Follow us on Wechat

用微信扫码二维码

分享至好友和朋友圈

Volume 6 Issue 6
Nov.  2021
Turn off MathJax
Article Contents
Hong Wei, He Shukai, Teng Jian, Deng Zhigang, Zhang Zhimeng, Lu Feng, Zhang Bo, Zhu Bin, Dai Zenghai, Cui Bo, Wu Yuchi, Liu Dongxiao, Qi Wei, Jiao Jinlong, Zhang Faqiang, Yang Zuhua, Zhang Feng, Bi Bi, Zeng Xiaoming, Zhou Kainan, Zuo Yanlei, Huang Xiaojun, Xie Na, Guo Yi, Su Jingqin, Han Dan, Mao Ying, Cao Leifeng, Zhou Weimin, Gu Yuqiu, Jing Feng, Zhang Baohan, Cai Hongbo, He Minqing, Zheng Wudi, Zhu Shaoping, Ma Wenjun, Wang Dahui, Shou Yinren, Yan Xueqing, Qiao Bin, Zhang Yi, Zhong Congling, Yuan Xiaohui, Wei Wenqing. Commissioning experiment of the high-contrast SILEX-Ⅱ multi-petawatt laser facility[J]. Matter and Radiation at Extremes, 2021, 6(6): 064401. doi: 10.1063/5.0016019
Citation: Hong Wei, He Shukai, Teng Jian, Deng Zhigang, Zhang Zhimeng, Lu Feng, Zhang Bo, Zhu Bin, Dai Zenghai, Cui Bo, Wu Yuchi, Liu Dongxiao, Qi Wei, Jiao Jinlong, Zhang Faqiang, Yang Zuhua, Zhang Feng, Bi Bi, Zeng Xiaoming, Zhou Kainan, Zuo Yanlei, Huang Xiaojun, Xie Na, Guo Yi, Su Jingqin, Han Dan, Mao Ying, Cao Leifeng, Zhou Weimin, Gu Yuqiu, Jing Feng, Zhang Baohan, Cai Hongbo, He Minqing, Zheng Wudi, Zhu Shaoping, Ma Wenjun, Wang Dahui, Shou Yinren, Yan Xueqing, Qiao Bin, Zhang Yi, Zhong Congling, Yuan Xiaohui, Wei Wenqing. Commissioning experiment of the high-contrast SILEX-Ⅱ multi-petawatt laser facility[J]. Matter and Radiation at Extremes, 2021, 6(6): 064401. doi: 10.1063/5.0016019

Commissioning experiment of the high-contrast SILEX-Ⅱ multi-petawatt laser facility

