Follow us on Wechat

用微信扫码二维码

分享至好友和朋友圈

Volume 5 Issue 5
Sep.  2020
Turn off MathJax
Article Contents
Gonzalez-Arrabal R., Rivera A., Perlado J. M.. Limitations for tungsten as plasma facing material in the diverse scenarios of the European inertial confinement fusion facility HiPER: Current status and new approaches[J]. Matter and Radiation at Extremes, 2020, 5(5): 055201. doi: 10.1063/5.0010954
Citation: Gonzalez-Arrabal R., Rivera A., Perlado J. M.. Limitations for tungsten as plasma facing material in the diverse scenarios of the European inertial confinement fusion facility HiPER: Current status and new approaches[J]. Matter and Radiation at Extremes, 2020, 5(5): 055201. doi: 10.1063/5.0010954

Limitations for tungsten as plasma facing material in the diverse scenarios of the European inertial confinement fusion facility HiPER: Current status and new approaches

doi: 10.1063/5.0010954
More Information
  • Corresponding author: a)Author to whom correspondence should be addressed: raquel.gonzalez.arrabal@upm.es
  • Received Date: 2020-04-26
  • Accepted Date: 2020-07-21
  • Available Online: 2020-09-01
  • Publish Date: 2020-09-15
  • The high-power laser energy research (HiPER) project was a European project for demonstrating the feasibility of inertial fusion energy based on using direct-drive targets in a shock ignition scheme using a drywall evacuated chamber. HiPER was intended to drive the transition from a scientific proof of principle to a demonstration power plant in Europe. The project was divided into three realistic scenarios (Experimental, Prototype, and Demo) to help identify open problems and select appropriate technologies to solve them. One of the problems identified was the lack of appropriate plasma-facing materials (PFMs) for the reaction chamber. Therefore, a major challenge was to develop radiation-resistant materials able to withstand the large thermal loads and radiation in these reactors. In this paper, we describe the main threats that coarse-grained W would face in the diverse HiPER scenarios. Based on purely thermomechanical considerations, the W lifetimes for the HiPER Prototype and Demo scenarios are limited by fatigue to 14 000 h and 28 h, respectively. The combined effects of thermal load and atomistic damage significantly reduce these lifetimes to just ∼1000 shots for the Experimental scenario and a few minutes and seconds for the Prototype and Demo scenarios, respectively. Thus, coarse-grained W is not an appropriate PFM for the Prototype or Demo scenarios. Therefore, alternatives to this material need to be identified. Here, we review some of the different approaches that are being investigated, highlight the work done to characterize these new materials, and suggest further experiments.
  • loading
  • [1]
    R. Aymar, “The ITER project,” IEEE Trans. Plasma Sci. 25, 11871195 (1997).10.1109/27.650895 doi: 10.1109/27.650895
    [2]
    P. H. Rebut, “ITER: The first experimental fusion reactor,” Fusion Eng. Des. 27, 316 (1995).10.1016/0920-3796(95)90113-2 doi: 10.1016/0920-3796(95)90113-2
    [3]
    J. B. Lister, B. P. Duval, and X. Llobet, “The ITER project and its data handling requirements,” in Proceedings of ICALEPCS2003, the 9th International Conference on Accelerator and Large Experimental Physics Control Systems, 13-17 October 2003 (ICALEPCS, Gyeongju, Korea, 2003), pp. 589593.
    [4]
    M. J. Edwards, P. Patel, J. Lindl et al., “Progress towards ignition on the national ignition facility,” Phys. Plasmas 20, 070501 (2013).10.1063/1.4816115 doi: 10.1063/1.4816115
    [5]
    J. M. D. Nicola, T. Bond, M. Bowers et al., “The national ignition facility: Laser performance status and performance quad results at elevated energy,” Nucl. Fusion 59, 032004 (2018).10.1088/1741-4326/aac69e doi: 10.1088/1741-4326/aac69e
    [6]
    J.-L. Miquel, C. Lion, and P. Vivini, “The laser mega-joule : LMJ & PETAL status and program overview,” J. Phys.: Conf. Ser. 688, 012067 (2016).10.1088/1742-6596/688/1/012067 doi: 10.1088/1742-6596/688/1/012067
    [7]
    E. M. Campbell, V. N. Goncharov, T. C. Sangster et al., “Laser-direct-drive program: Promise, challenge, and path forward,” Matter Radiat. Extremes 2, 3754 (2017).10.1016/j.mre.2017.03.001 doi: 10.1016/j.mre.2017.03.001
    [8]
    H. Azechi, “A pathway to laser fusion energy in Japan,” J. Phys.: Conf. Ser. 717, 012119 (2016).10.1088/1742-6596/717/1/012119 doi: 10.1088/1742-6596/717/1/012119
    [9]
    G. Federici, W. Biel, M. R. Gilbert et al., “European DEMO design strategy and consequences for materials,” Nucl. Fusion 57, 092002 (2017).10.1088/1741-4326/57/9/092002 doi: 10.1088/1741-4326/57/9/092002
    [10]
    E. D. M. Leader, I. Cook, and P. Sardain, Conceptual Study of Commercial Fusion Power Plants Final Report of the European Fusion Power Plant Conceptual Study (PPCS) EFDA-RP-RE-5.0, European Fusion Development Agreement EFDA, 2005.
    [11]
    K. Tobita, S. Nishio, M. Enoeda et al., “Compact DEMO, SlimCS: Design progress and issues,” Nucl. Fusion 49, 075029 (2009).10.1088/0029-5515/49/7/075029 doi: 10.1088/0029-5515/49/7/075029
    [12]
    B. N. Kolbasov, V. A. Belyakov, E. N. Bondarchuk et al., “Russian concept for a DEMO-S demonstration fusion power reactor,” Fusion Eng. Des. 83, 870876 (2008).10.1016/j.fusengdes.2008.07.041 doi: 10.1016/j.fusengdes.2008.07.041
    [13]
    K. Kim, H. C. Kim, S. Oh et al., “A preliminary conceptual design study for Korean fusion DEMO reactor,” Fusion Eng. Des. 88, 488491 (2013).10.1016/j.fusengdes.2013.02.123 doi: 10.1016/j.fusengdes.2013.02.123
    [14]
    Y. Wan, J. Li, Y. Liu et al., “Overview of the present progress and activities on the CFETR,” Nucl. Fusion 57, 102009 (2017).10.1088/1741-4326/aa686a doi: 10.1088/1741-4326/aa686a
    [15]
    B. Le Garrec, S. Atzeni, D. Batani et al., “HiPER laser: From capsule design to the laser reference design,” Proc SPIE 7916, 79160F (2011).10.1117/12.879716 doi: 10.1117/12.879716
    [16]
    B. Le Garrec, M. Novaro, M. Tyldesley et al., “HiPER laser reference design,” Proc SPIE 8080, 30 (2011).10.1117/12.891244 doi: 10.1117/12.891244
    [17]
    B. Rus, C. Edwards, M. Tyldesley et al., “Repetition rate target and fusion chamber systems for HiPER,” in Diode-Pumped High Energy and High Power Lasers; ELI: Ultrarelativistic Laser-Matter Interactions and Petawatt Photonics; and HiPER: The European Pathway to Laser Energy (International Society for Optics and Photonics, 2011), Vol. 8080.
