Follow us on Wechat

用微信扫码二维码

分享至好友和朋友圈

Volume 5 Issue 6
Nov.  2020
Turn off MathJax
Article Contents
Gao Yanqi, Cui Yong, Ji Lailin, Rao Daxing, Zhao Xiaohui, Li Fujian, Liu Dong, Feng Wei, Xia Lan, Liu Jiani, Shi Haitao, Du Pengyuan, Liu Jia, Li Xiaoli, Wang Tao, Zhang Tianxiong, Shan Chong, Hua Yilin, Ma Weixin, Sun Xun, Chen Xianfeng, Huang Xiuguang, Zhu Jian, Pei Wenbing, Sui Zhan, Fu Sizu. Development of low-coherence high-power laser drivers for inertial confinement fusion[J]. Matter and Radiation at Extremes, 2020, 5(6): 065201. doi: 10.1063/5.0009319
Citation: Gao Yanqi, Cui Yong, Ji Lailin, Rao Daxing, Zhao Xiaohui, Li Fujian, Liu Dong, Feng Wei, Xia Lan, Liu Jiani, Shi Haitao, Du Pengyuan, Liu Jia, Li Xiaoli, Wang Tao, Zhang Tianxiong, Shan Chong, Hua Yilin, Ma Weixin, Sun Xun, Chen Xianfeng, Huang Xiuguang, Zhu Jian, Pei Wenbing, Sui Zhan, Fu Sizu. Development of low-coherence high-power laser drivers for inertial confinement fusion[J]. Matter and Radiation at Extremes, 2020, 5(6): 065201. doi: 10.1063/5.0009319

Development of low-coherence high-power laser drivers for inertial confinement fusion

doi: 10.1063/5.0009319
More Information
  • Corresponding author: a)Author to whom correspondence should be addressed: liufenggyq@siom.ac.cn
  • Received Date: 2020-03-30
  • Accepted Date: 2020-06-29
  • Available Online: 2020-11-01
  • Publish Date: 2020-11-15
  • The use of low-coherence light is expected to be one of the effective ways to suppress or even eliminate the laser–plasma instabilities that arise in attempts to achieve inertial confinement fusion. In this paper, a review of low-coherence high-power laser drivers and related key techniques is first presented. Work at typical low-coherence laser facilities, including Gekko XII, PHEBUS, Pharos III, and Kanal-2 is described. The many key techniques that are used in the research and development of low-coherence laser drivers are described and analyzed, including low-coherence source generation, amplification, harmonic conversion, and beam smoothing of low-coherence light. Then, recent progress achieved by our group in research on a broadband low-coherence laser driver is presented. During the development of our low-coherence high-power laser facility, we have proposed and implemented many key techniques for working with low-coherence light, including source generation, efficient amplification and propagation, harmonic conversion, beam smoothing, and precise beam control. Based on a series of technological breakthroughs, a kilojoule low-coherence laser driver named Kunwu with a coherence time of only 300 fs has been built, and the first round of physical experiments has been completed. This high-power laser facility provides not only a demonstration and verification platform for key techniques and system integration of a low-coherence laser driver, but also a new type of experimental platform for research into, for example, high-energy-density physics and, in particular, laser–plasma interactions.
  • loading
  • [1]
    J. W. Goodman, Speckle Phenomena in Optics: Theory and Applications (Greenwood Village: Roberts and Company, 2007).
    [2]
    J. D. Rigden and E. I. Gordon, “The granularity of scattered optical maser light,” Proc. IRE 50, 2367-2368 (1962).
    [3]
    W. Burns, C.-L. Chen, and R. Moeller, “Fiber-optic gyroscopes with broad-band sources,” J. Lightwave Technol. 1, 98105 (1983).10.1109/jlt.1983.1072090 doi: 10.1109/jlt.1983.1072090
    [4]
    J. Lindl, O. Landen, J. Edwards et al., “Review of the National Ignition Campaign 2009-2012,” Phys. Plasmas 21(2), 020501 (2014).10.1063/1.4865400 doi: 10.1063/1.4865400
    [5]
    C. Labaune, “Incoherent light on the road to ignition,” Nat. Phys. 3, 680682 (2007).10.1038/nphys742 doi: 10.1038/nphys742
    [6]
    J. D. Lindl, P. Amendt, R. L. Berger et al., “The physics basis for ignition using indirect-drive targets on the National Ignition Facility,” Phys. Plasmas 11(2), 339491 (2004).10.1063/1.1578638 doi: 10.1063/1.1578638
    [7]
    R. S. Craxton, K. S. Anderson, T. R. Boehly et al., “Direct-drive inertial confinement fusion: A review,” Phys. Plasmas 22, 110501 (2015).10.1063/1.4934714 doi: 10.1063/1.4934714
    [8]
    Z. Fan, M. Chen, Z. Dai et al., “A new ignition scheme using hybrid indirect-direct drive for inertial confinement fusion,” arXiv:1303.1252 [physics.plasm-ph] (2013).
