Follow us on Wechat

用微信扫码二维码

分享至好友和朋友圈

Volume 5 Issue 6
Nov.  2020
Turn off MathJax
Article Contents
Rosmej F. B., Astapenko V. A., Lisitsa V. S., Vainshtein L. A.. Dielectronic recombination in non-LTE plasmas[J]. Matter and Radiation at Extremes, 2020, 5(6): 064201. doi: 10.1063/5.0014158
Citation: Rosmej F. B., Astapenko V. A., Lisitsa V. S., Vainshtein L. A.. Dielectronic recombination in non-LTE plasmas[J]. Matter and Radiation at Extremes, 2020, 5(6): 064201. doi: 10.1063/5.0014158

Dielectronic recombination in non-LTE plasmas

doi: 10.1063/5.0014158
More Information
  • Corresponding author: a)Author to whom correspondence should be addressed: frank.rosmej@sorbonne-universite.fr
  • Received Date: 2020-05-18
  • Accepted Date: 2020-09-02
  • Available Online: 2020-11-01
  • Publish Date: 2020-11-15
  • Novel phenomena and methods related to dielectronic capture and dielectronic recombination are studied for non-local thermodynamic equilibrium (LTE) plasmas and for applications to non-LTE ionization balance. It is demonstrated that multichannel autoionization and radiative decay strongly suppress higher-order contributions to the total dielectronic recombination rates, which are overestimated by standard approaches by orders of magnitude. Excited-state coupling of dielectronic capture is shown to be much more important than ground-state contributions, and electron collisional excitation is also identified as a mechanism driving effective dielectronic recombination. A theoretical description of the effect of angular-momentum-changing collisions on dielectronic recombination is developed from an atomic kinetic point of view and is visualized with a simple analytical model. The perturbation of the autoionizing states due to electric fields is discussed with respect to ionization potential depression and perturbation of symmetry properties of autoionization matrix elements. The first steps in the development of statistical methods are presented and are realized in the framework of a local plasma frequency approach. Finally, the impact of collisional–radiative processes and atomic population kinetics on dielectronic recombination is critically discussed, and simple analytical formulas are presented.
  • loading
  • [1]
    H. R. Griem, Principles of Plasma Spectroscopy (Cambridge University Press, New York, 1997).
    [2]
    F. B. Rosmej, V. A. Astapenko, and V. S. Lisitsa, Plasma Atomic Physics (Springer, 2020).
    [3]
    A. Burgess, “Dielectronic recombination and the temperature of the solar corona,” Astrophys. J. 139, 776 (1964); 10.1086/147813 doi: 10.1086/147813
    [4]
    A. H. Gabriel, “Dielectronic satellite spectra for highly-charge helium-like ion lines,” Mon. Not. R. Astron. Soc. 160, 99 (1972).10.1093/mnras/160.1.99 doi: 10.1093/mnras/160.1.99
    [5]
    V. A. Vinogradov, I. Yu. Skobelev, and E. A. Yukov, “Effect of collisions on the intensities of the dielectronic satellites of resonance lines of hydrogenlike ions,” Sov. Phys. JETP 45, 925 (1977).