    [18]
    J. M. Perlado, J. Sanz, J. Alvarez et al., in IFE Plant Technology Overview and Contribution to HiPER Proposal, edited by J. Hein, L. O. Silva, G. Korn, L. A. Gizzi, and C. Edwards (SPIE, 2011), p. 80801Z.
    [19]
    T. M. Anklam, M. Dunne, W. R. Meier et al., “LIFE: The case for early commercialization of fusion energy,” Fusion Sci. Technol. 60, 6671 (2011).10.13182/fst10-329 doi: 10.13182/fst10-329
    [20]
    M. Dunne, E. I. Moses, P. Amendt et al., “Timely delivery of laser inertial fusion energy (LIFE),” Fusion Sci. Technol. 60, 1927 (2011).10.13182/fst10-316 doi: 10.13182/fst10-316
    [21]
    A. Bayramian, S. Aceves, T. Anklam et al., “Compact, efficient laser systems required for laser inertial fusion energy,” Fusion Sci. Technol. 60, 2848 (2011).10.13182/fst10-313 doi: 10.13182/fst10-313
    [22]
    J. F. Latkowski, R. P. Abbott, S. Aceves et al., “Chamber design for the laser inertial fusion energy (LIFE) engine,” Fusion Sci. Technol. 60, 5460 (2011).10.13182/fst10-318 doi: 10.13182/fst10-318
    [23]
    J. L. Kline, S. H. Batha, L. R. Benedetti et al., “Progress of indirect drive inertial confinement fusion in the United States,” Nucl. Fusion 59, 112018 (2019).10.1088/1741-4326/ab1ecf doi: 10.1088/1741-4326/ab1ecf
    [24]
    S. Atzeni, “Inertial confinement fusion with advanced ignition schemes: Fast ignition and shock ignition,” in Laser-Plasma Interactions and Applications, edited by P. McKenna, D. Neely, R. Bingham, and D. Jaroszynski (Springer International Publishing, 2013), pp. 243277.
    [25]
    See http://www.hiper-laser.org/Resources/HiPER_Preparatory_Phase_Completion_Report.pdf for the Final Report on the HiPER Preparatoy Phase Study.
    [26]
    R. Linford, R. Betti, J. Dahlburg et al., “A review of the U.S. Department of energy’s inertial fusion energy program,” J. Fusion Energy 22, 93126 (2003).10.1023/b:jofe.0000036408.11067.cd doi: 10.1023/b:jofe.0000036408.11067.cd
    [27]
    See http://aries.ucsd.edu/ARIES/DOCS/ARIES-IFE/ for ARIES Web Site -ARIES-IFE Documents.
    [28]
    T. Norimatsu, Y. Shimada, H. Furukawa et al., “Activities on the laser fusion reactor KOYO-F in Japan,” Fusion Sci. Technol. 56, 361368 (2009).10.13182/fst09-a8928 doi: 10.13182/fst09-a8928
    [29]
    T. Norimatsu, Y. Kozaki, H. Shiraga et al., “Laser fusion experimental reactor LIFT based on fast ignition and the issue,” in CLEO: 2013, OSA Technical Digest (Online) (Optical Society of America, 2013), paper ATh4O.3.
    [30]
    Y. Ogawa, T. Goto, K. Okano et al., “Conceptual design of a fast-ignition laser fusion reactor based on a dry wall chamber,” J. Phys.: Conf. Ser. 112, 032033 (2008).10.1088/1742-6596/112/3/032033 doi: 10.1088/1742-6596/112/3/032033
    [31]
    M. Tabak, J. Hammer, M. E. Glinsky et al., “Ignition and high gain with ultrapowerful lasers,” Phys. Plasmas 1, 16261634 (1994).10.1063/1.870664 doi: 10.1063/1.870664
    [32]
    S. Atzeni and M. Tabak, “Overview of ignition conditions and gain curves for the fast ignitor,” Plasma Phys. Control. Fusion 47, B769B776 (2005).10.1088/0741-3335/47/12b/s58 doi: 10.1088/0741-3335/47/12b/s58
    [33]
    X. Ribeyre, G. Schurtz, M. Lafon et al., “Shock ignition: An alternative scheme for HiPER,” Plasma Phys. Control. Fusion 51, 015013 (2008).10.1088/0741-3335/51/1/015013 doi: 10.1088/0741-3335/51/1/015013
    [34]
    R. Betti, W. Theobald, C. D. Zhou et al., “Shock ignition of thermonuclear fuel with high areal densities,” J. Phys.: Conf. Ser. 112, 022024 (2008).10.1088/1742-6596/112/2/022024 doi: 10.1088/1742-6596/112/2/022024
    [35]
    G. Velarde, J. M. Aragonés, M. C. Gonzalez et al., “Simultaneous analysis of neutron damage, tritium generation and energy deposition in different cavity designs for ICF systems,” Fusion Technol. 8, 18501855 (1985).10.13182/fst85-a40030 doi: 10.13182/fst85-a40030
    [36]
    D. Maisonnier, D. Campbell, I. Cook et al., “Power plant conceptual studies in Europe,” Nucl. Fusion 47, 15241532 (2007).10.1088/0029-5515/47/11/014 doi: 10.1088/0029-5515/47/11/014
    [37]
    A. Giannattasio, Z. Yao, E. Tarleton et al., “Brittle–ductile transitions in polycrystalline tungsten,” Philos. Mag. 90, 39473959 (2010).10.1080/14786435.2010.502145 doi: 10.1080/14786435.2010.502145
    [38]
    D. Cereceda, M. Diehl, F. Roters et al., “Unraveling the temperature dependence of the yield strength in single-crystal tungsten using atomistically-informed crystal plasticity calculations,” Int. J. Plast. 78, 242265 (2016).10.1016/j.ijplas.2015.09.002 doi: 10.1016/j.ijplas.2015.09.002
    [39]
    Y. Igitkhanov, B. Bazylev, I. Landman et al., Design Strategy for the PFC in DEMO Reactor (KIT Scientific Reports , 2013), https://publikationen.bibliothek.kit.edu/1000032116.