doi: 10.1063/5.0016019
More Information
  • Corresponding author: a)Author to whom correspondence should be addressed: jminhong@126.com
  • Received Date: 2020-05-31
  • Accepted Date: 2021-09-15
  • Available Online: 2021-11-01
  • Publish Date: 2021-11-15
  • The results of a commissioning experiment on the SILEX-Ⅱ laser facility (formerly known as CAEP-PW) are reported. SILEX-Ⅱ is a complete optical parametric chirped-pulse amplification laser facility. The peak power reached about 1 PW in a 30 fs pulse duration during the experiment. The laser contrast was better than 1010 at 20 ps ahead of the main pulse. In the basic laser foil target interaction, a set of experimental data were collected, including spatially resolved x-ray emission, the image of the coherent transition radiation, the harmonic spectra in the direction of reflection, the energy spectra and beam profile of accelerated protons, hot-electron spectra, and transmitted laser energy fraction and spatial distribution. The experimental results show that the laser intensity reached 5 × 1020 W/cm2 within a 5.8 µm focus (FWHM). Significant laser transmission did not occur when the thickness of the CH foil was equal to or greater than 50 nm. The maximum energy of the accelerated protons in the target normal direction was roughly unchanged when the target thickness varied between 50 nm and 15 µm. The maximum proton energy via the target normal sheath field acceleration mechanism was about 21 MeV. We expect the on-target laser intensity to reach 1022 W/cm2 in the near future, after optimization of the laser focus and upgrade of the laser power to 3 PW.
  • loading
  • [1]
    D. Strickland and G. Mourou, “Compression of amplified chirped optical pulses,” Opt. Commun. 56(3), 219–221 (1985).10.1016/0030-4018(85)90120-8
    [2]
    C. Danson, D. Hillier, N. Hopps et al., “Petawatt class lasers worldwide,” High Power Laser Sci. Eng. 3, E3 (2015).10.1017/hpl.2014.52
    [3]
    C. N. Danson, C. Haefner, J. Bromage et al., “Petawatt and exawatt class lasers worldwide,” High Power Laser Sci. Eng. 7, E54 (2019).10.1017/hpl.2019.36
    [4]
    H. Kiriyama, A. S. Pirozhkov, M. Nishiuchi et al., “High-contrast high-intensity repetitive petawatt laser,” Opt. Lett. 43(11), 2595 (2018).10.1364/ol.43.002595
    [5]
    A. S. Pirozhkov, Y. Fukuda, M. Nishiuchi et al., “Approaching the diffraction-limited, bandwidth-limited Petawatt,” Opt. Express 25(17), 20486 (2017).10.1364/oe.25.020486
    [6]
    W. Li, Z. Gan, L. Yu et al., “339 J high-energy Ti:sapphire chirped-pulse amplifier for 10 PW laser facility,” Opt. Lett. 43(22), 5681–5684 (2018).10.1364/ol.43.005681
    [7]
    A. D. Piazza, K. N. Muller, and K. N. Hatsagortsyan, “Extremely high-intensity laser interactions with fundamental quantum systems,” Rev. Mod. Phys. 84(3), 1177 (2012).10.1103/revmodphys.84.1177
    [8]
    H. S. Peng, W. Y. Zhang, X. M. Zhang et al., “Progress in ICF programs at CAEP,” Laser Part. Beams 23(2), 205–209 (2005).10.1017/s0263034605050366
    [9]
    Z. Qihua, Z. Kainan, S. Jingqin et al., “The Xingguang-III laser facility: Precise synchronization with femtosecond, picosecond and nanosecond beams,” Laser Phys. Lett. 15(1), 015301 (2018).10.1088/1612-202x/aa94e9
    [10]
    X. Zeng, K. Zhou, Y. Zuo et al., “Multi-petawatt laser facility fully based on optical parametric chirped-pulse amplification,” Opt. Lett. 42(10), 2014–2017 (2017).10.1364/ol.42.002014
    [11]
    K. Zhou, X. Huang, X. Zeng et al., “Improvement of focusing performance for a multi-petawatt OPCPA laser facility,” Laser Phys. 28, 125301 (2018).10.1088/1555-6611/aae0db
    [12]
    J. Kern, S. Feldman, I. Kim et al., “Simultaneous imaging of K-α radiation and coherent transition radiation from relativistic-intensity laser-irradiated solid target plasmas,” High Energy Density Phys. 8(1), 60–65 (2012).10.1016/j.hedp.2011.11.009
    [13]
    J. Zheng, K. A. Tanaka, T. Sato et al., “Study of hot electrons by measurement of optical emission from the rear surface of a metallic foil irradiated with ultraintense laser pulse,” Phys. Rev. Lett. 92(16), 165001 (2004).10.1103/PhysRevLett.92.165001
    [14]
    G.-Q. Liao, Y.-T. Li, Y.-H. Zhang et al., “Demonstration of coherent terahertz transition radiation from relativistic laser-solid interactions,” Phys. Rev. Lett. 116(20), 205003 (2016).10.1103/PhysRevLett.116.205003
    [15]
    Y. Glinec, J. Faure, A. Norlin et al., “Observation of fine structures in laser-driven electron beams using coherent transition radiation,” Phys. Rev. Lett. 98(19), 194801 (2007).10.1103/PhysRevLett.98.194801
    [16]
    L. Veisz, W. Theobald, T. Feurer et al., “Three-halves harmonic emission from femtosecond laser produced plasmas with steep density gradients,” Phys. Plasmas 11, 3311 (2004).10.1063/1.1748174
    [17]
    Y. He, W. Hong, J. Hua et al., “Measuring fluence distribution of intense short laser based on the radiochromic effect,” Opt. Lett. 46(11), 2795–2798 (2021).10.1364/OL.424698
    [18]
