Follow us on Wechat

用微信扫码二维码

分享至好友和朋友圈

Volume 5 Issue 5
Sep.  2020
Turn off MathJax
Article Contents
Wang Shu-Xing, Zhu Lin-Fan. Non-resonant inelastic X-ray scattering spectroscopy: A momentum probe to detect the electronic structures of atoms and molecules[J]. Matter and Radiation at Extremes, 2020, 5(5): 054201. doi: 10.1063/5.0011416
Citation: Wang Shu-Xing, Zhu Lin-Fan. Non-resonant inelastic X-ray scattering spectroscopy: A momentum probe to detect the electronic structures of atoms and molecules[J]. Matter and Radiation at Extremes, 2020, 5(5): 054201. doi: 10.1063/5.0011416

Non-resonant inelastic X-ray scattering spectroscopy: A momentum probe to detect the electronic structures of atoms and molecules

doi: 10.1063/5.0011416
More Information
  • Corresponding author: a)Author to whom correspondence should be addressed: lfzhu@ustc.edu.cn
  • Received Date: 2020-04-21
  • Accepted Date: 2020-07-13
  • Available Online: 2020-09-01
  • Publish Date: 2020-09-15
  • Non-resonant inelastic X-ray scattering (NRIXS) is a new technique for atomic and molecular physics that allows one to measure the electronic structures and dynamic parameters of the ground and excited states of atoms and molecules in momentum space. There is a clearly understood physical picture of NRIXS, which reveals its remarkable advantages of satisfying the first Born approximation and being able to excite dipole-forbidden transitions. Various physical properties of atoms and molecules, such as their elastic and inelastic squared form factors, optical oscillator strengths, and Compton profiles, can be explored using NRIXS under different experimental conditions. In this paper, we review newly developed experimental methods for NRIXS, together with its characteristics and various applications, with emphasis on the new insights into excitation mechanism and other new information revealed by this technique. The intrinsic connections and differences between NRIXS and fast electron impact spectroscopy are elucidated. Future applications of this method to atomic and molecular physics are also described.
  • loading
  • [1]
    B. Crasemann and F. Wuilleumier, “Atomic physics with synchrotron radiation,” Phys. Today 37(6), 34 (1984).10.1063/1.2916270 doi: 10.1063/1.2916270
    [2]
    A. H. Compton, “The spectrum of scattered X-rays,” Phys. Rev. 22, 409 (1923).10.1103/physrev.22.409 doi: 10.1103/physrev.22.409
    [3]
    W. Schülke, Electron Dynamics by Inelastic X-Ray Scattering (Oxford University Press, 2007).
    [4]
    J. W. M. Du Mond, “Compton modified line structure and its relation to the electron theory of solid bodies,” Phys. Rev. 33, 643 (1929).10.1103/physrev.33.643 doi: 10.1103/physrev.33.643
    [5]
    J. R. Schneider, “FLASH—from accelerator test facility to the first single-pass soft X-ray free-electron laser,” J. Phys. B: At., Mol. Opt. Phys. 43, 194001 (2010).10.1088/0953-4075/43/19/194001 doi: 10.1088/0953-4075/43/19/194001
    [6]