    [6]
    V. L. Jacobs and M. Blaha, “Effects of angular-momentum-changing collisions on dielectronic satellite spectra,” Phys. Rev. A 21, 525 (1980).10.1103/physreva.21.525 doi: 10.1103/physreva.21.525
    [7]
    F. B. Rosmej and J. Abdallah, Jr., “Blue satellite structure near Heα and Heβ and redistribution of level populations,” Phys. Lett. A 245, 548 (1998).10.1016/s0375-9601(98)00451-4 doi: 10.1016/s0375-9601(98)00451-4
    [8]
    L. A. Woltz, V. L. Jacobs, C. F. Hooper et al., “Effects of electric microfields on argon dielectronic satellite spectra in laser-produced plasmas,” Phys. Rev. A 44, 1281 (1991).10.1103/physreva.44.1281 doi: 10.1103/physreva.44.1281
    [9]
    E. Galtier, F. B. Rosmej, A. Calisti et al., “Interference effects and Stark broadening in XUV intra-shell transitions in aluminum under conditions of intense XUV free electron laser irradiation,” Phys. Rev. A 87, 033422 (2013).10.1103/physreva.87.033424 doi: 10.1103/physreva.87.033424
    [10]
    F. B. Rosmej, “Hot electron x-ray diagnostics,” J. Phys. B: At., Mol. Opt. Phys. 30, L819 (1997).10.1088/0953-4075/30/22/007 doi: 10.1088/0953-4075/30/22/007
    [11]
    S. H. Glenzer, F. B. Rosmej, R. W. Lee et al., “Measurements of suprathermal electrons in hohlraum plasmas with x-ray spectroscopy,” Phys. Rev. Lett. 81, 365 (1998).10.1103/physrevlett.81.365 doi: 10.1103/physrevlett.81.365
    [12]
    M. Smid, O. Renner, A. Colaitis et al., “Characterization of suprathermal electrons inside a laser accelerated plasma via highly-resolved Kα emission,” Nat. Commun. 10, 4212 (2019).10.1038/s41467-019-12008-9 doi: 10.1038/s41467-019-12008-9
    [13]
    E. Galtier, F. B. Rosmej, D. Riley et al., “Decay of crystaline order and equilibration during solid-to-plasma transition induced by 20-fs microfocused 92 eV free electron laser pulses,” Phys. Rev. Lett. 106, 164801 (2011).10.1103/physrevlett.106.164801 doi: 10.1103/physrevlett.106.164801
    [14]
    F. B. Rosmej and R. W. Lee, “Hollow ion emission driven by pulsed x-ray radiation fields,” Europhys. Lett. 77, 24001 (2007).10.1209/0295-5075/77/24001 doi: 10.1209/0295-5075/77/24001
    [15]
    J. Colgan, J. Abdallah, Jr., A. Y. Faenov et al., “Exotic dense-matter states pumped by a relativistic laser plasma in the radiation-dominated regime,” Phys. Rev. Lett. 110, 125001 (2013).10.1103/physrevlett.110.125001 doi: 10.1103/physrevlett.110.125001
    [16]
    F. B. Rosmej, H. R. Griem, R. C. Elton et al., “Investigation of charge exchange induced formation of two electron satellite transitions in dense laser produced plasmas,” Phys. Rev. E 66, 056402 (2002).10.1103/physreve.66.056402 doi: 10.1103/physreve.66.056402
    [17]
    F. B. Rosmej, V. S. Lisitsa, R. Schott et al., “Charge exchange driven X-ray emission from highly ionized plasma jets,” Europhys. Lett. 76, 815 (2006).10.1209/epl/i2006-10362-7 doi: 10.1209/epl/i2006-10362-7
    [18]
    F. B. Rosmej and V. S. Lisitsa, “A self-consistent method for the determination of neutral density from X-ray impurity spectra,” Phys. Lett. A 244, 401 (1998).10.1016/s0375-9601(98)00329-6 doi: 10.1016/s0375-9601(98)00329-6
    [19]
    F. B. Rosmej, D. Reiter, V. S. Lisitsa et al., “Influence of charge exchange processes on X-ray spectra in TEXTOR tokamak plasmas: Experimental and theoretical investigation,” Plasma Phys. Controlled Fusion 41, 191 (1999).10.1088/0741-3335/41/2/004 doi: 10.1088/0741-3335/41/2/004
    [20]
    F. B. Rosmej and V. S. Lisitsa, “Non-equilibrium radiative properties in fluctuating plasmas,” Plasma Phys. Rep. 37, 521 (2011).10.1134/s1063780x11050102 doi: 10.1134/s1063780x11050102
    [21]
    F. B. Rosmej and A. Y. Faenov, “New innershell phenomena from Rydberg series of highly charged ions,” Phys. Scr. T73, 106 (1997).10.1088/0031-8949/1997/t73/031 doi: 10.1088/0031-8949/1997/t73/031
    [22]
    F. B. Rosmej, A. Y. Faenov, T. A. Pikuz et al., “Inner-shell satellite transitions in dense short pulse plasmas,” J. Quant. Spectrosc. Radiat. Transfer 58, 859 (1997).10.1016/s0022-4073(97)00092-7 doi: 10.1016/s0022-4073(97)00092-7
    [23]
    F. B. Rosmej, A. Y. Faenov, T. A. Pikuz et al., “Line formation of high intensity Heβ-Rydberg dielectronic satellites 1s3lnl′ in laser produced plasmas,” J. Phys. B: At., Mol. Opt. Phys. 31, L921 (1998).10.1088/0953-4075/31/21/005 doi: 10.1088/0953-4075/31/21/005
    [24]
    O. Renner, E. Krouský, F. B. Rosmej et al., “Observation of H-like Al Lyα disappearance in dense cold laser produced plasmas,” Appl. Phys. Lett. 79, 177 (2001).10.1063/1.1381413 doi: 10.1063/1.1381413
    [25]
    B. Deschaud, O. Peyrusse, and F. B. Rosmej, “Simulation of XFEL induced fluorescence spectra of hollow ions and studies of dense plasma effects,” Phys. Plasmas 27, 063303 (2020).10.1063/5.0011193 doi: 10.1063/5.0011193
    [26]