    [40]
    A. Suslova, O. El-Atwani, D. Sagapuram et al., “Recrystallization and grain growth induced by ELMs-like transient heat loads in deformed tungsten samples,” Sci. Rep. 4, 6845 (2014).10.1038/srep06845 doi: 10.1038/srep06845
    [41]
    T. Loewenhoff, J. Linke, G. Pintsuk et al., “Tungsten and CFC degradation under combined high cycle transient and steady state heat loads,” Fusion Eng. Des. 87, 12011205 (2012).10.1016/j.fusengdes.2012.02.106 doi: 10.1016/j.fusengdes.2012.02.106
    [42]
    L. Gao, A. Manhard, W. Jacob et al., “High-flux hydrogen irradiation-induced cracking of tungsten reproduced by low-flux plasma exposure,” Nucl. Fusion 59, 056023 (2019).10.1088/1741-4326/ab0915 doi: 10.1088/1741-4326/ab0915
    [43]
    U. Yuki, Y. Takaoka, S. Saito et al., “Blister formation on tungsten irradiated by 4 MeV helium ion beam in ordinary temperature,” Plasma Fusion Res. 13, 1205084 (2018).10.1585/pfr.13.1205084 doi: 10.1585/pfr.13.1205084
    [44]
    M. Y. Ye, H. Kanehara, S. Fukuta et al., “Blister formation on tungsten surface under low energy and high flux hydrogen plasma irradiation in NAGDIS-I,” J. Nucl. Mater. 313-316, 7276 (2003).10.1016/s0022-3115(02)01349-1 doi: 10.1016/s0022-3115(02)01349-1
    [45]
    Y. Ueda, T. Funabiki, T. Shimada et al., “Hydrogen blister formation and cracking behavior for various tungsten materials,” J. Nucl. Mater. 337-339, 10101014 (2005).10.1016/j.jnucmat.2004.10.077 doi: 10.1016/j.jnucmat.2004.10.077
    [46]
    M. Thompson, Helium Nano-Bubble Formation in Tungsten: Measurement with Grazing-Incidence Small Angle X-Ray Scattering (Springer, 2018).
    [47]
    J. Roth and K. Schmid, “Hydrogen in tungsten as plasma-facing material,” Phys. Scr. T145, 014031 (2011).10.1088/0031-8949/2011/t145/014031 doi: 10.1088/0031-8949/2011/t145/014031
    [48]
    T. Tanabe, “Review of hydrogen retention in tungsten,” Phys. Scr. T159, 014044 (2014).10.1088/0031-8949/2014/t159/014044 doi: 10.1088/0031-8949/2014/t159/014044
    [49]
    R. Bullough and S. M. Murphy, “The effects of helium generation and pulsing on damage processes in reactor materials,” J. Nucl. Mater. 133-134, 9299 (1985).10.1016/0022-3115(85)90117-5 doi: 10.1016/0022-3115(85)90117-5
    [50]
    N. H. Packan, “The effect of pulsed irradiation on microstructural evolution,” Radiat. Eff. 101, 189198 (1987).10.1080/00337578708224747 doi: 10.1080/00337578708224747
    [51]
    T. J. Renk, P. P. Provencio, S. V. Prasad et al., “Materials modification using intense ion beams,” Proc. IEEE 92, 10571081 (2004).10.1109/jproc.2004.829024 doi: 10.1109/jproc.2004.829024
    [52]
    R. L. Gullickson and H. L. Sahlin, “Measurements of high-energy deuterons in the plasma-focus device,” J. Appl. Phys. 49, 10991105 (1978).10.1063/1.325045 doi: 10.1063/1.325045
    [53]
    R. S. Rawat, “Dense plasma focus—From alternative fusion source to versatile high energy density plasma source for plasma nanotechnology,” J. Phys.: Conf. Ser. 591, 012021 (2015).10.1088/1742-6596/591/1/012021 doi: 10.1088/1742-6596/591/1/012021
    [54]
    E. Besozzi, A. Maffini, D. Dellasega et al., “Nanosecond laser pulses for mimicking thermal effects on nanostructured tungsten-based materials,” Nucl. Fusion 58, 036019 (2018).10.1088/1741-4326/aaa5d5 doi: 10.1088/1741-4326/aaa5d5
    [55]
    B. Väli, T. Laas, J. Paju et al., “The experimental and theoretical investigations of damage development and distribution in double-forged tungsten under plasma irradiation-initiated extreme heat loads,” Nukleonika 61, 169177 (2015).10.1515/nuka-2016-0029 doi: 10.1515/nuka-2016-0029
    [56]
    M. J. Inestrosa-Izurieta, E. Ramos-Moore, and L. Soto, “Morphological and structural effects on tungsten targets produced by fusion plasma pulses from a table top plasma focus,” Nucl. Fusion 55, 093011 (2015).10.1088/0029-5515/55/9/093011 doi: 10.1088/0029-5515/55/9/093011
    [57]
    W. H. Bostick, V. Nardi, W. Prior et al., “Radiation damage (blistering) in Al, Cu, Si by exposure to a plasma focus discharge,” J. Nucl. Mater. 63, 356372 (1976).10.1016/0022-3115(76)90350-0 doi: 10.1016/0022-3115(76)90350-0
    [58]
    International Atomic Energy Agency, Investigations of Materials under High Repetition and Intense Fusion Pulses: IAEA-TECDOC-1829 (IAEA, Vienna, 2017), ISBN: 978-92-0-108217-6.
    [59]
    Pathways to Energy from Inertial Fusion: Materials beyond Ignition. IAEA-TECDOC-1911 (IAEA, Vienna, 2020), ISBN: 978-92-0-107720-2.
    [60]
    J. Alvarez, R. Gonzalez-Arrabal, A. Rivera et al., “Potential common radiation problems for components and diagnostics in future magnetic and inertial confinement fusion devices,” Fusion Eng. Des. 86, 17621765 (2011).10.1016/j.fusengdes.2011.01.080 doi: 10.1016/j.fusengdes.2011.01.080
    [61]
    H. Greuner, B. Boeswirth, J. Boscary et al., “High heat flux facility GLADIS:: Operational characteristics and results of W7-X pre-series target tests,” J. Nucl. Mater. 367-370, 14441448 (2007).10.1016/j.jnucmat.2007.04.004 doi: 10.1016/j.jnucmat.2007.04.004
    [62]
    H. Sakakita, S. Kiyama, Y. Hirano et al., Development of Strongly Focused High-Current-Density Ion Beam System and Its Application for the Alpha Particle Measurement in ITER, https://www.researchgate.net/publication/228400090 8.
    [63]
    R. Juárez, C. Zanzi, J. Hernández et al., “Thermo-fluid dynamics and corrosion analysis of a self cooled lead lithium blanket for the HiPER reactor,” Nucl. Fusion 55, 093003 (2015).10.1088/0029-5515/55/9/093003 doi: 10.1088/0029-5515/55/9/093003
    [64]
    A. R. Raffray, “Threats, design limits and design windows for laser IFE dry wall chambers,” J. Nucl. Mater. 347, 178191 (2005).10.1016/j.jnucmat.2005.08.015 doi: 10.1016/j.jnucmat.2005.08.015
    [65]
    R. Juárez, J. Sanz, C. Sánchez et al., “Studies of a self-cooled lead lithium blanket for HiPER reactor,” EPJ Web Conf. 59, 11005 (2013).10.1051/epjconf/20135911005 doi: 10.1051/epjconf/20135911005
    [66]
    See http://aries.ucsd.edu/ARIES/DOCS/ARIES-IFE/SPECTRA/ for ARIES-IFE Target Spectra.