    S. C. Wilks, W. L. Kruer, M. Tabak et al., “Absorption of ultra-intense laser pulses,” Phys. Rev. Lett. 69(9), 1383 (1992).10.1103/physrevlett.69.1383
    [19]
    F. N. Beg, A. R. Bell, A. E. Dangor et al., “A study of picosecond laser-solid interactions up to 1019 W cm−2,” Phys. Plasmas 4(2), 447–457 (1997).10.1063/1.872103
    [20]
    C. D. Chen, P. K. Patel, D. S. Hey et al., “Bremsstrahlung and Kα fluorescence measurements for inferring conversion efficiencies into fast ignition relevant hot electrons,” Phys. Plasmas 16(8), 082705 (2009).10.1063/1.3183693
    [21]
    H. Chen, S. C. Wilks, W. L. Kruer et al., “Hot electron energy distributions from ultraintense laser solid interactions,” Phys. Plasmas 16(2), 020705 (2009).10.1063/1.3080197
    [22]
    M. G. Haines, M. S. Wei, F. N. Beg et al., “Hot-electron temperature and laser-light absorption in fast ignition,” Phys. Rev. Lett. 102(4), 045008 (2009).10.1103/physrevlett.102.045008
    [23]
    T. Kluge, T. Cowan, A. Debus et al., “Electron temperature scaling in laser interaction with solids,” Phys. Rev. Lett. 107(20), 205003 (2011).10.1103/physrevlett.107.205003
    [24]
    M. Sherlock, “Universal scaling of the electron distribution function in one-dimensional simulations of relativistic laser-plasma interactions,” Phys. Plasmas 16(10), 103101 (2009).10.1063/1.3240341
    [25]
    A. J. Kemp, Y. Sentoku, and M. Tabak, “Hot-electron energy coupling in ultraintense laser-matter interaction,” Phys. Rev. E 79(6), 066406 (2009).10.1103/physreve.79.066406
    [26]
    H. Daido, M. Nishiuchi, and A. S. Pirozhkov, “Review of laser-driven ion sources and their applications,” Rep. Prog. Phys. 75(5), 056401 (2012).10.1088/0034-4885/75/5/056401
    [27]
    A. Macchi, M. Borghesi, and M. Passoni, “Ion acceleration by superintense laser-plasma interaction,” Rev. Mod. Phys. 85(2), 751–793 (2013).10.1103/revmodphys.85.751
    [28]
    S. C. Wilks, A. B. Langdon, T. E. Cowan et al., “Energetic proton generation in ultra-intense laser–solid interactions,” Phys. Plasmas 8(2), 542 (2001).10.1063/1.1333697
    [29]
    R. A. Snavely, M. H. Key, S. P. Hatchett et al., “Intense high-energy proton beams from petawatt-laser irradiation of solids,” Phys. Rev. Lett. 85(14), 2945–2948 (2000).10.1103/physrevlett.85.2945
    [30]
    P. Mora, “Thin-foil expansion into a vacuum,” Phys. Rev. E 72(5), 056401 (2005).10.1103/physreve.72.056401
    [31]
    A. P. L. Robinson, M. Zepf, S. Kar et al., “Radiation pressure acceleration of thin foils with circularly polarized laser pulses,” New J. Phys. 10(1), 013021 (2008).10.1088/1367-2630/10/1/013021
    [32]
    T. Esirkepov, M. Borghesi, S. V. Bulanov et al., “Highly efficient relativistic-ion generation in the laser-piston regime,” Phys. Rev. Lett. 92(17), 175003 (2004).10.1103/PhysRevLett.92.175003
    [33]
    A. Higginson, R. J. Gray, M. King et al., “Near-100 MeV protons via a laser-driven transparency-enhanced hybrid acceleration scheme,” Nat. Commun. 9, 724 (2018).10.1038/s41467-018-03063-9
    [34]
    P. L. Poole, L. Obst, G. E. Cochran et al., “Laser-driven ion acceleration via target normal sheath acceleration in the relativistic transparency regime,” New J. Phys. 20, 013019 (2018).10.1088/1367-2630/aa9d47
    [35]
    R. Prasad, A. A. Andreev, D. Doria et al., “Fast ion acceleration from thin foils irradiated by ultra-high intensity, ultra-high contrast laser pulses,” Appl. Phys. Lett. 99, 121504 (2011).10.1063/1.3643133
    [36]
    R. Prasad, S. Ter-Avetisyan, D. Doria et al., “Proton acceleration using 50 fs, high intensity ASTRA-Gemini laser pulses,” Nucl. Instrum. Methods Phys. Res., Sect. A 653(1), 113–115 (2011).10.1016/j.nima.2011.01.021
    [37]
    S. Gaillard, J. Fuchs, N. Renard-Le Galloudec et al., “Study of saturation of CR39 nuclear track detectors at high ion fluence and of associated artifact patterns,” Rev. Sci. Instrum. 78(1), 013304 (2007).10.1063/1.2400020
    [38]
    G. A. Becker, S. Tietze, S. Keppler et al., “Ring-like spatial distribution of laser accelerated protons in the ultra-high-contrast TNSA-regime,” Plasma Phys. Controlled Fusion 60(5), 055010 (2018).10.1088/1361-6587/aab319
    [39]
    A. J. Mackinnon, Y. Sentoku, P. K. Patel et al., “Enhancement of proton acceleration by hot-electron recirculation in thin foils irradiated by ultraintense laser pulses,” Phys. Rev. Lett. 88(21), 215006 (2002).10.1103/PhysRevLett.88.215006
    [40]
    D. Kumar, M. Smid, S. Singh et al., “Alignment of solid targets under extreme tight focus conditions generated by an ellipsoidal plasma mirror,” Matter Radiat. Extremes 4(2), 024402 (2019).10.1063/1.5088166
    [41]
    M. Nakatsutsumi, A. Kon, S. Buffechoux et al., “Fast focusing of short-pulse lasers by innovative plasma optics toward extreme intensity,” Opt. Lett. 35(13), 2314–2316 (2010).10.1364/ol.35.002314
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(12)  / Tables(2)

    Article Metrics

    Article views (440) PDF downloads(155) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return