    I. I. Sobelman and L. A. Vainshtein, Excitation of Atomic Spectra (Alpha Science, 2006).
    [27]
    J. G. Rubiano, R. Florido, C. Bowen et al., “Review of the 4th NLTE code comparison workshop,” High Energy Density Phys. 3, 225 (2007).10.1016/j.hedp.2007.02.027 doi: 10.1016/j.hedp.2007.02.027
    [28]
    H.-K. Chung, C. Bowen, C. J. Fontes et al., “Comparison and analysis of collisional-radiative models at the NLTE-7 workshop,” High Energy Density Phys. 9, 645 (2013).10.1016/j.hedp.2013.06.001 doi: 10.1016/j.hedp.2013.06.001
    [29]
    J. Colgan, C. F. Fontes, H. Zhang et al., “Collisional-radiative modeling of tungsten at temperatures of 1200–2400 eV,” Atoms 3, 76 (2015).10.3390/atoms3020076 doi: 10.3390/atoms3020076
    [30]
    A. Sommerfeld, Atombau und Spektrallinien (Harri Deutsch, 1978), Vol. II.
    [31]
    V. I. Kogan, A. B. Kukushkin, and V. S. Lisitsa, “Kramers electrodynamics and electron-atomic radiative collisional processes,” Phys. Rep. 213, 1 (1992).10.1016/0370-1573(92)90161-r doi: 10.1016/0370-1573(92)90161-r
    [32]
    R. D. Cowan, The Theory of Atomic Structure and Spectra (California University Press, 1981).
    [33]
    Handbook of Atomic, Molecular, and Optical Physics, edited by G. W. F. Drake (Springer, 2006).
    [34]
    A. Pradhan and S. N. Nahar, Atomic Astrophysics and Spectroscopy (Cambridge University Press, Cambridge, 2011).
    [35]
    V. A. Astapenko, Polarization Bremsstrahlung on Atoms, Plasmas, Nanostructures and Solids (Springer, 2013).
    [36]
    L. A. Vainshtein and U. I. Safronova, “Wavelengths and transition probabilities of satellites to resonance lines of H- and He-like ions,” At. Data Nucl. Data Tables 21, 49 (1978).10.1016/0092-640x(78)90003-7 doi: 10.1016/0092-640x(78)90003-7
    [37]
    F. F. Goryaev, L. A. Vainshtein, and A. M. Urnov, “Atomic data for doubly-excited states 2lnl′ of He-like and 1s2lnl′ of Li-like ions with Z=6-36 and n=2,3,” At. Data Nucl. Data Tables 113, 117 (2017).