    [67]
    D. Garoz, R. González-Arrabal, R. Juárez et al., “Silica final lens performance in laser fusion facilities: HiPER and LIFE,” Nucl. Fusion 53, 013010 (2013).10.1088/0029-5515/53/1/013010 doi: 10.1088/0029-5515/53/1/013010
    [68]
    A. R. Raffray, L. El-Guebaly, G. Federici et al., “Dry-wall survival under IFE conditions,” Fusion Sci. Technol. 46, 417437 (2004).10.13182/fst04-a581 doi: 10.13182/fst04-a581
    [69]
    J. Alvarez, D. Garoz, R. Gonzalez-Arrabal et al., “The role of spatial and temporal radiation deposition in inertial fusion chambers: The case of HiPER,” Nucl. Fusion 51, 053019 (2011).10.1088/0029-5515/51/5/053019 doi: 10.1088/0029-5515/51/5/053019
    [70]
    J. A. Ruiz, A. Rivera, R. Gonzalez-Arrabal et al., “Key paramaters in the design of HiPER reaction chamber,” in 37th EPS Conference on Plasma Physics 2010 (EPS, 2010), Vol. 3.
    [71]
    D. Garoz, A. R. Páramo, A. Rivera et al., “Modelling the thermomechanical behaviour of the tungsten first wall in HiPER laser fusion scenarios,” Nucl. Fusion 56, 126014 (2016).10.1088/0029-5515/56/12/126014 doi: 10.1088/0029-5515/56/12/126014
    [72]
    A. R. Páramo, F. Sordo, J. M. Perlado et al., “Viability of the ESS-Bilbao neutron source for irradiation of nuclear fusion materials,” J. Nucl. Mater. 444, 469474 (2014).10.1016/j.jnucmat.2013.10.014 doi: 10.1016/j.jnucmat.2013.10.014
    [73]
    J. F. Ziegler, M. D. Ziegler, and J. P. Biersack, “SRIM—The stopping and range of ions in matter (2010),” Nucl. Instrum. Methods Phys. Res., Sect. B 268, 18181823 (2010).10.1016/j.nimb.2010.02.091 doi: 10.1016/j.nimb.2010.02.091
    [74]
    curtis.suplee@nist.gov, X-Ray Mass Attenuation Coefficients, NIST https://www.nist.gov/pml/x-ray-mass-attenuation-coefficients, 2009.
    [75]
    J. Linke, F. Escourbiac, I. V. Mazul et al., “High heat flux testing of plasma facing materials and components – status and perspectives for ITER related activities,” J. Nucl. Mater. 367-370, 14221431 (2007).10.1016/j.jnucmat.2007.04.028 doi: 10.1016/j.jnucmat.2007.04.028
    [76]
    T. J. Renk, P. P. Provencio, T. J. Tanaka et al., “Survivability of first-wall materials in fusion devices: An experimental study of material exposure to pulsed energetic ions,” Fusion Sci. Technol. 61, 5780 (2012).10.13182/fst12-a13339 doi: 10.13182/fst12-a13339
    [77]
    J. D. Sethian, A. R. Raffray, J. Latkowski et al., “An overview of the development of the first wall and other principal components of a laser fusion power plant,” J. Nucl. Mater. 347, 161177 (2005).10.1016/j.jnucmat.2005.08.019 doi: 10.1016/j.jnucmat.2005.08.019
    [78]
    J. W. Davis and P. D. Smith, “ITER material properties handbook,” J. Nucl. Mater. 233-237, 15931596 (1996).10.1016/s0022-3115(96)00202-4 doi: 10.1016/s0022-3115(96)00202-4
    [79]
    I. Uytdenhouwen, M. Decréton, T. Hirai et al., “Influence of recrystallization on thermal shock resistance of various tungsten grades,” J. Nucl. Mater. 363-365, 10991103 (2007).10.1016/j.jnucmat.2007.01.146 doi: 10.1016/j.jnucmat.2007.01.146
    [80]
    J. P. Blanchard and C. J. Martin, “Thermomechanical effects in a laser IFE first wall,” J. Nucl. Mater. 347, 192206 (2005).10.1016/j.jnucmat.2005.08.007 doi: 10.1016/j.jnucmat.2005.08.007
    [81]
    A. Wagner and D. N. Seidman, “Range profiles of 300- and 475-eV He+ ions and the diffusivity of 4He in tungsten,” Phys. Rev. Lett. 42, 515518 (1979).10.1103/physrevlett.42.515 doi: 10.1103/physrevlett.42.515
    [82]
    X. Shu, P. Tao, X. Li et al., “Helium diffusion in tungsten: A molecular dynamics study,” Nucl. Instrum. Methods Phys. Res., Sect. B 303, 8486 (2013).10.1016/j.nimb.2012.10.028 doi: 10.1016/j.nimb.2012.10.028
    [83]
    A. S. Soltan, R. Vassen, and P. Jung, “Migration and immobilization of hydrogen and helium in gold and tungsten at low temperatures,” J. Appl. Phys. 70, 793797 (1991).10.1063/1.349636 doi: 10.1063/1.349636
    [84]
    C. S. Becquart, C. Domain, U. Sarkar et al., “Microstructural evolution of irradiated tungsten: Ab initio parameterisation of an OKMC model,” J. Nucl. Mater. 403, 7588 (2010).10.1016/j.jnucmat.2010.06.003 doi: 10.1016/j.jnucmat.2010.06.003
    [85]
    N. Zhang, Y. Zhang, Y. Yang et al., “Trapping of helium atom by vacancy in tungsten: A density functional theory study,” Eur. Phys. J. B 90, 101 (2017).10.1140/epjb/e2017-80056-1 doi: 10.1140/epjb/e2017-80056-1
    [86]
    D. Nishijima, M. Y. Ye, N. Ohno et al., “Formation mechanism of bubbles and holes on tungsten surface with low-energy and high-flux helium plasma irradiation in NAGDIS-II,” J. Nucl. Mater. 329-333, 10291033 (2004).10.1016/j.jnucmat.2004.04.129 doi: 10.1016/j.jnucmat.2004.04.129
    [87]
    H.-B. Zhou, X. Ou, Y. Zhang et al., “Effect of carbon on helium trapping in tungsten: A first-principles investigation,” J. Nucl. Mater. 440, 338343 (2013).10.1016/j.jnucmat.2013.05.070 doi: 10.1016/j.jnucmat.2013.05.070
    [88]
    Y. Ueda and H. T. Lee, “Material mixing of tungsten with carbon and helium,” AIP Conf. Proc. 1237, 92105 (2010).10.1063/1.3447996 doi: 10.1063/1.3447996
    [89]
    K. D. Hammond, L. Hu, D. Maroudas et al., “Helium impurity transport on grain boundaries: Enhanced or inhibited?,” Europhys. Lett. 110, 52002 (2015).10.1209/0295-5075/110/52002 doi: 10.1209/0295-5075/110/52002
    [90]
    X.-X. Wang, L.-L. Niu, and S. Wang, “Strong trapping and slow diffusion of helium in a tungsten grain boundary,” J. Nucl. Mater. 487, 158166 (2017).10.1016/j.jnucmat.2017.02.010 doi: 10.1016/j.jnucmat.2017.02.010
    [91]
    A. Bakaev, P. Grigorev, D. Terentyev et al., “Trapping of hydrogen and helium at dislocations in tungsten: An ab initio study,” Nucl. Fusion 57, 126040 (2017).10.1088/1741-4326/aa7965 doi: 10.1088/1741-4326/aa7965
    [92]
    J. Boisse, A. De Backer, C. Domain et al., “Modeling of the self trapping of helium and the trap mutation in tungsten using DFT and empirical potentials based on DFT,” J. Mater. Res. 29, 23742386 (2014).10.1557/jmr.2014.258 doi: 10.1557/jmr.2014.258