    P. Emma, R. Akre, J. Arthur et al., “First lasing and operation of an ångstrom-wavelength free-electron laser,” Nat. Photonics 4, 641 (2010).10.1038/nphoton.2010.176 doi: 10.1038/nphoton.2010.176
    [7]
    D. Pile, “First light from SACLA,” Nat. Photonics 5, 456 (2011).10.1038/nphoton.2011.178 doi: 10.1038/nphoton.2011.178
    [8]
    B. P. Xie, L. F. Zhu, K. Yang, B. Zhou, N. Hiraoka, Y. Q. Cai, Y. Yao, C. Q. Wu, E. L. Wang, and D. L. Feng, “Inelastic X-ray scattering study of the state-resolved differential cross section of Compton excitations in helium atoms,” Phys. Rev. A 82, 032501 (2010).10.1103/physreva.82.032501 doi: 10.1103/physreva.82.032501
    [9]
    L. F. Zhu, L. S. Wang, B. P. Xie, K. Yang, N. Hiraoka, Y. Q. Cai, and D. L. Feng, “Inelastic X-ray scattering study on the single excitations of helium,” J. Phys. B: At., Mol. Opt. Phys. 44, 025203 (2011).10.1088/0953-4075/44/2/025203 doi: 10.1088/0953-4075/44/2/025203
    [10]
    H.-C. Tian, L.-Q. Xu, and L.-F. Zhu, “Selection rules for electric multipole transition of triatomic molecule in scattering experiments,” Chin. Phys. B 27, 043101 (2018).10.1088/1674-1056/27/4/043101 doi: 10.1088/1674-1056/27/4/043101
    [11]
    L. F. Zhu, W. Q. Xu, J. M. Sun, and W. Y. Zhang, “Optically forbidden transition of A′3Δu←X3Σg− in oxygen,” Chin. Phys. Lett. 27, 113301 (2010).10.1063/1.3481687 doi: 10.1063/1.3481687
    [12]
    H. Mark and K. Schocken, “Über die azimutale verteilung der an einem idealen gas gestreuten röntgenstrahlen,” Naturwissenschaften 15, 139–140 (1927).10.1007/bf01505484 doi: 10.1007/bf01505484
    [13]
    C. S. Barrett, “The scattering of X-rays from gases,” Phys. Rev. 32, 22 (1928).10.1103/physrev.32.22 doi: 10.1103/physrev.32.22
    [14]
    J. W. M. DuMond and H. A. Kirkpatrick, “A direct spectrum of the structure and shift of the Compton line with helium gas as the scatterer,” Phys. Rev. 52, 419 (1937).10.1103/physrev.52.419 doi: 10.1103/physrev.52.419
    [15]
    P. Eisenberger, “Electron momentum density of He and H2; Compton X-ray scattering,” Phys. Rev. A 2, 1678 (1970).10.1103/physreva.2.1678 doi: 10.1103/physreva.2.1678
    [16]
    P. Eisenberger and W. A. Reed, “Gamma-ray Compton scattering: Experimental Compton profiles for He, N2, Ar, and Kr,” Phys. Rev. A 5, 2085 (1972).10.1103/physreva.5.2085 doi: 10.1103/physreva.5.2085
    [17]
    D. D. Ni, X. Kang, K. Yang, Y. W. Liu, X. X. Mei, X. L. Zhao, L. Q. Xu, N. Hiraoka, K. D. Tsuei, and L. F. Zhu, “Squared form factors for the A1Π and B1Σ+ vibronic bands of carbon monoxide studied by high-resolution inelastic x-ray scattering,” Phys. Rev. A 91, 042501 (2015).10.1103/physreva.91.042501 doi: 10.1103/physreva.91.042501
    [18]
    Y. W. Liu, X. X. Mei, X. Kang, K. Yang, W. Q. Xu, Y. G. Peng, N. Hiraoka, K. D. Tsuei, P. F. Zhang, and L. F. Zhu, “Determination of the electronic structure of atoms and molecules in the ground state: Measurement of molecular hydrogen by high-resolution X-ray scattering,” Phys. Rev. A 89, 014502 (2014).10.1103/physreva.89.014502 doi: 10.1103/physreva.89.014502
