Follow us on Wechat

用微信扫码二维码

分享至好友和朋友圈

Volume 5 Issue 6
Nov.  2020
Turn off MathJax
Article Contents
Geng Y. X., Wu D., Yu W., Sheng Z. M., Fritzsche S., Liao Q., Wu M. J., Xu X. H., Li D. Y., Ma W. J., Lu H. Y., Zhao Y. Y., He X. T., Chen J. E., Lin C., Yan X. Q.. Proton beams from intense laser-solid interaction: Effects of the target materials[J]. Matter and Radiation at Extremes, 2020, 5(6): 064402. doi: 10.1063/5.0014854
Citation: Geng Y. X., Wu D., Yu W., Sheng Z. M., Fritzsche S., Liao Q., Wu M. J., Xu X. H., Li D. Y., Ma W. J., Lu H. Y., Zhao Y. Y., He X. T., Chen J. E., Lin C., Yan X. Q.. Proton beams from intense laser-solid interaction: Effects of the target materials[J]. Matter and Radiation at Extremes, 2020, 5(6): 064402. doi: 10.1063/5.0014854

Proton beams from intense laser-solid interaction: Effects of the target materials

doi: 10.1063/5.0014854
More Information
  • Corresponding author: a)Authors to whom correspondence should be addressed: dwu.phys@zju.edu.cn; lc0812@pku.edu.cn; and xueqingyan@pku.edu.cn; a)Authors to whom correspondence should be addressed: dwu.phys@zju.edu.cn; lc0812@pku.edu.cn; and xueqingyan@pku.edu.cn; a)Authors to whom correspondence should be addressed: dwu.phys@zju.edu.cn; lc0812@pku.edu.cn; and xueqingyan@pku.edu.cn
  • Received Date: 2020-05-24
  • Accepted Date: 2020-09-08
  • Available Online: 2020-11-01
  • Publish Date: 2020-11-15
  • We report systematic studies of laser-driven proton beams produced with micrometer-thick solid targets made of aluminum and plastic, respectively. Distinct effects of the target materials are found on the total charge, cutoff energy, and beam spot of protons in the experiments, and these are described well by two-dimensional particle-in-cell simulations incorporating intrinsic material properties. It is found that with a laser intensity of 8 × 1019 W/cm2, target normal sheath acceleration is the dominant mechanism for both types of target. For a plastic target, the higher charge and cutoff energy of the protons are due to the greater energy coupling efficiencies from the intense laser beams, and the larger divergence angle of the protons is due to the deflection of hot electrons during transport in the targets. We also find that the energy loss of hot electrons in targets of different thickness has a significant effect on the proton cutoff energy. The consistent results obtained here further narrow the gap between simulations and experiments.
  • loading
  • [1]
    S. C. Wilks, A. B. Langdon, T. E. Cowan et al., “Energetic proton generation in ultra-intense laser-solid interactions,” Phys. Plasmas 8, 542 (2001).10.1063/1.1333697 doi: 10.1063/1.1333697
    [2]
    L. Yin, B. J. Albright, K. J. Bowers et al., “Break-out afterburner ion acceleration in the longer laser pulse length regime,” Phys. Rev. Lett. 107, 045003 (2011).10.1103/physrevlett.107.045003 doi: 10.1103/physrevlett.107.045003
    [3]
    D. Haberberger, S. Tochitsky, F. Fiuza et al., “Collisionless shocks in laser-produced plasma generate monoenergetic high-energy proton beams,” Nat. Phys. 8, 95 (2012).10.1038/nphys2130 doi: 10.1038/nphys2130
    [4]