    [9]
    V. A. Smalyuk, D. Shvarts, R. Betti et al., “Role of hot-electron preheating in the compression of direct-drive imploding targets with cryogenic D2 ablators,” Phys. Rev. Lett. 100, 185005 (2008).10.1103/physrevlett.100.185005 doi: 10.1103/physrevlett.100.185005
    [10]
    M. Karasik, J. L. Weaver, Y. Aglitskiy et al., “Suppression of laser nonuniformity imprinting using a thin high-Z coating,” Phys. Rev. Lett. 114, 085001 (2015).10.1103/physrevlett.114.085001 doi: 10.1103/physrevlett.114.085001
    [11]
    D. S. Montgomery, “Two decades of progress in understanding and control of laser plasma instabilities in indirect drive inertial fusion,” Phys. Plasma 23(5), 055601 (2016).10.1063/1.4946016 doi: 10.1063/1.4946016
    [12]
    S. H. Glenzer, D. H. Froula, L. Divol et al., “Experiments and multiscale simulations of laser propagation through ignition-scale plasmas,” Nat. Phys. 3, 716719 (2007).10.1038/nphys709 doi: 10.1038/nphys709
    [13]
    J. Lindl, “Development of the indirect-drive approach to inertial confinement fusion and the target physics basis for ignition and gain,” Phys. Plasmas 2(11), 39334024 (1995).10.1063/1.871025 doi: 10.1063/1.871025
    [14]
    O. A. Hurricane, D. A. Callahan, D. T. Casey et al., “Fuel gain exceeding unity in an inertially confined fusion implosion,” Nature 506, 343348 (2014).10.1038/nature13008 doi: 10.1038/nature13008
    [15]
    J. A. Marozas, M. Hohenberger, M. J. Rosenberg et al., “First observation of cross-beam energy transfer mitigation for direct-drive inertial confinement fusion implosions using wavelength detuning at the National Ignition Facility,” Phys. Rev. Lett. 120(8), 085001-1085001-6 (2018).10.1103/physrevlett.120.085001 doi: 10.1103/physrevlett.120.085001
    [16]
    Y. Lin, G. N. Lawrence, and T. J. Kessler, “Distributed phase plates for super-Gaussian focal-plane irradiance profiles,” Opt. Lett. 20(7), 764766 (1995).10.1364/ol.20.000764 doi: 10.1364/ol.20.000764
    [17]
    Y. Kato, K. Mima, N. Miyanaga et al., “Random phasing of high-power lasers for uniform target acceleration and plasma-instability suppression,” Phys. Rev. Lett. 53, 10571060 (1984).10.1103/physrevlett.53.1057 doi: 10.1103/physrevlett.53.1057
    [18]
    Y. Lin, G. N. Lawrence, and T. J. Kessler, “Design of continuous surface-relief phase plates by surface-based simulated annealing to achieve control of focal-plane irradiance,” Opt. Lett. 21(20), 17031705 (1996).10.1364/ol.21.001703 doi: 10.1364/ol.21.001703
    [19]
    X. Deng, X. Liang, Z. Chen et al., “Uniform illumination of large targets using a lens array,” Appl. Opt. 25(3), 377381 (1986).10.1364/ao.25.000377 doi: 10.1364/ao.25.000377
    [20]
    S. Skupsky, R. W. Short, T. Kessler et al., “Improved laser-beam uniformity using the angular dispersion of frequency-modulated light,” J. Appl. Phys. 66(8), 34563462 (1989).10.1063/1.344101 doi: 10.1063/1.344101
    [21]
    S. H. Glenzer, R. L. Berger, L. M. Divol et al., “Reduction of stimulated scattering losses from hohlraum plasmas with laser beam smoothing,” Phys. Plasmas 8(5), 16921696 (2001).10.1063/1.1363613 doi: 10.1063/1.1363613
    [22]