    [19]
    X.-C. Huang, L.-Q. Xu, D.-D. Ni, Y.-W. Liu, Y.-G. Peng, K. Yang, N. Hiraoka, K.-D. Tsuei, and L.-F. Zhu, “Elastic squared form factor and binding effect of carbon dioxide studied by the high resolution X-ray scattering,” J. Electron Spectrosc. Relat. Phenom. 226, 41–44 (2018).10.1016/j.elspec.2018.05.006 doi: 10.1016/j.elspec.2018.05.006
    [20]
    X. Kang, L.-Q. Xu, Y.-W. Liu, S.-X. Wang, K. Yang, Y.-G. Peng, D.-D. Ni, N. Hiraoka, K.-D. Tsuei, and L.-F. Zhu, “A study on the validity of the first Born approximation for high-energy electron scattering with nitrogen molecules,” J. Phys. B: At., Mol. Opt. Phys. 52, 245202 (2019).10.1088/1361-6455/ab4ef1 doi: 10.1088/1361-6455/ab4ef1
    [21]
    L. Q. Xu, Y. W. Liu, X. Kang, D. D. Ni, K. Yang, N. Hiraoka, K. D. Tsuei, and L. F. Zhu, “The realization of the dipole (γ, γ) method and its application to determine the absolute optical oscillator strengths of helium,” Sci. Rep. 5, 18350 (2015).10.1038/srep18350 doi: 10.1038/srep18350
    [22]
    X.-L. Zhao, K. Yang, L.-Q. Xu, Y.-P. Ma, S. Yan, D.-D. Ni, X. Kang, Y.-W. Liu, and L.-F. Zhu, “Compton profile of molecular hydrogen,” Chin. Phys. B 24, 033301 (2015).10.1088/1674-1056/24/3/033301 doi: 10.1088/1674-1056/24/3/033301
    [23]
    X.-L. Zhao, K. Yang, L.-Q. Xu, X. Kang, Y.-W. Liu, Y.-P. Ma, S. Yan, D.-D. Ni, and L.-F. Zhu, “Investigation of Compton profiles of molecular methane and ethane,” J. Chem. Phys. 142, 084301 (2015).10.1063/1.4908534 doi: 10.1063/1.4908534
    [24]
    X.-X. Mei, X.-L. Zhao, L.-Q. Xu, Y.-W. Liu, X. Kang, S. Yan, D.-D. Ni, K. Yang, and L.-F. Zhu, “Investigation of Compton profile of molecular propane,” Chin. Phys. Lett. 33, 093301 (2016).10.1088/0256-307x/33/9/093301 doi: 10.1088/0256-307x/33/9/093301
    [25]
    Y. W. Liu, L. Q. Xu, D. D. Ni, X. Xu, X. C. Huang, and L. F. Zhu, “Integral cross sections of the dipole-allowed excitations of nitrogen molecule studied by the fast electron scattering,” J. Geophys. Res. 122, 3459–3468, https://doi.org/10.1002/2016ja023857 (2017).10.1002/2016ja023857 doi: 10.1002/2016ja023857
    [26]
    Y.-W. Liu, L.-Q. Xu, T. Xiong, X. Chen, K. Yang, N. Hiraoka, K.-D. Tsuei, and L.-F. Zhu, “Oscillator strengths and integral cross sections of the valence-shell excitations of the oxygen molecule studied by fast electron and inelastic X-ray scattering,” Astrophys. J. Suppl. Ser. 238, 26 (2018).10.3847/1538-4365/aadd99 doi: 10.3847/1538-4365/aadd99
    [27]
    Y.-W. Liu, L.-Q. Xu, T. Chen, D.-G. Qi, T. Xiong, and L.-F. Zhu, “Oscillator strengths and integral cross sections of the valence-shell excitations of acetylene studied by the high-energy electron-scattering,” Astrophys. J. Suppl. Ser. 234, 10 (2018).10.3847/1538-4365/aa9cef doi: 10.3847/1538-4365/aa9cef
    [28]
    Y.-W. Liu, X.-J. Du, Y.-C. Xu, and L.-F. Zhu, “Oscillator strengths and integral cross sections of the valence-shell excitations of carbonyl sulfide studied by high-energy electron scattering,” Astrophys. J. Suppl. Ser. 244, 23 (2019).10.3847/1538-4365/ab39e0 doi: 10.3847/1538-4365/ab39e0