    [38]
    I. L. Beigman, L. A. Vainshtein, and B. N. Chichkov, “Dielectronic recombination,” J. Exp. Theor. Phys. 53, 490 (1981).
    [39]
    V. S. Lisitsa, Atoms in Plasmas (Springer, 1994).
    [40]
    D. S. Leontyev and V. S. Lisitsa, “Statistical model of dielectronic recombination of heavy ions in plasmas,” Contrib. Plasma Phys. 56, 846 (2016).10.1002/ctpp.201500075 doi: 10.1002/ctpp.201500075
    [41]
    A. V. Demura, D. S. Leont’iev, V. S. Lisitsa et al., “Statistical dielectronic recombination rates for multielectron ions in plasma,” J. Exp. Theor. Phys. 125, 663 (2017).10.1134/s1063776117090138 doi: 10.1134/s1063776117090138
    [42]
    V. P. Shevelko and L. A. Vainshtein, Atomic Physics for Hot Plasmas (IOP Publishing, Bristol, 1993).
    [43]
    L. A. Vainshtein and V. P. Shevelko, Program ATOM, Preprint No. 43, Lebedev Physical Institute, Moscow 1996.
    [44]
    L. A. Vainshtein, Proc. P. N. Lebedev Inst. 119, 3 (1980).
    [45]
    F. Petitdemange and F. B. Rosmej, “Dielectronic satellites and Auger electron heating: Irradiation of solids by intense XUV-free electron laser radiation,” in New Trends in Atomic & Molecular Physics: Advanced Technological Applications, edited by M. Mohan (Springer, 2013), Vol. 76, pp. 91–114, ISBN: 978-3-642-38166-9.
    [46]
    F. B. Rosmej, “Diagnostic properties of Be-like and Li-like satellites in dense transient plasmas under the action of highly energetic electrons,” J. Quant. Spectrosc. Radiat. Transfer 51, 319 (1994).10.1016/0022-4073(94)90094-9 doi: 10.1016/0022-4073(94)90094-9
    [47]
    F. B. Rosmej, “A new type of analytical model for complex radiation emission of hollow ions in fusion and laser produced plasmas,” Europhys. Lett. 55, 472 (2001).10.1209/epl/i2001-00439-9 doi: 10.1209/epl/i2001-00439-9
    [48]
    F. B. Rosmej, “An alternative method to determine atomic radiation,” Europhys. Lett. 76, 1081 (2006).10.1209/epl/i2006-10382-3 doi: 10.1209/epl/i2006-10382-3
    [49]
    F. B. Rosmej, “X-ray emission spectroscopy and diagnostics of non-equilibrium fusion and laser produced plasmas,” in Highly Charged Ion Spectroscopic Research, edited by Y. Zou and R. Hutton (Taylor and Francis, 2012), pp. 267–341, ISBN: 9781420079043.
    [50]
    X. Li, F. B. Rosmej, V. A. Astapenko et al., “An analytical plasma screening potential based on the self-consistent-field ion-sphere model,” Phys. Plasmas 26, 033301 (2019).10.1063/1.5055689 doi: 10.1063/1.5055689
    [51]
    X. Li and F. B. Rosmej, “Analytical approach to level delocalization and line shifts in finite temperature dense plasmas,” Phys. Lett. A 384, 126478 (2020).10.1016/j.physleta.2020.126478 doi: 10.1016/j.physleta.2020.126478
    [52]
    J. D. Hey, “On the role of atomic metastability in the production of Balmer line radiation from cold atomic hydrogen, deuterium and hydrogenic ion impurities in fusion edge plasmas,” J. Phys. B: At., Mol. Opt. Phys. 45, 065701 (2012).10.1088/0953-4075/45/6/065701 doi: 10.1088/0953-4075/45/6/065701
    [53]
    J. Davis and V. L. Jacobs, “Effects of plasma microfields on radiative transitions from atomic levels above the ionization threshold,” Phys. Rev. A 12, 2017 (1975).10.1103/physreva.12.2017 doi: 10.1103/physreva.12.2017
    [54]
    V. L. Jacobs, J. Davis, and P. C. Kepple, “Enhancement of dielectronic recombination by plasma electric microfields,” Phys. Rev. Lett. 37, 1390 (1976).10.1103/physrevlett.37.1390 doi: 10.1103/physrevlett.37.1390
    [55]