    R. H. Lehmberg, A. J. Schmitt, and S. E. Bodner, “Theory of induced spatial incoherence,” J. Appl. Phys. 62(7), 26802701 (1987).10.1063/1.339419 doi: 10.1063/1.339419
    [23]
    D. Véron, G. Thiell, and C. Gouédard, “Optical smoothing of the high power PHEBUS Nd-glass laser using the multimode optical fiber technique,” Opt. Commun. 97(3–4), 259271 (1993).10.1016/0030-4018(93)90151-t doi: 10.1016/0030-4018(93)90151-t
    [24]
    C. Bibeau, D. R. Speck, R. B. Ehrlich et al., “Power, energy, and temporal performance of the Nova laser facility with recent improvements to the amplifier system,” Appl. Opt. 31(27), 57995809 (1992).10.1364/ao.31.005799 doi: 10.1364/ao.31.005799
    [25]
    V. N. Goncharov, S. P. Regan, E. M. Campbell et al., “National direct-drive program on OMEGA and the National Ignition Facility,” Plasma. Phys. Controlled Fusion 59, 014008 (2017).10.1088/0741-3335/59/1/014008 doi: 10.1088/0741-3335/59/1/014008
    [26]
    M. L. Spaeth, K. R. Manes, M. Bowers et al., “National Ignition Facility laser system performance,” Fusion Sci. Technol. 69 (1), 366394 (2016).10.13182/fst15-136 doi: 10.13182/fst15-136
    [27]
    N. Fleurot, C. Cavailler, and J. L. Bourgade, “The Laser Mégajoule (LMJ) project dedicated to inertial confinement fusion: Development and construction status,” Fusion Eng. Des. 74(1-4), 147154 (2005).10.1016/j.fusengdes.2005.06.251 doi: 10.1016/j.fusengdes.2005.06.251
    [28]
    C. Yamanaka, “Gekko XII glass laser system,” Rev. Laser Eng. 11(8), 586611 (1983).10.2184/lsj.11.586 doi: 10.2184/lsj.11.586
    [29]
    S. Jiang, F. Wang, Y. Ding et al., “Experimental progress of inertial confinement fusion based at the ShenGuang-III laser facility in China,” Nucl. Fusion 59, 032006 (2019).10.1088/1741-4326/aabdb6 doi: 10.1088/1741-4326/aabdb6
    [30]
    J. E. Rothenberg, “Polarization beam smoothing for inertial confinement fusion,” J. Appl. Phys. 87(8), 3654 (2000).10.1063/1.372395 doi: 10.1063/1.372395
    [31]
    A. N. Mostovych, S. P. Obenschain, J. H. Gardner et al., “Brillouin scattering measurements from plasmas irradiated with spatially and temporally incoherent laser light,” Phys. Rev. Lett. 59(11), 11931196 (1987).10.1103/physrevlett.59.1193 doi: 10.1103/physrevlett.59.1193
    [32]
    J. D. Moody, P. Michel, L. Divol et al., “Multistep redirection by cross-beam power transfer of ultrahigh-power lasers in a plasma,” Nat. Phys. 8, 344349 (2012).10.1038/nphys2239 doi: 10.1038/nphys2239
    [33]
    R. Betti and O. A. Hurricane, “Inertial-confinement fusion with lasers,” Nat. Phys. 12, 435448 (2016).10.1038/nphys3736 doi: 10.1038/nphys3736
    [34]
    M. S. Pronko, R. H. Lehmberg, S. Obenschain et al., “Efficient second harmonic conversion of broad-band high-peak-power Nd:glass laser radiation using large-aperture KDP crystal in quadrature,” IEEE J. Quantum Electron. 26(2), 337347 (1990).10.1109/3.44967 doi: 10.1109/3.44967
    [35]
    M. Nakatsuka, N. Miyanaga, T. Kanabe et al., “Partially coherent light sources for ICF experiment,” Proc. SPIE 1870, 151162 (1993).10.1117/12.154482 doi: 10.1117/12.154482
    [36]