    [29]
    W. P. Healy, “A generalization of the Kramers-Heisenberg dispersion formula,” Phys. Rev. A 16, 1568 (1977).10.1103/physreva.16.1568 doi: 10.1103/physreva.16.1568
    [30]
    M. Blume, “Magnetic scattering of X rays (invited),” J. Appl. Phys. 57, 3615–3618 (1985).10.1063/1.335023 doi: 10.1063/1.335023
    [31]
    J. A. Bradley, G. T. Seidler, G. Cooper, M. Vos, A. P. Hitchcock, A. P. Sorini, C. Schlimmer, and K. P. Nagle, “Comparative study of the valence electronic excitations of N2 by inelastic X-ray and electron scattering,” Phys. Rev. Lett. 105, 053202 (2010).10.1103/physrevlett.105.053202 doi: 10.1103/physrevlett.105.053202
    [32]
    T. Xiong, Y. W. Liu, K. Yang, X. C. Huang, S. X. Wang, S. Yan, K. L. Yu, N. Hiraoka, K. D. Tsuei, and L. F. Zhu, “Optical oscillator strengths of the vibronic excitations of molecular deuterium determined by the dipole (γ, γ) method,” Phys. Rev. A 98, 042509 (2018).10.1103/physreva.98.042509 doi: 10.1103/physreva.98.042509
    [33]
    X. Kang, K. Yang, Y. W. Liu, W. Q. Xu, N. Hiraoka, K. D. Tsuei, P. F. Zhang, and L. F. Zhu, “Squared form factors of valence-shell excitations of atomic argon studied by high-resolution inelastic X-ray scattering,” Phys. Rev. A 86, 022509 (2012).10.1103/physreva.86.022509 doi: 10.1103/physreva.86.022509
    [34]
    N. M. Cann and A. J. Thakkar, “First Born differential cross-sections for electronic excitation in the helium atom,” J. Electron Spectrosc. Relat. Phenom. 123, 143–159 (2002).10.1016/s0368-2048(02)00016-6 doi: 10.1016/s0368-2048(02)00016-6
    [35]
    X. Y. Han and J. M. Li, “High-energy electron-impact excitation process: The generalized oscillator strengths of helium,” Phys. Rev. A 74, 062711 (2006).10.1103/physreva.74.062711 doi: 10.1103/physreva.74.062711
    [36]
    M. Inokuti, “Inelastic collisions of fast charged particles with atoms and molecules-the Bethe theory revisited,” Rev. Mod. Phys. 43, 297 (1971).10.1103/revmodphys.43.297 doi: 10.1103/revmodphys.43.297
    [37]
    J. A. Bradley, A. Sakko, G. T. Seidler, A. Rubio, M. Hakala, K. Hämäläinen, G. Cooper, A. P. Hitchcock, K. Schlimmer, and K. P. Nagle, “Reexamining the Lyman-Birge-Hopfield band of N2,” Phys. Rev. A 84, 022510 (2011).10.1103/physreva.84.022510 doi: 10.1103/physreva.84.022510
    [38]
    P. E. Grabowski and D. F. Chernoff, “Pseudospectral calculation of helium wave functions, expectation values, and oscillator strength,” Phys. Rev. A 84, 042505 (2011).10.1103/physreva.84.042505 doi: 10.1103/physreva.84.042505
    [39]
    X.-J. Liu, L.-F. Zhu, Z.-S. Yuan, W.-B. Li, H.-D. Cheng, J.-M. Sun, and K.-Z. Xu, “The generalized oscillator strengths for the valence shell excitations in helium by fast electron impact,” J. Electron Spectrosc. Relat. Phenom. 135, 15–20 (2004).10.1016/j.elspec.2003.11.004 doi: 10.1016/j.elspec.2003.11.004
    [40]