    [93]
    N. J. Dutta, N. Buzarbaruah, and S. R. Mohanty, “Damage studies on tungsten due to helium ion irradiation,” J. Nucl. Mater. 452, 5156 (2014).10.1016/j.jnucmat.2014.04.032 doi: 10.1016/j.jnucmat.2014.04.032
    [94]
    S. B. Gilliam, S. M. Gidcumb, N. R. Parikh et al., “Retention and surface blistering of helium irradiated tungsten as a first wall material,” J. Nucl. Mater. 347, 289297 (2005).10.1016/j.jnucmat.2005.08.017 doi: 10.1016/j.jnucmat.2005.08.017
    [95]
    S. J. Zenobia, R. F. Radel, B. B. Cipiti et al., “High temperature surface effects of He+ implantation in ICF fusion first wall materials,” J. Nucl. Mater. 389, 213220 (2009).10.1016/j.jnucmat.2009.02.004 doi: 10.1016/j.jnucmat.2009.02.004
    [96]
    S. J. Zenobia and G. L. Kulcinski, “Retention and surface pore formation in helium implanted tungsten as a fusion first wall material,” Fusion Sci. Technol. 56, 352360 (2009).10.13182/fst09-a8927 doi: 10.13182/fst09-a8927
    [97]
    A. Rivera, G. Valles, M. J. Caturla et al., “Effect of ion flux on helium retention in helium-irradiated tungsten,” Nucl. Instrum. Methods Phys. Res., Sect. B 303, 8183 (2013).10.1016/j.nimb.2012.10.038 doi: 10.1016/j.nimb.2012.10.038
    [98]
    K. Heinola, T. Ahlgren, K. Nordlund et al., “Hydrogen interaction with point defects in tungsten,” Phys. Rev. B 82, 094102 (2010).10.1103/physrevb.82.094102 doi: 10.1103/physrevb.82.094102
    [99]
    F. Liu, Y. Zhang, W. Han et al., “Investigation of hydrogen behavior in tungsten exposed to high energy hydrogen plasma,” Nucl. Instrum. Methods Phys. Res., Sect. B 307, 320323 (2013).10.1016/j.nimb.2012.11.069 doi: 10.1016/j.nimb.2012.11.069
    [100]
    C. Guerrero, C. González, R. Iglesias et al., “First principles study of the behavior of hydrogen atoms in a W monovacancy,” J. Mater. Sci. 51, 14451455 (2016).10.1007/s10853-015-9464-4 doi: 10.1007/s10853-015-9464-4
    [101]
    D. Terentyev, V. Dubinko, A. Bakaev et al., “Dislocations mediate hydrogen retention in tungsten,” Nucl. Fusion 54, 042004 (2014).10.1088/0029-5515/54/4/042004 doi: 10.1088/0029-5515/54/4/042004
    [102]
    R. A. Causet and T. J. Venhaus, “The use of tungsten in fusion reactors: A review of the hydrogen retention and migration properties,” Phys. Scr. T94, 9 (2001).10.1238/physica.topical.094a00009 doi: 10.1238/physica.topical.094a00009
    [103]
    O. V. Ogorodnikova, B. Tyburska, V. K. Alimov et al., “The influence of radiation damage on the plasma-induced deuterium retention in self-implanted tungsten,” J. Nucl. Mater. 415, S661S666 (2011).10.1016/j.jnucmat.2010.12.012 doi: 10.1016/j.jnucmat.2010.12.012
    [104]
    K. O. E. Henriksson, K. Nordlund, A. Krasheninnikov et al., “The depths of hydrogen and helium bubbles in tungsten: A comparison,” Fusion Sci. Technol. 50, 4357 (2006).10.13182/fst06-a1219 doi: 10.13182/fst06-a1219
    [105]
    Y.-L. Liu, Y. Zhang, G.-N. Luo et al., “Structure, stability and diffusion of hydrogen in tungsten: A first-principles study,” J. Nucl. Mater. 390-391, 10321034 (2009).10.1016/j.jnucmat.2009.01.277 doi: 10.1016/j.jnucmat.2009.01.277
    [106]
    Y. Yu, X. Shu, Y.-N. Liu et al., “Molecular dynamics simulation of hydrogen dissolution and diffusion in a tungsten grain boundary,” J. Nucl. Mater. 455, 9195 (2014).10.1016/j.jnucmat.2014.04.016 doi: 10.1016/j.jnucmat.2014.04.016
    [107]
    Z. Zhao, Y. Li, C. Zhang et al., “Effect of grain size on the behavior of hydrogen/helium retention in tungsten: A cluster dynamics modeling,” Nucl. Fusion 57, 086020 (2017).10.1088/1741-4326/aa7640 doi: 10.1088/1741-4326/aa7640
    [108]
    H.-B. Zhou, Y.-L. Liu, S. Jin et al., “Investigating behaviours of hydrogen in a tungsten grain boundary by first principles: From dissolution and diffusion to a trapping mechanism,” Nucl. Fusion 50, 025016 (2010).10.1088/0029-5515/50/2/025016 doi: 10.1088/0029-5515/50/2/025016
    [109]
    P. M. Piaggi, E. M. Bringa, R. C. Pasianot et al., “Hydrogen diffusion and trapping in nanocrystalline tungsten,” J. Nucl. Mater. 458, 233239 (2015).10.1016/j.jnucmat.2014.12.069 doi: 10.1016/j.jnucmat.2014.12.069
    [110]
    C. González, M. Panizo-Laiz, N. Gordillo et al., “H trapping and mobility in nanostructured tungsten grain boundaries: A combined experimental and theoretical approach,” Nucl. Fusion 55, 113009 (2015).10.1088/0029-5515/55/11/113009 doi: 10.1088/0029-5515/55/11/113009
    [111]
    U. von Toussaint, S. Gori, A. Manhard et al., “Molecular dynamics study of grain boundary diffusion of hydrogen in tungsten,” Phys. Scr. T145, 014036 (2011).10.1088/0031-8949/2011/t145/014036 doi: 10.1088/0031-8949/2011/t145/014036
    [112]
    G. Valles, M. Panizo-Laiz, C. González et al., “Influence of grain boundaries on the radiation-induced defects and hydrogen in nanostructured and coarse-grained tungsten,” Acta Mater. 122, 277286 (2017).10.1016/j.actamat.2016.10.007 doi: 10.1016/j.actamat.2016.10.007
    [113]
    M. Panizo-Laiz, P. Díaz-Rodríguez, A. Rivera et al., “Experimental and computational studies of the influence of grain boundaries and temperature on the radiation-induced damage and hydrogen behavior in tungsten,” Nucl. Fusion 59, 086055 (2019).10.1088/1741-4326/ab26e9 doi: 10.1088/1741-4326/ab26e9
    [114]
    A. Van Veen, H. A. Filius, J. De Vries et al., “Hydrogen exchange with voids in tungsten observed with TDS and PA,” J. Nucl. Mater. 155-157, 11131117 (1988).10.1016/0022-3115(88)90478-3 doi: 10.1016/0022-3115(88)90478-3
    [115]
    Z. Tian, J. W. Davis, and A. A. Haasz, “Deuterium retention in tungsten at fluences of up to 10 26 D+/m 2 using D+ ion beams,” J. Nucl. Mater. 399, 101107 (2010).10.1016/j.jnucmat.2010.01.007 doi: 10.1016/j.jnucmat.2010.01.007
    [116]
    A. A. Haasz, J. W. Davis, M. Poon et al., “Deuterium retention in tungsten for fusion use,” J. Nucl. Mater. 258-263, 889895 (1998).10.1016/s0022-3115(98)00072-5 doi: 10.1016/s0022-3115(98)00072-5
    [117]