    H. Daido, M. Nishiuchi, and A. S. Pirozhkov, “Review of laser-driven ion sources and their applications,” Rep. Prog. Phys. 75, 056401 (2012).10.1088/0034-4885/75/5/056401 doi: 10.1088/0034-4885/75/5/056401
    [5]
    C. Wang, X.-T. He, and P. Zhang, “Ab initio simulations of dense helium plasmas,” Phys. Rev. Lett. 106, 145002 (2011).10.1103/physrevlett.106.145002 doi: 10.1103/physrevlett.106.145002
    [6]
    C. K. Li, F. H. Séguin, J. R. Rygg et al., “Monoenergetic-proton-radiography measurements of implosion dynamics in direct-drive inertial-confinement fusion,” Phys. Rev. Lett. 100, 225001 (2008).10.1103/physrevlett.100.225001 doi: 10.1103/physrevlett.100.225001
    [7]
    M. Roth, T. E. Cowan, M. H. Key et al., “Fast ignition by intense laser-accelerated proton beams,” Phys. Rev. Lett. 86, 436 (2001).10.1103/physrevlett.86.436 doi: 10.1103/physrevlett.86.436
    [8]
    R. A. Snavely, M. H. Key, S. P. Hatchett et al., “Intense high-energy proton beams from petawatt-laser irradiation of solids,” Phys. Rev. Lett. 85, 2945 (2000).10.1103/physrevlett.85.2945 doi: 10.1103/physrevlett.85.2945
    [9]
    T. Z. Esirkepov, S. V. Bulanov, K. Nishihara et al., “Proposed double-layer target for the generation of high-quality laser-accelerated ion beams,” Phys. Rev. Lett. 89, 175003 (2002).10.1103/physrevlett.89.175003 doi: 10.1103/physrevlett.89.175003
    [10]
    M. Borghesi, J. Fuchs, S. V. Bulanov et al., “Fast ion generation by high-intensity laser irradiation of solid targets and applications,” Fusion Sci. Technol. 49, 412 (2006).10.13182/fst06-a1159 doi: 10.13182/fst06-a1159
    [11]
    K. Lee, S. H. Park, Y.-H. Cha et al., “Generation of intense proton beams from plastic targets irradiated by an ultraintense laser pulse,” Phys. Rev. E 78, 056403 (2008).10.1103/physreve.78.056403 doi: 10.1103/physreve.78.056403
    [12]
    K. Lee, J. Y. Lee, S. H. Park et al., “Dominant front-side acceleration of energetic proton beams from plastic targets irradiated by an ultraintense laser pulse,” Phys. Plasmas 18, 013101 (2011).10.1063/1.3496058 doi: 10.1063/1.3496058
    [13]
    A. Macchi, M. Borghesi, and M. Passoni, “Ion acceleration by superintense laser-plasma interaction,” Rev. Mod. Phys. 85, 751 (2013).10.1103/revmodphys.85.751 doi: 10.1103/revmodphys.85.751
    [14]
    F. Pisani, A. Bernardinello, D. Batani et al., “Experimental evidence of electric inhibition in fast electron penetration and of electric-field-limited fast electron transport in dense matter,” Phys. Rev. E 62, R5927(R) (2000).10.1103/physreve.62.r5927 doi: 10.1103/physreve.62.r5927
    [15]
    J. Fuchs, T. E. Cowan, P. Audebert et al., “Spatial uniformity of laser-accelerated ultrahigh-current MeV electron propagation in metals and insulators,” Phys. Rev. Lett. 91, 255002 (2003).10.1103/physrevlett.91.255002 doi: 10.1103/physrevlett.91.255002
    [16]
    P. Gibbon, “Resistively enhanced proton acceleration via high-intensity laser interactions with cold foil targets,” Phys. Rev. E 72, 026411 (2005).10.1103/physreve.72.026411 doi: 10.1103/physreve.72.026411
    [17]
    A. J. Kemp, R. E. W. Pfund, and J. Meyer-ter-Vehn, “Modeling ultrafast laser-driven ionization dynamics with Monte Carlo collisional particle-in-cell simulations,” Phys. Plasmas 11, 5648 (2004).10.1063/1.1814367 doi: 10.1063/1.1814367