    M. A. Dillon and E. N. Lassettre, “A collision cross section study of the 1 1S 2 1P and 1 1S 2 1S transitions in helium at kinetic energies from 200-700 eV. Failure of the born approximation at large momentum changes,” J. Chem. Phys. 62, 2373–2390 (1975).10.1063/1.430763 doi: 10.1063/1.430763
    [41]
    K. Z. Xu, R. F. Feng, S. L. Wu, Q. Ji, X. J. Zhang, Z. P. Zhong, and Y. Zheng, “Absolute generalized oscillator strengths of 2 1S and 2 1P excitations of helium measured by angle-resolved electron-energy-loss spectroscopy,” Phys. Rev. A 53, 3081 (1996).10.1103/physreva.53.3081 doi: 10.1103/physreva.53.3081
    [42]
    Y. G. Peng, X. Kang, K. Yang, X. L. Zhao, Y. W. Liu, X. X. Mei, W. Q. Xu, N. Hiraoka, K. D. Tsuei, and L. F. Zhu, “Squared form factors of vibronic excitations in 12–13.3 eV of nitrogen studied by high-resolution inelastic X-ray scattering,” Phys. Rev. A 89, 032512 (2014).10.1103/physreva.89.032512 doi: 10.1103/physreva.89.032512
    [43]
    Y. K. Kim, “Scaling of plane-wave Born cross sections for electron-impact excitation of neutral atoms,” Phys. Rev. A 64, 032713 (2001).10.1103/physreva.64.032713 doi: 10.1103/physreva.64.032713
    [44]
    C. P. Malone, P. V. Johnson, X. Liu, B. Ajdari, I. Kanik, and M. A. Khakoo, “Integral cross sections for the electron-impact excitation of the b 1Πu, c3 1Πu, o3 1Πu, b′Σu+1, c4′Σu+1, G3Πu, and F 1Πu states of N2,” Phys. Rev. A 85, 062704 (2012).10.1103/physreva.85.062704 doi: 10.1103/physreva.85.062704
    [45]
    S. Trajmar, D. F. Register, and A. Chutjian, “Electron scattering by molecules II. Experimental methods and data,” Phys. Rep. 97, 219–356 (1983).10.1016/0370-1573(83)90071-6 doi: 10.1016/0370-1573(83)90071-6
    [46]
    J. M. Ajello, M. H. Stevens, I. Stewart, K. Larsen, L. Esposito, J. Colwell, W. McClintock, G. Holsclaw, J. Gustin, and W. Pryor, “Titan airglow spectra from Cassini ultraviolet imaging spectrograph (UVIS): EUV analysis,” Geophys. Res. Lett. 34, L24204, https://doi.org/10.1029/2007GL031555 (2007).10.1029/2007GL031555 doi: 10.1029/2007GL031555
    [47]
    L. F. Zhu, H. D. Cheng, Z. S. Yuan, X. J. Liu, J. M. Sun, and K. Z. Xu, “Generalized oscillator strengths for the valence-shell excitations of argon,” Phys. Rev. A 73, 042703 (2006).10.1103/physreva.73.042703 doi: 10.1103/physreva.73.042703
    [48]
    T. Chen, Y.-W. Liu, Y.-C. Xu, and L.-F. Zhu, “Generalized oscillator strengths of the valence-shell excitations of argon studied by fast electron impact,” J. Phys. B: At., Mol. Opt. Phys. 53, 085201 (2020).10.1088/1361-6455/ab752a doi: 10.1088/1361-6455/ab752a
    [49]
    Z. Chen, A. Z. Msezane, and M. Y. Amusia, “Generalized oscillator strength for the argon 3p6-3p54s transition: Correlation and exchange effects on the characteristic minimum,” Phys. Rev. A 60, 5115 (1999).10.1103/physreva.60.5115 doi: 10.1103/physreva.60.5115
    [50]
    A. Skerbele and E. N. Lassettre, “Absolute electron collision cross sections for two forbidden transitions in nitrogen at kinetic energies of 300–500 eV,” J. Chem. Phys. 53, 3806–3813 (1970).10.1063/1.1673844 doi: 10.1063/1.1673844
    [51]