    O. V. Ogorodnikova, “Fundamental aspects of deuterium retention in tungsten at high flux plasma exposure,” J. Appl. Phys. 118, 074902 (2015).10.1063/1.4928407 doi: 10.1063/1.4928407
    [118]
    V. I. Dubinko, P. Grigorev, A. Bakaev et al., “Dislocation mechanism of deuterium retention in tungsten under plasma implantation,” J. Phys.: Condens. Matter 26, 395001 (2014).10.1088/0953-8984/26/39/395001 doi: 10.1088/0953-8984/26/39/395001
    [119]
    H. Greuner, H. Maier, M. Balden et al., “Investigation of W components exposed to high thermal and high H/He fluxes,” J. Nucl. Mater. 417, 495498 (2011).10.1016/j.jnucmat.2010.12.215 doi: 10.1016/j.jnucmat.2010.12.215
    [120]
    N. Enomoto, S. Muto, T. Tanabe et al., “Grazing-incidence electron microscopy of surface blisters in single- and polycrystalline tungsten formed by H+, D+ and He+ irradiation,” J. Nucl. Mater. 385, 606614 (2009).10.1016/j.jnucmat.2009.01.298 doi: 10.1016/j.jnucmat.2009.01.298
    [121]
    S. H. Saw, V. Damideh, J. Ali et al., “Damage study of irradiated tungsten using fast focus mode of a 2.2 kJ plasma focus,” Vacuum 144, 1420 (2017).10.1016/j.vacuum.2017.07.002 doi: 10.1016/j.vacuum.2017.07.002
    [122]
    V. Pimenov, E. Demina, S. Maslyaev et al., “Damage and modification of materials produced by pulsed ion and plasma streams in Dense Plasma Focus device,” Nukleonika 53, 111121 (2008).
    [123]
    V. Shirokova, T. Laas, J. Priimets et al., “Estimation of tungsten and ods tungsten damages after dense plasma exposure in PF-12 and PF-1000,” Probl. At. Sci. Technol. 82(6), 232234 (2012).
    [124]
    E. V. Demina, V. Dubrovsky, V. Gribkov et al., “Application of a plasma accelerator of the dense plasma focus type in simulation of radiation damage and testing of materials for nuclear systems,” in International Topical Meeting on Nuclear Research Applications and Utilization of Accelerators (IAEA, Vienna, 2009).
    [125]
    R. Gonzalez-Arrabal, M. Panizo-Laiz, N. Gordillo et al., “Hydrogen accumulation in nanostructured as compared to the coarse-grained tungsten,” J. Nucl. Mater. 453, 287295 (2014).10.1016/j.jnucmat.2014.06.057 doi: 10.1016/j.jnucmat.2014.06.057
    [126]
    C. S. Becquart and C. Domain, “A density functional theory assessment of the clustering behaviour of He and H in tungsten,” J. Nucl. Mater. 386-388, 109111 (2009).10.1016/j.jnucmat.2008.12.085 doi: 10.1016/j.jnucmat.2008.12.085
    [127]
    H.-B. Zhou, Y.-L. Liu, S. Jin et al., “Towards suppressing H blistering by investigating the physical origin of the H–He interaction in W,” Nucl. Fusion 50, 115010 (2010).10.1088/0029-5515/50/11/115010 doi: 10.1088/0029-5515/50/11/115010
    [128]
    N. Juslin and B. D. Wirth, “Molecular dynamics simulation of the effect of sub-surface helium bubbles on hydrogen retention in tungsten,” J. Nucl. Mater. 438, S1221S1223 (2013).10.1016/j.jnucmat.2013.01.270 doi: 10.1016/j.jnucmat.2013.01.270
    [129]
    M. A. Cusentino, “Discovering key unknowns for tungsten-hydrogen-helium plasma material interactions using molecular dynamics,” Ph.D. dissertation (University of Tennessee, 2018), https://trace.tennessee.edu/utk_graddiss/4929 155.
    [130]
    P. Grigorev, D. Terentyev, G. Bonny et al., “Mobility of hydrogen-helium clusters in tungsten studied by molecular dynamics,” J. Nucl. Mater. 474, 143149 (2016).10.1016/j.jnucmat.2016.03.022 doi: 10.1016/j.jnucmat.2016.03.022
    [131]
    M. Tokitani, N. Yoshida, K. Tokunaga et al., “Microscopic deformation of tungsten surfaces by high energy and high flux helium/hydrogen particle bombardment with short pulses,” Plasma Fusion Res. 5, 012-1012-4 (2010).10.1585/pfr.5.012 doi: 10.1585/pfr.5.012
    [132]
    M. R. Gilbert, J.-C. Sublet, and S. L. Dudarev, “Spatial heterogeneity of W transmutation in a fusion device,” Nucl. Fusion 57, 044002 (2017).10.1088/1741-4326/aa5e2e doi: 10.1088/1741-4326/aa5e2e
    [133]
    M. E. Sawan, “Transmutation of tungsten in fusion and fission nuclear environments,” Fusion Sci. Technol. 66, 272277 (2014).10.13182/fst13-717 doi: 10.13182/fst13-717
    [134]
    M. R. Gilbert and J.-C. Sublet, “Neutron-induced transmutation effects in W and W-alloys in a fusion environment,” Nucl. Fusion 51, 043005 (2011).10.1088/0029-5515/51/4/043005 doi: 10.1088/0029-5515/51/4/043005
    [135]
    R. G. Abernethy, “Predicting the performance of tungsten in a fusion environment: A literature review,” Mater. Sci. Technol. 33, 388399 (2017).10.1080/02670836.2016.1185260 doi: 10.1080/02670836.2016.1185260
    [136]
    T. Tanno, A. Hasegawa, M. Fujiwara et al., “Precipitation of solid transmutation elements in irradiated tungsten alloys,” Mater. Trans. 49, 22592264 (2008).10.2320/matertrans.maw200821 doi: 10.2320/matertrans.maw200821
    [137]
    V. K. Alimov, Y. Hatano, K. Sugiyama et al., “Surface morphology and deuterium retention in tungsten and tungsten–rhenium alloy exposed to low-energy, high flux D plasma,” J. Nucl. Mater. 454, 136141 (2014).10.1016/j.jnucmat.2014.07.064 doi: 10.1016/j.jnucmat.2014.07.064
    [138]
    R. Fei, Y. Guo, W. Yin et al., “Effects of transmutation elements on hydrogen trapping ability of vacancy in tungsten,” Nucl. Instrum. Methods Phys. Res., Sect. B 461, 267271 (2019).10.1016/j.nimb.2019.10.012 doi: 10.1016/j.nimb.2019.10.012
    [139]
    Y. Hatano, M. Shimada, V. K. Alimov et al., “Trapping of hydrogen isotopes in radiation defects formed in tungsten by neutron and ion irradiations,” J. Nucl. Mater. 438, S114S119 (2013).10.1016/j.jnucmat.2013.01.018 doi: 10.1016/j.jnucmat.2013.01.018
    [140]
    F.-F. Ma, W. Wang, Y.-H. Li et al., “Towards understanding the influence of Re on H dissolution and retention in W by investigating the interaction between dispersed/aggregated-Re and H,” Nucl. Fusion 58, 096026 (2018).10.1088/1741-4326/aacf48 doi: 10.1088/1741-4326/aacf48
    [141]
    A. Rodríguez Páramo, “Effects of irradiation on plasma facing materials in HiPER laser fusion power plant: Silica final lenses and tungsten first wall,” Ph.D. thesis, Dpto. de Ingeniería Energética; ETS Ingenieros Industriales (UPM), 2017.