    S. I. Fedotov, L. P. Feoktistov, M. V. Osipov et al., “Lasers for ICF with a controllable function of mutual coherence of radiation,” J. Russ. Laser Res. 25(1), 7992 (2004).10.1023/b:jorr.0000012486.89881.d8 doi: 10.1023/b:jorr.0000012486.89881.d8
    [37]
    E. L. Dewald, S. H. Glenzer, O. L. Landen et al., “First laser–plasma interaction and hohlraum experiments on the National Ignition Facility,” Plasma Phys. Controlled Fusion 47, B405B417 (2005).10.1088/0741-3335/47/12b/s29 doi: 10.1088/0741-3335/47/12b/s29
    [38]
    R. Zhang, H. Jia, X. Tian et al., “Research of beam conditioning technologies using continuous phase plate, multi-FM smoothing by spectral dispersion and polarization smoothing,” Opt. Laser. Eng. 85, 3847 (2016).10.1016/j.optlaseng.2016.04.015 doi: 10.1016/j.optlaseng.2016.04.015
    [39]
    A. N. Starodub, S. I. Fedotov, A. A. Kozhevnikova, et al., “Interaction of partially coherent laser radiation with matter,” Proc. SPIE 6595, 65950A (2007).10.1117/12.725697
    [40]
    C. Dorrer, E. M. Hill, and J. D. Zuegel, “High-energy parametric amplification of spectrally incoherent broadband pulses,” Opt. Express 28(1), 451471 (2020).10.1364/oe.28.000451 doi: 10.1364/oe.28.000451
    [41]
    J. W. Bates, J. F. Myatt, J. G. Shaw et al., “Mitigation of cross-beam energy transfer in inertial-confinement-fusion plasmas with enhanced laser bandwidth,” Phys. Rev. E 97, 061202 (2018).10.1103/physreve.97.061202 doi: 10.1103/physreve.97.061202
    [42]
    Y. Zhao, S. Weng, M. Chen et al., “Stimulated Raman scattering excited by incoherent light in plasma,” Matter Radiat. Extremes 2, 190196 (2017).10.1016/j.mre.2017.06.001 doi: 10.1016/j.mre.2017.06.001
    [43]
    D. Rao, Y. Gao, Y. Cui et al., “1 μJ nanosecond low-coherent laser source with precise temporal shaping and spectral control,” Opt. Laser Technol. 122, 105850 (2020).10.1016/j.optlastec.2019.105850 doi: 10.1016/j.optlastec.2019.105850
    [44]
    Y. Cui, Y. Gao, D. Rao et al., “High-energy low-temporal-coherence instantaneous broadband pulse system,” Opt. Lett. 44(11), 28592862 (2019).10.1364/ol.44.002859 doi: 10.1364/ol.44.002859
    [45]
    L. Ji, X. Zhao, D. Liu et al., “High-efficiency second-harmonic generation of low-temporal-coherent light pulse,” Opt. Lett. 44(17), 43594362 (2019).10.1364/ol.44.004359 doi: 10.1364/ol.44.004359
    [46]
    X. H. Zhao, L. L. Ji, D. Liu et al., “Second-harmonic generation of temporally low-coherence light,” APL Photonics 5(9), 091301 (2020).10.1063/5.0022307 doi: 10.1063/5.0022307
    [47]
    F. J. Li, Y. Q. Gao, X. H. Zhao et al., “Induced spatial incoherence combined with continuous phase plate for the improved beam smoothing effect,” Opt. Eng. 57, 066117 (2018).10.1117/1.oe.57.6.066117 doi: 10.1117/1.oe.57.6.066117
    [48]
    X. Zhao, Y. Gao, F. Li et al., “Beam smoothing by a diffraction-weakened lens array combining with induced spatial incoherence,” Appl. Opt. 58(8), 21212126 (2019).10.1364/ao.58.002121 doi: 10.1364/ao.58.002121
    [49]
    F. Li, Y. Gao, X. Zhao et al., “Experiment and theory of beam smoothing using induced spatial incoherence with lens array,” Appl. Opt. 59(10), 29762982 (2020).10.1364/ao.383292 doi: 10.1364/ao.383292
    [50]