    N. Oda and T. Osawa, “Generalised oscillator strength and total cross sections for the X1Σg+ a1Πg transition in molecular nitrogen at 500 to 2000 eV incident electron energies,” J. Phys. B: At., Mol. Opt. Phys. 14, L563 (1981).10.1088/0022-3700/14/17/006 doi: 10.1088/0022-3700/14/17/006
    [52]
    R. S. Barbieri and R. A. Bonham, “Momentum-transfer dependence of the Lyman-Birge-Hopfield and the K-shell preionization lines in the nitrogen molecule by means of high-energy electron-impact spectroscopy,” Phys. Rev. A 45, 7929 (1992).10.1103/physreva.45.7929 doi: 10.1103/physreva.45.7929
    [53]
    H. Sakurai, H. Ota, N. Tsuji, M. Itou, and Y. Sakurai, “Accurate Compton scattering measurements of noble gases: The importance of electron correlations in heavy atoms,” J. Phys. B: At., Mol. Opt. Phys. 44, 065001 (2011).10.1088/0953-4075/44/6/065001 doi: 10.1088/0953-4075/44/6/065001
    [54]
    K. Kobayashi, M. Itou, T. Hosoya, N. Tsuji, Y. Sakurai, and H. Sakurai, “Accurate Compton scattering measurements for N2 molecules,” J. Phys. B: At., Mol. Opt. Phys. 44, 115102 (2011).10.1088/0953-4075/44/11/115102 doi: 10.1088/0953-4075/44/11/115102
    [55]
    J. J. Bentley and R. F. Stewart, “Total X-ray scattering by H2,” J. Chem. Phys. 62, 875–878 (1975).10.1063/1.430538 doi: 10.1063/1.430538
    [56]
    Y.-W. Liu, T. Xiong, X.-C. Huang, K. Yang, K.-L. Yu, N. Hiraoka, K.-D. Tsuei, and L.-F. Zhu, “An investigation of the anomalous asymptotic behavior of elastic electron scattering of helium,” J. Chem. Phys. 152, 034304 (2020).10.1063/1.5128947 doi: 10.1063/1.5128947
    [57]
    R. F. Feng, B. X. Yang, S. L. Wu, S. L. Xing, F. Zhang, Z. P. Zhong, X. Z. Guo, and K. Z. Xu, “High-resolution dipole (e, e) study for optical oscillator strengths of helium,” Sci. China Ser. A: Math. 39, 1288–1295 (1996).
    [58]
    W. F. Chan, G. Cooper, and C. E. Brion, “Absolute optical oscillator strengths for the electronic excitation of atoms at high resolution: Experimental methods and measurements for helium,” Phys. Rev. A 44, 186 (1991).10.1103/physreva.44.186 doi: 10.1103/physreva.44.186
    [59]
    Z. P. Zhong, R. F. Feng, S. L. Wu, L. F. Zhu, X. J. Zhang, and K. Z. Xu, “Electron-impact study for the and (n = 3-6) excitations in helium,” J. Phys. B: At., Mol. Opt. Phys. 30, 5305 (1997).10.1088/0953-4075/30/22/025 doi: 10.1088/0953-4075/30/22/025
    [60]
    A. M. Skerbele and E. N. Lassettre, “Higher-resolution study of the electron-impact spectrum of helium,” J. Chem. Phys. 40, 1271–1275 (1964).10.1063/1.1725308 doi: 10.1063/1.1725308
    [61]
    R. C. G. Ligtenberg, P. J. M. van der Burgt, S. P. Renwick, W. B. Westerveld, and J. S. Risley, “Optical oscillator strengths of noble-gas resonance transitions in the vacuum-ultraviolet region,” Phys. Rev. A 49, 2363 (1994).10.1103/physreva.49.2363 doi: 10.1103/physreva.49.2363
    [62]
    S. Tsurubuchi, K. Watanabe, and T. Arikawa, “Optical oscillator strengths of the resonance lines of rare gases,” J. Phys. Soc. Jpn. 59, 497–505 (1990).10.1143/jpsj.59.497 doi: 10.1143/jpsj.59.497
