(02)02004-8
    [5]
    A. Golab, C. R. Ward, A. Permana et al., “High-resolution three-dimensional imaging of coal using microfocus x-ray computed tomography, with special reference to modes of mineral occurrence,” Int. J. Coal Geol. 113, 97–108 (2013).10.1016/j.coal.2012.04.011 doi: 10.1016/j.coal.2012.04.011
    [6]
    C. T. Badea, M. Drangova, D. W. Holdsworth et al., “In vivo small-animal imaging using micro-CT and digital subtraction angiography,” Phys. Med. Biol. 53(19), R319 (2008).10.1088/0031-9155/53/19/r01 doi: 10.1088/0031-9155/53/19/r01
    [7]
    S. T. Ho and D. W. Hutmacher, “A comparison of micro CT with other techniques used in the characterization of scaffolds,” Biomaterials 27(8), 1362–1376 (2006).10.1016/j.biomaterials.2005.08.035 doi: 10.1016/j.biomaterials.2005.08.035
    [8]
    R. Hale, R. Boardman, M. N. Mavrogordato et al., “High-resolution computed tomography reconstructions of invertebrate burrow systems,” Sci. Data 2, 150052 (2015).10.1038/sdata.2015.52 doi: 10.1038/sdata.2015.52
    [9]
    S. Chen, N. D. Powers, I. Ghebregziabher et al., “MeV-energy x rays from inverse Compton scattering with laser-wakefield accelerated electrons,” Phys. Rev. Lett. 110(15), 155003 (2013).10.1103/physrevlett.110.155003 doi: 10.1103/physrevlett.110.155003
    [10]
    P. Sprangle, A. Ting, E. Esarey et al., “Tunable, short pulse hard x-rays from a compact laser synchrotron source,” J. Appl. Phys. 72(11), 5032–5038 (1992).10.1063/1.352031 doi: 10.1063/1.352031
    [11]
    K.-J. Kim, S. Chattopadhyay, and C. Shank, “Generation of femtosecond x-rays by 90 Thomson scattering,” Nucl. Instrum. Methods Phys. Res., Sect. A 341(1-3), 351–354 (1994).10.1016/0168-9002(94)90380-8 doi: 10.1016/0168-9002(94)90380-8
    [12]
    K. Lee, Y. Cha, M. Shin et al., “Relativistic nonlinear Thomson scattering as attosecond x-ray source,” Phys. Rev. E 67(2), 026502 (2003).10.1103/physreve.67.026502 doi: 10.1103/physreve.67.026502
    [13]
    T. Tajima and J. M. Dawson, “Laser electron accelerator,” Phys. Rev. Lett. 43(4), 267 (1979).10.1103/physrevlett.43.267 doi: 10.1103/physrevlett.43.267
    [14]
    W. Lu, M. Tzoufras, C. Joshi et al., “Generating multi-GeV electron bunches using single stage laser wakefield acceleration in a 3D nonlinear regime,” Phys. Rev. Spec. Top.-Accel. Beams 10(6), 061301 (2007).10.1103/physrevstab.10.061301 doi: 10.1103/physrevstab.10.061301
    [15]
    I. Blumenfeld, C. E. Clayton, F.-J. Decker et al., “Energy doubling of 42 GeV electrons in a metre-scale plasma wakefield accelerator,” Nature 445(7129), 741 (2007).10.1038/nature05538 doi: 10.1038/nature05538
    [16]
    E. Brunetti, R. Shanks, G. Manahan et al., “Low emittance, high brilliance relativistic electron beams from a laser-plasma accelerator,” Phys. Rev. Lett. 105(21), 215007 (2010).10.1103/physrevlett.105.215007 doi: 10.1103/physrevlett.105.215007
    [17]
    S. Corde, K. Ta Phuoc, G. Lambert et al., “Femtosecond x rays from laser-plasma accelerators,” Rev. Mod. Phys. 85(1), 1–48 (2013).10.1103/revmodphys.85.1 doi: 10.1103/revmodphys.85.1
    [18]
    K. T. Phuoc, S. Corde, C. Thaury et al., “All-optical Compton gamma-ray source,” Nat. Photonics 6(5), 308 (2012).10.1038/nphoton.2012.82 doi: 10.1038/nphoton.2012.82