    Y. Gao, L. Ji, X. Zhao et al., “Low-coherence high-power laser facility” (submitted).
    [51]
    P. J. Wisoff, M. W. Bowers, G. V. Erbert et al., “NIF injection laser system,” Proc. SPIE 5341, 146155 (2004).10.1117/12.538466 doi: 10.1117/12.538466
    [52]
    M. Bowers, S. Burkhart, S. Cohen et al., “The injection laser system on the National Ignition Facility,” Proc. SPIE 6451, 64511M (2007).10.1117/12.700478 doi: 10.1117/12.700478
    [53]
    W. Fan, Y. Jiang, J. Wang et al., “Progress of the injection laser system of SG-II,” High Power Laser Sci. 6, e34 (2018).10.1017/hpl.2018.31 doi: 10.1017/hpl.2018.31
    [54]
    H. Nakano, T. Kanabe, K. Yagi et al., “Amplification and propagation of partially coherent amplified spontaneous emission from Nd:glass,” Opt. Commun. 78(2), 123 (1990).10.1016/0030-4018(90)90107-5 doi: 10.1016/0030-4018(90)90107-5
    [55]
    H. Nakano, K. Tsubakimoto, N. Miyanaga et al., “Spectrally dispersed amplified spontaneous emission for improving irradiation uniformity into high power Nd:glass laser system,” J. Appl. Phys. 73(5), 2122 (1993).10.1063/1.353159 doi: 10.1063/1.353159
    [56]
    H. Nakano, N. Miyanaga, K. Yagi et al., “Partially coherent light generated by using single and multimode optical fibers in a high‐power Nd:glass laser system,” Appl. Phys. Lett. 63(5), 580 (1993).10.1063/1.109955 doi: 10.1063/1.109955
    [57]
    V. G. Dmitriev, M. V. Osipov, V. N. Puzyrev et al., “Nonlinear optical conversion of Nd:glass laser multimode radiation into the second harmonic in KDP crystal,” J. Phys. B: At., Mol. Opt. Phys. 45(16), 165401 (2012).10.1088/0953-4075/45/16/165401 doi: 10.1088/0953-4075/45/16/165401
    [58]
    N. A. Fleurot, M. A. Andre, P. Estraillier et al., “Output pulse and energy capabilities of the PHEBUS laser facility,” paper presented at the Industrial and Scientific Uses of High-Power Lasers, 1991.
    [59]
    L. Videau, A. C. L. Boscheron, J. C. Garnier et al., “Recent results of optical smoothing on the PHEBUS laser,” Proc. SPIE 3047, 757 (1997)10.1117/12.294253.
    [60]
    C. A. Haynam, P. J. Wegner, J. M. Auerbach et al., “National Ignition Facility laser performance status,” Appl. Opt. 46(16), 3276 (2007).10.1364/ao.46.003276 doi: 10.1364/ao.46.003276
    [61]
    L. M. Frantz and J. S. Nodvik, “Theory of pulse propagation in a laser amplifier,” J. Appl. Phys. 34, 2346 (1963).10.1063/1.1702744 doi: 10.1063/1.1702744
    [62]
    D. Veron, G. Thiell, C. Gouedard et al., “Focal spot smoothing by amplification of reduced coherence pulse in the high power Nd-glass PHEBUS laser,” Proc. SPIE 1870, 140150 (1993).10.1117/12.154480 doi: 10.1117/12.154480
    [63]
    P. Donnat, C. Gouédard, D. Veron et al., “Induced spatial incoherence and nonlinear effects in Nd:glass amplifiers,” Opt. Lett. 17(5), 331333 (1992).10.1364/ol.17.000331 doi: 10.1364/ol.17.000331
    [64]
    L. Videau, E. Bar, C. Rouyer et al., “Control of the amplification of large band amplitude modulated pulses in Nd-glass amplifier chain,” Proc. SPIE 3492, 277284 (1998).10.1117/12.354243 doi: 10.1117/12.354243
    [65]
    J. Garnier, J. P. Fouque, L. Videau et al., “Amplification of broadband incoherent light in homogeneously broadened media in the presence of Kerr nonlinearity,” J. Opt. Soc. Am. B 14(10), 25632569 (1997).10.1364/josab.14.002563 doi: 10.1364/josab.14.002563
    [66]
    J. Garnier, L. Videau, C. Gouédard et al., “Propagation and amplification of incoherent pulses in dispersive and nonlinear media,” J. Opt. Soc. Am. B 15(11), 27732781 (1998).10.1364/josab.15.002773 doi: 10.1364/josab.15.002773