    [63]
    J. P. De Jongh and J. Van Eck, “Oscillator strengths of the resonance lines of some rare gases,” Physica 51, 104–112 (1971).10.1016/0031-8914(71)90140-6 doi: 10.1016/0031-8914(71)90140-6
    [64]
    R. Hippler and K.-H. Schartner, “Absolute cross sections for the excitation of n 1P-levels of helium by proton impact (150-1000 keV),” J. Phys. B: At., Mol. Opt. Phys. 7, 618 (1974).10.1088/0022-3700/7/5/012 doi: 10.1088/0022-3700/7/5/012
    [65]
    W. L. Wiese and J. R. Fuhr, “Accurate atomic transition probabilities for hydrogen, helium, and lithium,” J. Phys. Chem. Ref. Data 38, 565–720 (2009).10.1063/1.3077727 doi: 10.1063/1.3077727
    [66]
    G. W. F. Drake and D. C. Morton, “A multiplet table for neutral helium (4He I) with transition rates,” Astrophys. J. Suppl. Ser. 170, 251 (2007).10.1086/512239 doi: 10.1086/512239
    [67]
    M.-K. Chen, “Accurate oscillator strengths for S-P transitions in the He atom,” J. Phys. B: At., Mol. Opt. Phys. 27, 865 (1994).10.1088/0953-4075/27/5/006 doi: 10.1088/0953-4075/27/5/006
    [68]
    M.-K. Chen, “F values for high-lying s-p and p-d transitions in the He atom by selected B-spline basis functions,” J. Phys. B: At., Mol. Opt. Phys. 27, 4847 (1994).10.1088/0953-4075/27/20/006 doi: 10.1088/0953-4075/27/20/006
    [69]
    J. A. Fernley, K. T. Taylor, and M. J. Seaton, “Atomic data for opacity calculations. VII. Energy levels, f values and photoionisation cross sections for He-like ions,” J. Phys. B: At., Mol. Opt. Phys. 20, 6457 (1987).10.1088/0022-3700/20/23/032 doi: 10.1088/0022-3700/20/23/032
    [70]
    A. Kono and S. Hattori, “Accurate oscillator strengths for neutral helium,” Phys. Rev. A 29, 2981 (1984).10.1103/physreva.29.2981 doi: 10.1103/physreva.29.2981
    [71]
    C. E. Theodosiou, “Lifetimes of singly excited states in He I,” Phys. Rev. A 30, 2910 (1984).10.1103/physreva.30.2910 doi: 10.1103/physreva.30.2910
    [72]
    X. Kang, Y. W. Liu, L. Q. Xu, D. D. Ni, K. Yang, N. Hiraoka, K. D. Tsuei, and L. F. Zhu, “Oscillator strength measurement for the A(0–6)–X(0), C(0)–X(0), and E(0)–X(0) transitions of CO by the dipole (γ, γ) method,” Astrophys. J. 807, 96 (2015).10.1088/0004-637x/807/1/96 doi: 10.1088/0004-637x/807/1/96
    [73]
    Y.-W. Liu, X. Kang, L.-Q. Xu, D.-D. Ni, K. Yang, N. Hiraoka, K.-D. Tsuei, and L.-F. Zhu, “Oscillator strengths of vibrionic excitations of nitrogen determined by the dipole (γ, γ) method,” Astrophys. J. 819, 142 (2016).10.3847/0004-637x/819/2/142 doi: 10.3847/0004-637x/819/2/142
    [74]
    X. Xu, D.-D. Ni, X. Kang, Y.-W. Liu, L.-Q. Xu, K. Yang, N. Hiraoka, K.-D. Tsuei, and L.-F. Zhu, “The absolute optical oscillator strengths of the 3p54s and excitations of argon measured by the dipole (γ, γ) method,” J. Phys. B: At., Mol. Opt. Phys. 49, 064010 (2016).10.1088/0953-4075/49/6/064010 doi: 10.1088/0953-4075/49/6/064010
    [75]