    [18]
    M. V. Ammosov, N. B. Delone, and V. P. Krainov, “Tunnel ionization of complex atoms and of atomic ions in an alternating electromagnetic field,” Sov. Phys. JETP 64, 1191 (1986).
    [19]
    K. Nanbu and S. Yonemura, “Weighted particles in coulomb collision simulations based on the theory of a cumulative scattering angle,” J. Comput. Phys. 145, 639 (1998).10.1006/jcph.1998.6049 doi: 10.1006/jcph.1998.6049
    [20]
    Y. Sentoku and A. J. Kemp, “Numerical methods for particle simulations at extreme densities and temperatures: Weighted particles, relativistic collisions and reduced currents,” J. Comput. Phys. 227, 6846 (2008).10.1016/j.jcp.2008.03.043 doi: 10.1016/j.jcp.2008.03.043
    [21]
    S. M. Vinko, O. Ciricosta, T. R. Preston et al., “Investigation of femtosecond collisional ionization rates in a solid-density aluminium plasma,” Nat. Commun. 6, 6397 (2015).10.1038/ncomms7397 doi: 10.1038/ncomms7397
    [22]
    S. M. Vinko, O. Ciricosta, B. I. Cho et al., “Creation and diagnosis of a solid-density plasma with an X-ray free-electron laser,” Nature 482, 59 (2012).10.1038/nature10746 doi: 10.1038/nature10746
    [23]
    P. Leblanc and Y. Sentoku, “Scaling of resistive guiding of laser-driven fast-electron currents in solid targets,” Phys. Rev. E 89, 023109 (2014).10.1103/physreve.89.023109 doi: 10.1103/physreve.89.023109
    [24]
    Y. Sentoku, E. d’Humieres, L. Romagnani et al., “Dynamic control over mega-ampere electron currents in metals using ionization-driven resistive magnetic fields,” Phys. Rev. Lett. 107, 135005 (2011).10.1103/physrevlett.107.135005 doi: 10.1103/physrevlett.107.135005
    [25]
    L. G. Huang, T. Kluge, and T. E. Cowan, “Dynamics of bulk electron heating and ionization in solid density plasmas driven by ultra-short relativistic laser pulses,” Phys. Plasmas 23, 063112 (2016).10.1063/1.4953891 doi: 10.1063/1.4953891
    [26]
    D. Wu, W. Yu, S. Fritzsche, and X. T. He, “High-order implicit particle-in-cell method for plasma simulations at solid densities,” Phys. Rev. E 100, 013207 (2019).10.1103/physreve.100.013207 doi: 10.1103/physreve.100.013207
    [27]
    D. Wu, X. T. He, W. Yu, and S. Fritzsche, “Monte Carlo approach to calculate ionization dynamics of hot solid-density plasmas within particle-in-cell simulations,” Phys. Rev. E 95, 023208 (2017).10.1103/physreve.95.023208 doi: 10.1103/physreve.95.023208
    [28]
    D. Wu, B. Qiao, C. McGuffey et al., “The radiation reaction effects in the ultra-intense and ultra-short laser foil interaction regime,” Phys. Plasmas 21, 123118 (2014).10.1063/1.4904402 doi: 10.1063/1.4904402
    [29]
    D. Wu, X. T. He, W. Yu, and S. Fritzsche, “Monte Carlo approach to calculate proton stopping in warm dense matter within particle-in-cell simulations,” Phys. Rev. E 95, 023207 (2017).10.1103/physreve.95.023207 doi: 10.1103/physreve.95.023207
    [30]
    D. Wu, W. Yu, S. Fritzsche, and X. T. He, “Particle-in-cell simulation method for macroscopic degenerate plasmas,” Phys. Rev. E 102 033312 (2020).10.1103/PhysRevE.102.033312 doi: 10.1103/PhysRevE.102.033312
    [31]