    [19]
    A. Döpp, E. Guillaume, C. Thaury et al., “An all-optical Compton source for single-exposure x-ray imaging,” Plasma Phys. Controlled Fusion 58(3), 034005 (2016).10.1088/0741-3335/58/3/034005 doi: 10.1088/0741-3335/58/3/034005
    [20]
    H. Schwoerer, B. Liesfeld, H. P. Schlenvoigt et al., “Thomson-backscattered x rays from laser-accelerated electrons,” Phys. Rev. Lett. 96(1), 014802 (2006).10.1103/physrevlett.96.014802 doi: 10.1103/physrevlett.96.014802
    [21]
    N. D. Powers, I. Ghebregziabher, G. Golovin et al., “Quasi-monoenergetic and tunable x-rays from a laser-driven Compton light source,” Nat. Photonics 8(1), 28 (2014).10.1038/nphoton.2013.314 doi: 10.1038/nphoton.2013.314
    [22]
    S. Chen, G. Golovin, C. Miller et al., “Shielded radiography with a laser-driven MeV-energy x-ray source,” Nucl. Instrum. Methods Phys. Res., Sect. B 366, 217–223 (2016).10.1016/j.nimb.2015.11.007 doi: 10.1016/j.nimb.2015.11.007
    [23]
    C. Liu, G. Golovin, S. Chen et al., “Generation of 9 MeV γ-rays by all-laser-driven Compton scattering with second-harmonic laser light,” Opt. Lett. 39(14), 4132–4135 (2014).10.1364/ol.39.004132 doi: 10.1364/ol.39.004132
    [24]
    H.-E. Tsai, X. Wang, J. M. Shaw et al., “Compact tunable Compton x-ray source from laser-plasma accelerator and plasma mirror,” Phys. Plasmas 22(2), 023106 (2015).10.1063/1.4907655 doi: 10.1063/1.4907655
    [25]
    C. Zhu, J. Wang, J. Feng et al., “Inverse Compton scattering x-ray source from laser electron accelerator in pure nitrogen with 15 TW laser pulses,” Plasma Phys. Controlled Fusion 61(2), 024001 (2018).10.1088/1361-6587/aaebe3 doi: 10.1088/1361-6587/aaebe3
    [26]
    H. Jian-Fei, Y. Li-Xin, P. Chih-Hao et al., “Generating 10–40 MeV high quality monoenergetic electron beams using a 5 TW 60 fs laser at Tsinghua University,” Chin. Phys. C 39(1), 017001 (2015).10.1088/1674-1137/39/1/017001 doi: 10.1088/1674-1137/39/1/017001
    [27]
    L. Li, K. Kang, Z. Chen et al., “A general region-of-interest image reconstruction approach with truncated Hilbert transform,” J. X-Ray Sci. Technol. 17(2), 135–152 (2009).10.3233/xst-2009-0218 doi: 10.3233/xst-2009-0218
    [28]
    H. Yu and G. Wang, “Compressed sensing based interior tomography,” Phys. Med. Biol. 54(9), 2791 (2009).10.1088/0031-9155/54/9/014 doi: 10.1088/0031-9155/54/9/014
    [29]
    J. Yang, H. Yu, M. Jiang et al., “High-order total variation minimization for interior tomography,” Inverse Probl. 26(3), 035013 (2010).10.1088/0266-5611/26/3/035013 doi: 10.1088/0266-5611/26/3/035013
    [30]
    [31]
    [32]
    B. Guo, X. Zhang, J. Zhang et al., “High-resolution phase-contrast imaging of biological specimens using a stable betatron x-ray source in the multiple-exposure mode,” Sci. Rep. 9(1), 7796 (2019).10.1038/s41598-019-42834-2 doi: 10.1038/s41598-019-42834-2
    [33]
    [34]
    F. S. Tsung, C. Ren, L. O. Silva et al., “Generation of ultra-intense single-cycle laser pulses by using photon deceleration,” Proc. Natl. Acad. Sci. U. S. A. 99(1), 29–32 (2002).10.1073/pnas.262543899 doi: 10.1073/pnas.262543899
    [35]