    [67]
    P. A. Franken, A. E. Hill, C. W. Peters et al., “Generation of optical harmonics,” Phys. Rev. Lett. 7(4), 118119 (1961).10.1103/physrevlett.7.118 doi: 10.1103/physrevlett.7.118
    [68]
    N. Bloembergen and P. S. Pershan, “Light waves at boundary of nonlinear media,” Phys. Rev. 128(2), 606622 (1962).10.1103/physrev.128.606 doi: 10.1103/physrev.128.606
    [69]
    R. Eckardt and J. Reintjes, “Phase matching limitations of high efficiency second harmonic generation,” IEEE J. Quantum Electron. 20(10), 11781187 (1984).10.1109/jqe.1984.1072294 doi: 10.1109/jqe.1984.1072294
    [70]
    O. E. Martinez, “Achromatic phase matching for second harmonic generation of femtosecond pulses,” IEEE J. Quantum Electron. 25, 24642468 (1989).10.1109/3.40630 doi: 10.1109/3.40630
    [71]
    G. Szabo and Z. Bor, “Broadband frequency doubler for femtosecond pulses,” Appl. Phys. B 50, 5154 (1990).10.1007/BF00330093 doi: 10.1007/BF00330093
    [72]
    B. A. Richman, S. E. Bisson, R. Trebino et al., “Efficient broadband second-harmonic generation by dispersive achromatic nonlinear conversion using only prisms,” Opt. Lett. 23, 497499 (1998).10.1364/ol.23.000497 doi: 10.1364/ol.23.000497
    [73]
    M. Brown, “Increased spectral bandwidths in nonlinear conversion processes by use of multicrystal designs,” Opt. Lett. 23, 15911593 (1998).10.1364/ol.23.001591 doi: 10.1364/ol.23.001591
    [74]
    S. Ashihara, T. Shimura, and K. Kuroda, “Group-velocity matched second-harmonic generation in tilted quasiphase-matched gratings,” J. Opt. Soc. Am. B 20, 853856 (2003).10.1364/josab.20.000853 doi: 10.1364/josab.20.000853
    [75]
    G. Y. Wang and E. M. Garmire, “High-efficiency generation of ultrashort second-harmonic pulses based on the Cerenkov geometry,” Opt. Lett. 19, 254256 (1994).10.1364/ol.19.000254 doi: 10.1364/ol.19.000254
    [76]
    L. E. Nelson, S. B. Fleischer, G. Lenz et al., “Efficient frequency doubling of a femtosecond fiber laser,” Opt. Lett. 21, 17591761 (1996).10.1364/ol.21.001759 doi: 10.1364/ol.21.001759
    [77]
    X. Liu, L. Qian, and F. W. Wise, “Efficient generation of 50-fs red pulses by frequency doubling in LiB3O5,” Opt. Commun. 144, 265268 (1997).10.1016/s0030-4018(97)00367-2 doi: 10.1016/s0030-4018(97)00367-2
    [78]
    N. E. Yu, J. H. Ro, M. Cha et al., “Broadband quasi-phase-matched second-harmonic generation in MgO-doped periodically poled LiNbO3 at the communications band,” Opt. Lett. 27, 10461048 (2002).10.1364/ol.27.001046 doi: 10.1364/ol.27.001046
    [79]
    M. S. Webb, D. Eimerl, and S. P. Velsko, “Wavelength insensitive phase-matched second-harmonic generation in partially deuterated KDP,” J. Opt. Soc. Am. B 9, 11181127 (1992).10.1364/josab.9.001118 doi: 10.1364/josab.9.001118
    [80]
    L. Ji, B. Zhu, C. Liu et al., “Optimization of quadrature frequency conversion with type-II KDP for second harmonic generation of the nanosecond chirp pulse at 1053 nm,” Chin. Opt. Lett. 12(3), 031902 (2014).10.3788/col201412.031902 doi: 10.3788/col201412.031902
    [81]
    D. Eimerl, J. M. Auerbach, C. E. Barker et al., “Multicrystal designs for efficient third-harmonic generation,” Opt. Lett. 22(16), 12081210 (1997).10.1364/ol.22.001208 doi: 10.1364/ol.22.001208
    [82]
    Optomechanical system,” in OMEGA System Operations Manual: Volume I–System Description (Laboratory for Laser Energetics, University of Rochester, 2003), Chap. 5.