    A. Jullien, J.-P. Rousseau, B. Mercier et al., “Highly efficient nonlinear filter for femtosecond pulse contrast enhancement and pulse shortening,” Opt. Lett. 33, 2353 (2008).10.1364/ol.33.002353 doi: 10.1364/ol.33.002353
    [32]
    Y.-X. Geng, Qing-Liao, Y.-R. Shou et al., “J Generating Proton beams exceeding 10 MeV using high contrast 60 TW,” Chin. Phys. Lett. 35, 092901 (2018).10.1088/0256-307x/35/9/092901 doi: 10.1088/0256-307x/35/9/092901
    [33]
    F. Nürnberg, M. Schollmeier, E. Brambrink et al., “Radiochromic film imaging spectroscopy of laser-accelerated proton beams,” Rev. Sci. Instrum. 80, 033301 (2009).10.1063/1.3086424 doi: 10.1063/1.3086424
    [34]
    A. Yogo, H. Daido, S. V. Bulanov et al., “Laser ion acceleration via control of the near-critical density target,” Phys. Rev. E 77, 016401 (2008).10.1103/physreve.77.016401 doi: 10.1103/physreve.77.016401
    [35]
    K. Matsukado, T. Esirkepov, K. Kinoshita et al., “Energetic Protons from a Few-Micron Metallic Foil Evaporated by an Intense Laser Pulse,” Phys. Rev. Lett. 91, 215001 (2003).10.1103/physrevlett.91.215001 doi: 10.1103/physrevlett.91.215001
    [36]
    D. Wu, X. T. He, W. Yu, and S. Fritzsche, “Particle-in-cell simulations of laser-plasma interactions at solid densities and relativistic intensities: The role of atomic processes,” High Power Laser Sci. Eng. 6, e50 (2018).10.1017/hpl.2018.41 doi: 10.1017/hpl.2018.41
    [37]
    D. Wu, W. Yu, Y. T. Zhao, D. H. H. Hoffmann et al., “Particle-in-cell simulation of transport and energy deposition of intense proton beams in solid-state materials,” Phys. Rev. E 100, 013208 (2019).10.1103/physreve.100.013208 doi: 10.1103/physreve.100.013208
    [38]
    H. Xu, W. W. Chang, H. B. Zhuo et al., “Parallel programming of 2(1/2) dimensional PIC under distributed memory parallel environments Chin,” J. Comput. Phys. 19, 305 (2002).
    [39]
    P. Hadjisolomou, I. P. Tsygvintsev, P. Sasorov et al., “Preplasma effects on laser ion generation from thin foil targets,” Phys. Plasmas 27, 013107 (2020).10.1063/1.5124457 doi: 10.1063/1.5124457
    [40]
    B. S. Paradkar, S. I. Krasheninnikov, and F. N. Beg, “Mechanism of heating of pre-formed plasma electrons in relativistic laser-matter interaction,” Phys. Plasmas 19, 060703 (2012).10.1063/1.4731731 doi: 10.1063/1.4731731
    [41]
    A. Sorokovikova, A. V. Arefiev, C. McGuffey et al., “Generation of superponderomotive electrons in multipicosecond interactions of kilojoule laser beams with solid-density plasmas,” Phys. Rev. Lett. 116, 155001 (2016).10.1103/physrevlett.116.155001 doi: 10.1103/physrevlett.116.155001
    [42]
    D. Wu, S. I. Krasheninnikov, S. X. Luan, and W. Yu, “Identifying the source of super-high energetic electrons in the presence of pre-plasma in laser-matter interaction at relativistic intensities,” Nucl. Fusion 57, 016007 (2017).10.1088/0029-5515/57/1/016007 doi: 10.1088/0029-5515/57/1/016007
    [43]
    A. Yogo, K. Mima, N. Iwata et al., “Boosting laser-ion acceleration with multi-picosecond pulses,” Sci. Rep. 7, 42451 (2017).10.1038/srep42451 doi: 10.1038/srep42451
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(7)

    Article Metrics

    Article views (205) PDF downloads(9) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return