    C.-H. Pai, Y.-Y. Chang, L.-C. Ha et al., “Generation of intense ultrashort midinfrared pulses by laser-plasma interaction in the bubble regime,” Phys. Rev. A 82(6), 063804 (2010).10.1103/physreva.82.063804 doi: 10.1103/physreva.82.063804
    [36]
    Z. Nie, C.-H. Pai, J. Hua et al., “Relativistic single-cycle tunable infrared pulses generated from a tailored plasma density structure,” Nat. Photonics 12(8), 489 (2018).10.1038/s41566-018-0190-8 doi: 10.1038/s41566-018-0190-8
    [37]
    A. E. Hussein, N. Senabulya, Y. Ma et al., “Laser-wakefield accelerators for high-resolution x-ray imaging of complex microstructures,” Sci. Rep. 9(1), 3249 (2019).10.1038/s41598-019-39845-4 doi: 10.1038/s41598-019-39845-4
    [38]
    Z. Zhao, G. J. Gang, and J. H. Siewerdsen, “Noise, sampling, and the number of projections in cone-beam CT with a flat-panel detector,” Med. Phys. 41(6Part1), 061909 (2014).10.1118/1.4875688 doi: 10.1118/1.4875688
    [39]
    R. N. Bracewell and A. C. Riddle, “Inversion of fan-beam scans in radio astronomy,” Astrophys. J. 150, 427 (1967).10.1086/149346 doi: 10.1086/149346
    [40]
    R. Gordon, R. Bender, and G. T. Herman, “Algebraic reconstruction techniques (ART) for three-dimensional electron microscopy and x-ray photography,” J. Theor. Biol. 29(3), 471–481 (1970).10.1016/0022-5193(70)90109-8 doi: 10.1016/0022-5193(70)90109-8
    [41]
    E. J. Candès, J. Romberg, and T. Tao, “Robust uncertainty principles: Exact signal reconstruction from highly incomplete frequency information,” IEEE Trans. Inf. Theory 52(2), 489–509 (2006).10.1109/tit.2005.862083 doi: 10.1109/tit.2005.862083
    [42]
    E. Y. Sidky, C. M. Kao, and X. Pan, “Accurate image reconstruction from few-views and limited-angle data in divergent-beam CT,” J. X-Ray Sci. Technol. 14(2), 119–139 (2006).
    [43]
    M. Chang, L. Li, Z. Chen et al., “A few-view reweighted sparsity hunting (FRESH) method for CT image reconstruction,” J. X-Ray Sci. Technol. 21(2), 161–176 (2013).10.3233/xst-130370 doi: 10.3233/xst-130370
    [44]
    W. Yan, C. Fruhling, G. Golovin et al., “High-order multiphoton Thomson scattering,” Nat. Photonics 11(8), 514 (2017).10.1038/nphoton.2017.100 doi: 10.1038/nphoton.2017.100
    [45]
    S. Izumi, S. Kamata, K. Satoh et al., “High energy x-ray computed tomography for industrial applications,” IEEE Trans. Nucl. Sci. 40(2), 158–161 (1993).10.1109/23.212333 doi: 10.1109/23.212333
    [46]
    L. De Chiffre, S. Carmignato, J.-P. Kruth et al., “Industrial applications of computed tomography,” CIRP Ann. 63(2), 655–677 (2014).10.1016/j.cirp.2014.05.011 doi: 10.1016/j.cirp.2014.05.011
    [47]
    M. R. V. Lakshmi, A. K. Mondal, C. K. Jadhav et al., “Overview of NDT methods applied on an aero engine turbine rotor blade,” Insight-Non-Destr. Test. Cond. Monit. 55(9), 482–486 (2013).10.1784/insi.2012.55.9.482 doi: 10.1784/insi.2012.55.9.482
    [48]
    P. Chen, G. Horton-Smith, T. Ohgaki et al., “CAIN: Conglomerat d’ABEL et d’Interactions Non-lineaires,” Nucl. Instrum. Methods Phys. Res., Sect. A 355(1), 107–110 (1995).10.1016/0168-9002(94)01186-9 doi: 10.1016/0168-9002(94)01186-9
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(5)

    Article Metrics

    Article views (582) PDF downloads(41) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return