    [83]
    A. Babushkin, R. S. Craxton, S. Oskoui et al., “Demonstration of the dual-tripler scheme for increased-bandwidth third-harmonic generation,” Opt. Lett. 23, 927929 (1998).10.1364/ol.23.000927 doi: 10.1364/ol.23.000927
    [84]
    F. Raoult, A. C. L. Boscheron, D. Husson et al., “Ultrashort, intense ultraviolet pulse generation by efficient frequency tripling and adapted phase matching,” Opt. Lett. 24(5), 354356 (1999).10.1364/ol.24.000354 doi: 10.1364/ol.24.000354
    [85]
    A. C. L. Boscheron, C. J. Sauteret, and A. Migus, “Efficient broadband sum frequency based on controlled phase-modulated input fields: Theory for 351-nm ultrabroadband or ultrashort-pulse generation,” J. Opt. Soc. Am. B 13, 818826 (1996).10.1364/josab.13.000818 doi: 10.1364/josab.13.000818
    [86]
    L. J. Qian, “Chirp matched third-harmonic generation for broad-band laser,” Acta. Opt. Sin. 15(6), 662664 (1995).10.1007/BF02658170 doi: 10.1007/BF02658170
    [87]
    Y. Chen, P. Yuan, and L. Qian, “A broadband frequency-tripling scheme for an Nd:glass laser-based chirped-pulse amplification system: An approach for efficiently generating ultraviolet petawatt pulses,” J. Opt. 13(7), 075205 (2011).10.1088/2040-8978/13/7/075205 doi: 10.1088/2040-8978/13/7/075205
    [88]
    H. Zhu, T. Wang, W. Zheng et al., “Efficient second harmonic generation of femtosecond laser at 1 μm,” Opt. Express 12(10), 215021555 (2004).10.1364/opex.12.002150 doi: 10.1364/opex.12.002150
    [89]
    E. Rozenberg and A. Arie, “Broadband and robust adiabatic second-harmonic generation by a temperature gradient in birefringently phase-matched lithium triborate crystal,” Opt. Lett. 44(13), 33583361 (2019).10.1364/ol.44.003358 doi: 10.1364/ol.44.003358
    [90]
    P. Yuan, L. Qian, W. Zheng et al., “Broadband frequency tripling based on segmented partially deuterated KDP crystals,” J. Opt. A: Pure Appl. Opt. 9(11), 10821086 (2007).10.1088/1464-4258/9/11/019 doi: 10.1088/1464-4258/9/11/019
    [91]
    S. Skupsky and K. Lee, “Uniformity of energy deposition for laser driven fusion,” J. Appl. Phys. 54, 36623671 (1983).10.1063/1.332599 doi: 10.1063/1.332599
    [92]
    S. N. Dixit, I. M. Thomas, B. W. Woods et al., “Random phase plates for beam smoothing on the Nova laser,” Appl. Opt. 32(14), 25432554 (1993).10.1364/ao.32.002543 doi: 10.1364/ao.32.002543
    [93]
    J. K. Terrance, L. Ying, J. J. Armstrong et al., “Phase conversion of lasers with low-loss distributed phase plates,” Proc. SPIE 1870, 95 (1993).10.1117/12.154474 doi: 10.1117/12.154474
    [94]
    S. N. Dixit, J. K. Lawson, K. R. Manes et al., “Kinoform phase plates for focal plane irradiance profile control,” Opt. Lett. 19(6), 417419 (1994).10.1364/ol.19.000417 doi: 10.1364/ol.19.000417
    [95]
    J. A. Marozas, “Fourier transform-based continuous phase-plate design technique: A high-pass phase-plate design as an application for OMEGA and the National Ignition Facility,” J. Opt. Soc. Am. A 24(1), 7483 (2007).10.1364/josaa.24.000074 doi: 10.1364/josaa.24.000074
    [96]
    R. H. Lehmberg and S. P. Obenschain, “Use of induced spatial incoherence for uniform illumination of laser fusion targets,” Opt. Commun. 46, 2731 (1983).10.1016/0030-4018(83)90024-x doi: 10.1016/0030-4018(83)90024-x
    [97]
    T. A. Peyser, C. K. Manka, S. P. Obenschain et al., “Reduction of 3ω0/2 emission from laser‐produced plasmas with broad bandwidth, induced spatial incoherence at 0.53 μm,” Phys. Fluids B 3(6), 14791484 (1991).10.1063/1.859715 doi: 10.1063/1.859715
    [98]
    S. Skupsky and R. S. Craxton, “Irradiation uniformity for high-compression laser-fusion experiments,” Phys. Plasmas 6(5), 21572163 (1999).10.1063/1.873501 doi: 10.1063/1.873501
    [99]
    S. P. Regan, J. A. Marozas, R. S. Craxton et al., “Performance of 1-THz-bandwidth two-dimensional smoothing by spectral dispersion and polarization smoothing of high-power, solid-state laser beams,” J. Opt. Soc. Am. B 22(5), 998 (2005).10.1364/josab.22.000998 doi: 10.1364/josab.22.000998
    [100]
    G. Miyaji, N. Miyanaga, S. Urushihara et al., “Three-directional spectral dispersion for smoothing of a laser irradiance profile,” Opt. Lett. 27(9), 725727 (2002).10.1364/ol.27.000725 doi: 10.1364/ol.27.000725
    [101]
    J. E. Rothenberg, “Comparison of beam-smoothing methods for direct-drive inertial confinement fusion,” J. Opt. Soc. Am. B 14(7), 16641671 (1997).10.1364/josab.14.001664 doi: 10.1364/josab.14.001664
    [102]
    D. M. Pennington, S. N. Dixit, T. L. Weiland et al., “Implementation and performance of beam smoothing on 10 beams of the Nova laser,” Proc. SPIE 3047, 725735 (1997).10.1117/12.294250 doi: 10.1117/12.294250
    [103]
    T. E. Gunderman, J. Lee, T. J. Kessler et al., “Liquid crystal distributed polarization rotator for improved uniformity of focused laser light,” in Conference on Lasers and Electro-Optics, OSA Technical Digest. 7, CTHC7 (1990).