    V. L. Jacobs and J. Davis, “Properties of Rydberg autoionizing states in electric field,” Phys. Rev. A 19, 776 (1979).10.1103/physreva.19.776 doi: 10.1103/physreva.19.776
    [56]
    I. P. Grant and N. C. Pyper, “Breit interaction in multi-configuration relativistic atomic calculations,” J. Phys. B: A., Mol. Phys. 9, 761 (1976).10.1088/0022-3700/9/5/019 doi: 10.1088/0022-3700/9/5/019
    [57]
    L. A. Bureyeva, T. Kato, V. S. Lisitsa et al., “Quasiclassical representation of autoionization decay reates in parabolic coordinates,” J. Phys. B: At., Mol. Opt. Phys. 34, 3909 (2001).10.1088/0953-4075/34/20/304 doi: 10.1088/0953-4075/34/20/304
    [58]
    L. A. Bureyeva, T. Kato, V. S. Lisitsa et al., “Quasiclassical theory of dielectronic recombination in plasmas,” Phys. Rev. A 65, 032702 (2002).10.1103/physreva.65.032702 doi: 10.1103/physreva.65.032702
    [59]
    J. D. Hey, “On the use of the axially symmetric paraboloidal coordinate system in deriving some properties of Stark states of hydrogenic atomc and ions,” J. Phys. A: Math. Theor. 52, 045203 (2019).10.1088/1751-8121/aaf4da doi: 10.1088/1751-8121/aaf4da
    [60]
    P. Gombas, “Erweiterung der statistischen theroy des atoms,” Z. Phys. 121, 523 (1943).10.1007/bf01330701 doi: 10.1007/bf01330701
    [61]
    P. Gombas, Die statistische theorie des Atoms und ihre Anwendungen (Springer-Verlag, Wien, 1949).
    [62]
    P. Gombás, “Present state of the statistical theory of atoms,” Rev. Mod. Phys. 35, 512 (1963).10.1103/revmodphys.35.512 doi: 10.1103/revmodphys.35.512
    [63]
    P. Fromy, C. Deutsch, and G. Maynard, “Thomas-Fermi-like and average atom models for dense and hot matter,” Phys. Plasmas 3, 714 (1996).10.1063/1.871806 doi: 10.1063/1.871806
    [64]
    E. H. Lieb and B. Simon, “The Thomas-Fermi theory of atoms, molecules and solids,” Adv. Math. 23, 22 (1977).10.1016/0001-8708(77)90108-6 doi: 10.1016/0001-8708(77)90108-6
    [65]
    G. Kemister and S. Nordholm, “A radially restricted Thomas-Fermi theory for atoms,” J. Chem. Phys. 76, 5043 (1982).10.1063/1.442852 doi: 10.1063/1.442852
    [66]
    A. V. Demura, M. B. Kadomtsev, V. S. Lisitsa et al., “Universal statistical approach to radiative and collisional processes with multielectron ions in plasmas,” High Energy Density Phys. 15, 49 (2015).10.1016/j.hedp.2015.03.006 doi: 10.1016/j.hedp.2015.03.006
    [67]
    A. Sommerfeld, “Integrazione asintotica dell’equazione differentiale di Thomas–Fermi,” Rend. R. Accad. Lincei 15, 293 (1932).
    [68]
    V. D. Kirillow, B. A. Trubnikov, and S. A. Trushin, “Role of impurities in anomalous plasma resistance,” Sov. J. Plasma Phys. 1, 117 (1975).
    [69]
    C. P. Balance, S. D. Loch, M. S. Pindzola et al., “Dielectronic recombination of W35+,” J. Phys. B: At., Mol. Opt. Phys. 43, 205201 (2010).10.1088/0953-4075/43/20/205201 doi: 10.1088/0953-4075/43/20/205201
    [70]
    Z. Wu, Y. Fu, X. Ma et al., “Electronic impact excitation and dielectronic recombination of highly charged tungsten ions,” Atoms 3, 474 (2015).10.3390/atoms3040474 doi: 10.3390/atoms3040474
    [71]
    E. Behar, P. Mandelbaum, J. L. Schwob et al., “Dielectronic recombination rate coefficients for highly-ionized Ni-like atoms,” Phys. Rev. A 54, 3070 (1996).10.1103/physreva.54.3070 doi: 10.1103/physreva.54.3070
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(4)  / Tables(6)

    Article Metrics

    Article views (610) PDF downloads(19) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return