    [142]
    J. Linke, J. Du, T. Loewenhoff, G. Pintsuk et al., “Challenges for plasma-facing components in nuclear fusion,” Matter Radiat. Extremes 4, 056201 (2019).10.1063/1.5090100 doi: 10.1063/1.5090100
    [143]
    R. Andrievski and A. Khatchoyan, Nanomaterials in Extreme Environments: Fundamentals and Applications (Springer, 2016), ISBN: 978-3-319-25329-9.
    [144]
    Y. Zhang, A. V. Ganeev, J. T. Wang et al., “Observations on the ductile-to-brittle transition in ultrafine-grained tungsten of commercial purity,” Mater. Sci. Eng.: A 503, 3740 (2009).10.1016/j.msea.2008.07.074 doi: 10.1016/j.msea.2008.07.074
    [145]
    Y. Shen, Z. Xu, K. Cui et al., “Microstructure of a commercial W–1% La2O3 alloy,” J. Nucl. Mater. 455, 234241 (2014).10.1016/j.jnucmat.2014.06.004 doi: 10.1016/j.jnucmat.2014.06.004
    [146]
    T. Hao, Z. Q. Fan, T. Zhang et al., “Strength and ductility improvement of ultrafine-grained tungsten produced by equal-channel angular pressing,” J. Nucl. Mater. 455, 595599 (2014).10.1016/j.jnucmat.2014.08.044 doi: 10.1016/j.jnucmat.2014.08.044
    [147]
    K. A. Padmanabhan, “Mechanical properties of nanostructured materials,” Mater. Sci. Eng.: A 304-306, 200205 (2001).10.1016/s0921-5093(00)01437-4 doi: 10.1016/s0921-5093(00)01437-4
    [148]
    G. Ackland, “Controlling radiation damage,” Science 327, 15871588 (2010).10.1126/science.1188088 doi: 10.1126/science.1188088
    [149]
    I. J. Beyerlein, A. Caro, M. J. Demkowicz et al., “Radiation damage tolerant nanomaterials,” Mater. Today 16, 443449 (2013).10.1016/j.mattod.2013.10.019 doi: 10.1016/j.mattod.2013.10.019
    [150]
    X.-M. Bai and B. P. Uberuaga, “The influence of grain boundaries on radiation-induced point defect production in materials: A review of atomistic studies,” JOM 65, 360373 (2013).10.1007/s11837-012-0544-5 doi: 10.1007/s11837-012-0544-5
    [151]
    O. El-Atwani, S. Gonderman, M. Efe et al., “Ultrafine tungsten as a plasma-facing component in fusion devices: Effect of high flux, high fluence low energy helium irradiation,” Nucl. Fusion 54, 083013 (2014).10.1088/0029-5515/54/8/083013 doi: 10.1088/0029-5515/54/8/083013
    [152]
    N. Gordillo, M. Panizo-Laiz, E. Tejado et al., “Morphological and microstructural characterization of nanostructured pure α-phase W coatings on a wide thickness range,” Appl. Surf. Sci. 316, 18 (2014).10.1016/j.apsusc.2014.07.061 doi: 10.1016/j.apsusc.2014.07.061
    [153]
    A. Debelle, M. F. Barthe, and T. Sauvage, “First temperature stage evolution of irradiation-induced defects in tungsten studied by positron annihilation spectroscopy,” J. Nucl. Mater. 376, 216221 (2008).10.1016/j.jnucmat.2008.03.002 doi: 10.1016/j.jnucmat.2008.03.002
    [154]
    H. Eleveld and A. van Veen, “Void growth and thermal desorption of deuterium from voids in tungsten,” J. Nucl. Mater. 212-215, 14211425 (1994).10.1016/0022-3115(94)91062-6 doi: 10.1016/0022-3115(94)91062-6
    [155]
    O. El-Atwani, C. N. Taylor, J. Frishkoff et al., “Thermal desorption spectroscopy of high fluence irradiated ultrafine and nanocrystalline tungsten: Helium trapping and desorption correlated with morphology,” Nucl. Fusion 58, 016020 (2017).10.1088/1741-4326/aa86cf doi: 10.1088/1741-4326/aa86cf
    [156]
    E. Martínez, B. P. Uberuaga, and B. D. Wirth, “Atomistic modeling of helium segregation to grain boundaries in tungsten and its effect on de-cohesion,” Nucl. Fusion 57, 086044 (2017).10.1088/1741-4326/aa6e15 doi: 10.1088/1741-4326/aa6e15
    [157]
    C. González and R. Iglesias, “Cluster formation and eventual mobility of helium in a tungsten grain boundary,” J. Nucl. Mater. 514, 171180 (2018).10.1016/j.jnucmat.2018.11.029 doi: 10.1016/j.jnucmat.2018.11.029
    [158]
    O. El-Atwani, K. Hattar, J. A. Hinks et al., “Helium bubble formation in ultrafine and nanocrystalline tungsten under different extreme conditions,” J. Nucl. Mater. 458, 216 (2015).10.1016/j.jnucmat.2014.12.095 doi: 10.1016/j.jnucmat.2014.12.095
    [159]
    O. El-Atwani, J. A. Hinks, G. Greaves et al., “In-situ TEM observa tion of the response of ultrafine- and nanocrystalline-grained tungsten to extreme irradiation environments,” Sci. Rep. 4, 4716 (2015).10.1038/srep04716 doi: 10.1038/srep04716
    [160]
    G. Valles, C. González, I. Martin-Bragado et al., “The influence of high grain boundary density on helium retention in tungsten,” J. Nucl. Mater. 457, 8087 (2015).10.1016/j.jnucmat.2014.10.038 doi: 10.1016/j.jnucmat.2014.10.038
    [161]
    O. El-Atwani, J. A. Hinks, G. Greaves et al., “Grain size threshold for enhanced irradiation resistance in nanocrystalline and ultrafine tungsten,” Mater. Res. Lett. 5, 343349 (2017).10.1080/21663831.2017.1292326 doi: 10.1080/21663831.2017.1292326
    [162]
    H. Trinkaus and B. N. Singh, “Helium accumulation in metals during irradiation—Where do we stand?,” J. Nucl. Mater. 323, 229242 (2003).10.1016/j.jnucmat.2003.09.001 doi: 10.1016/j.jnucmat.2003.09.001