    T. Xiong, Y.-C. Xu, K. Yang, N. Hiraoka, and L.-F. Zhu, “Oscillator strengths for the Lyman and Werner bands of molecular hydrogen studied by the dipole (γ, γ) method,” Astrophys. J. 885, 163 (2019).10.3847/1538-4357/ab48ed doi: 10.3847/1538-4357/ab48ed
    [76]
    D. D. Ni, L. Q. Xu, Y. W. Liu, K. Yang, N. Hiraoka, K. D. Tsuei, and L. F. Zhu, “Comparative study of the low-lying valence electronic states of carbon dioxide by high-resolution inelastic X-ray and electron scattering,” Phys. Rev. A 96, 012518 (2017).10.1103/physreva.96.012518 doi: 10.1103/physreva.96.012518
    [77]
    L. Q. Xu, X. Kang, Y. G. Peng, X. Xu, Y. W. Liu, Y. Wu, K. Yang, N. Hiraoka, K. D. Tsuei, J. G. Wang et al., “Comparative study of inelastic squared form factors of the vibronic states of B Σu+1, C 1Πu, and EF Σg+1 for molecular hydrogen: Inelastic X-ray and electron scattering,” Phys. Rev. A 97, 032503 (2018).10.1103/physreva.97.032503 doi: 10.1103/physreva.97.032503
    [78]
    L. Q. Xu, Y. G. Peng, T. Xiong, X. Xu, Y. W. Liu, Y. Wu, J. G. Wang, and L. F. Zhu, “Inelastic squared form factors of the vibronic states of B Σu+1, C 1Πu, and EF Σg+1 for molecular hydrogen deuteride studied by fast electron scattering,” Phys. Rev. A 98, 012502 (2018).10.1103/physreva.98.012502 doi: 10.1103/physreva.98.012502
    [79]
    S. Huotari, C. J. Sahle, C. Henriquet, A. Al-Zein, K. Martel, L. Simonelli, R. Verbeni, H. Gonzalez, M.-C. Lagier, C. Ponchut et al., “A large-solid-angle X-ray Raman scattering spectrometer at ID20 of the European Synchrotron Radiation Facility,” J. Synchrotron Rad. 24, 521–530 (2017).10.1107/s1600577516020579 doi: 10.1107/s1600577516020579
    [80]
    J. M. Ablett, D. Prieur, D. Céolin, B. Lassalle-Kaiser, B. Lebert, M. Sauvage, T. Moreno, S. Bac, V. Balédent, A. Ovono et al., “The GALAXIES inelastic hard X-ray scattering end-station at Synchrotron SOLEIL,” J. Synchrotron Rad. 26, 263–271 (2019).10.1107/s160057751801559x doi: 10.1107/s160057751801559x
    [81]
    J. Inkinen, J. Niskanen, A. Sakko, K. O. Ruotsalainen, T. Pylkkänen, S. Galambosi, M. Hakala, G. Monaco, K. Hämäläinen, and S. Huotari, “Interplay between temperature-activated vibrations and nondipolar effects in the valence excitations of the CO2 molecule,” J. Phys. Chem. A 118, 3288–3294 (2014).10.1021/jp5019058 doi: 10.1021/jp5019058
    [82]
    J. Inkinen, A. Sakko, K. O. Ruotsalainen, T. Pylkkänen, J. Niskanen, S. Galambosi, M. Hakala, G. Monaco, S. Huotari, and K. Hämäläinen, “Temperature dependence of CO2 and N2 core-electron excitation spectra at high pressure,” Phys. Chem. Chem. Phys. 15, 9231–9238 (2013).10.1039/c3cp50512j doi: 10.1039/c3cp50512j
    [83]
    D.-D. Ni, X. Kang, S. Yan, X.-C. Huang, T. Xiong, D.-X. Liang, K. Yang, and L.-F. Zhu, “A 1-m non-resonant inelastic X-ray scattering spectrometer at BL15U, Shanghai Synchrotron Radiation Facility,” Rev. Sci. Instrum. 89, 085108 (2018).10.1063/1.5030032 doi: 10.1063/1.5030032
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(12)

    Article Metrics

    Article views (190) PDF downloads(17) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return