    [163]
    W. S. Cunningham, J. M. Gentile, O. El-Atwani et al., “Softening due to grain boundary cavity formation and its competition with hardening in helium implanted nanocrystalline tungsten,” Sci. Rep. 8, 2897 (2018).10.1038/s41598-018-20990-1 doi: 10.1038/s41598-018-20990-1
    [164]
    O. El-Atwani, M. Efe, B. Heim et al., “Surface damage in ultrafine and multimodal grained tungsten materials induced by low energy helium irradiation,” J. Nucl. Mater. 434, 170177 (2013).10.1016/j.jnucmat.2012.11.012 doi: 10.1016/j.jnucmat.2012.11.012
    [165]
    M.-H. Tsai and J.-W. Yeh, “High-entropy alloys: A critical review,” Mater. Res. Lett. 2, 107123 (2014).10.1080/21663831.2014.912690 doi: 10.1080/21663831.2014.912690
    [166]
    S. Gorsse, M. H. Nguyen, O. N. Senkov et al., “Database on the mechanical properties of high entropy alloys and complex concentrated alloys,” Data Brief 21, 26642678 (2018).10.1016/j.dib.2018.11.111 doi: 10.1016/j.dib.2018.11.111
    [167]
    S.-q. Xia, Z. Wang, T.-f. Yang et al., “Irradiation behavior in high entropy alloys,” J. Iron Steel Res. Int. 22, 879884 (2015).10.1016/s1006-706x(15)30084-4 doi: 10.1016/s1006-706x(15)30084-4
    [168]
    F. Granberg, K. Nordlund, M. W. Ullah et al., “Mechanism of radiation damage reduction in equiatomic multicomponent single phase Alloys,” Phys. Rev. Lett. 116, 135504 (2016).10.1103/physrevlett.116.135504 doi: 10.1103/physrevlett.116.135504
    [169]
    O. El-Atwani, N. Li, M. Li et al., “Outstanding radiation resistance of tungsten-based high-entropy alloys,” Sci. Adv. 5, eaav2002 (2019).10.1126/sciadv.aav2002 doi: 10.1126/sciadv.aav2002
    [170]
    N. Gordillo, C. Gómez de Castro, E. Tejado et al., “On the thermal stability of the nanostructured tungsten coatings,” Surf. Coat. Technol. 325, 588593 (2017).10.1016/j.surfcoat.2017.06.070 doi: 10.1016/j.surfcoat.2017.06.070
    [171]
    M. Rieth, S. L. Dudarev, S. M. Gonzalez de Vicente et al., “A brief summary of the progress on the EFDA tungsten materials program,” J. Nucl. Mater. 442, S173S180 (2013).10.1016/j.jnucmat.2013.03.062 doi: 10.1016/j.jnucmat.2013.03.062
    [172]
    Y. Kim, M.-H. Hong, S. H. Lee et al., “The effect of yttrium oxide on the sintering behavior and hardness of tungsten,” Met. Mater. Int. 12, 245248 (2006).10.1007/bf03027538 doi: 10.1007/bf03027538
    [173]
    M. A. Yar, S. Wahlberg, H. Bergqvist et al., “Chemically produced nanostructured ODS–lanthanum oxide–tungsten composites sintered by spark plasma,” J. Nucl. Mater. 408, 129135 (2011).10.1016/j.jnucmat.2010.10.060 doi: 10.1016/j.jnucmat.2010.10.060
    [174]
    L. Veleva, Contribution to the Production and Characterization of W-Y, W-Y2O3 and W-TiC Materials for Fusion Reactors, 10.5075/epfl-thesis-4995, 10.5075/epfl-thesis-4995, 2011.
    [175]
    T. J. Renk, P. P. Provencio, T. J. Tanaka et al., “Chamber wall materials response to pulsed ions at power-plant level fluences,” J. Nucl. Mater. 347, 266288 (2005).10.1016/j.jnucmat.2005.08.021 doi: 10.1016/j.jnucmat.2005.08.021
    [176]
    S. Sharafat, N. M. Ghoniem, M. Anderson et al., “Micro-engineered first wall tungsten armor for high average power laser fusion energy systems,” J. Nucl. Mater. 347, 217243 (2005).10.1016/j.jnucmat.2005.08.012 doi: 10.1016/j.jnucmat.2005.08.012
    [177]
    E. M. Bringa, J. D. Monk, A. Caro et al., “Are nanoporous materials radiation resistant?,” Nano Lett. 12, 33513355 (2012).10.1021/nl201383u doi: 10.1021/nl201383u
    [178]
    O. V. Ogorodnikova, K. S. Klimov, A. G. Poskakalov et al., “Deuterium and helium retention in W with and without He-induced W ‘fuzz’ exposed to pulsed high-temperature deuterium plasma,” J. Nucl. Mater. 515, 150159 (2019).10.1016/j.jnucmat.2018.12.023 doi: 10.1016/j.jnucmat.2018.12.023
    [179]
    S. Kajita, T. Yagi, K. Kobayashi et al., “Measurement of heat diffusion across fuzzy tungsten layer,” Results Phys. 6, 877878 (2016).10.1016/j.rinp.2016.10.025 doi: 10.1016/j.rinp.2016.10.025
    [180]
    S. Cui, M. Simmonds, W. Qin et al., “Thermal conductivity reduction of tungsten plasma facing material due to helium plasma irradiation in PISCES using the improved 3-omega method,” J. Nucl. Mater. 486, 267273 (2017).10.1016/j.jnucmat.2017.01.023 doi: 10.1016/j.jnucmat.2017.01.023
    [181]
    T. Karabacak, C. R. Picu, J. J. Senkevich et al., “Stress reduction in tungsten films using nanostructured compliant layers,” J. Appl. Phys. 96, 57405746 (2004).10.1063/1.1803106 doi: 10.1063/1.1803106
    [182]
    R. Koch, “The intrinsic stress of polycrystalline and epitaxial thin metal films,” J. Phys.: Condens. Matter 6, 9519 (1994).10.1088/0953-8984/6/45/005 doi: 10.1088/0953-8984/6/45/005
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(13)  / Tables(3)

    Article Metrics

    Article views (466) PDF downloads(21) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return