    [104]
    K. Tsubakimoto, M. Nakatsuka, H. Nakano et al., “Suppression of interference speckles produced by a random phase plate, using a polarization control plate,” Opt. Commun. 91, 912 (1992).10.1016/0030-4018(92)90091-5 doi: 10.1016/0030-4018(92)90091-5
    [105]
    T. R. Boehly, V. A. Smalyuk, D. D. Meyerhofer et al., “Reduction of laser imprinting using polarization smoothing on a solid-state fusion laser,” J. Appl. Phys. 85(7), 3444 (1999).10.1063/1.369702 doi: 10.1063/1.369702
    [106]
    S. P. Obenschain, S. E. Bodner, D. Colombant et al., “The Nike KrF laser facility: Performance and initial target experiments,” Phys. Plasmas 3, 20982107 (1996).10.1063/1.871661 doi: 10.1063/1.871661
    [107]
    D. Véron, H. Ayral, C. Gouedard et al., “Optical spatial smoothing of Nd-glass laser beam,” Opt. Commun. 65, 4246 (1988).10.1016/0030-4018(88)90438-5 doi: 10.1016/0030-4018(88)90438-5
    [108]
    J. Faure, J.-R. Marquès, V. Malka et al., “Dynamics of Raman instabilities using chirped laser pulses,” Phys. Rev. E 63, 065401 (2001).10.1103/physreve.63.065401 doi: 10.1103/physreve.63.065401
    [109]
    B. J. Albright, L. Yin, and B. Afeyan, “Control of stimulated Raman scattering in the strongly nonlinear and kinetic regime using spike trains of uneven duration and delay,” Phys. Rev. Lett. 113, 045002 (2014).10.1103/physrevlett.113.045002 doi: 10.1103/physrevlett.113.045002
    [110]
    J. Park and X. Li, “Theoretical and numerical analysis of superluminescent diodes,” J. Lightwave Technol. 24(6), 2473 (2006).10.1109/jlt.2006.874601 doi: 10.1109/jlt.2006.874601
    [111]
    G. A. Alphonse, D. B. Gilbert, M. G. Harvey et al., “High-power superluminescent diodes,” IEEE J. Quantum Electron. 24(12), 24542457 (1988).10.1109/3.14376 doi: 10.1109/3.14376
    [112]
    T. Takayama, O. Imafuji, Y. Kouchi et al., “100-mW high-power angled-stripe superluminescent diodes with a new real refractive-index-guided self-aligned structure,” IEEE J. Quantum Electron. 32(11), 19811987 (1996).10.1109/3.541685 doi: 10.1109/3.541685
    [113]
    L. Wang and A. M. Weiner, “Programmable spectral phase coding of an amplified spontaneous emission light source,” Opt. Commun. 167(1-6), 211224 (1999).10.1016/s0030-4018(99)00302-8 doi: 10.1016/s0030-4018(99)00302-8
    [114]
    V. Torres-Company, J. Lancis, and P. Andres, “Arbitrary waveform generator based on all-incoherent pulse shaping,” IEEE Photonics Technol. Lett. 18(24), 26262628 (2006).10.1109/lpt.2006.887215 doi: 10.1109/lpt.2006.887215
    [115]
    C. Dorrer, “Statistical analysis of incoherent pulse shaping,” Opt. Express 17(5), 33413352 (2009).10.1364/oe.17.003341 doi: 10.1364/oe.17.003341
    [116]
    K. Lan and P. Song, “Foam Au driven by 4ω − 2ω ignition laser pulse for inertial confinement fusion,” Phys. Plasmas 24, 052707 (2017).10.1063/1.4983329 doi: 10.1063/1.4983329
    [117]
    Y.-H. Chen, K. Lan, W. Zheng et al., “High coupling efficiency of foam spherical hohlraum driven by 2ω laser light,” Phys. Plasmas 25, 022702 (2018).10.1063/1.5007026 doi: 10.1063/1.5007026
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(25)  / Tables(1)

    Article Metrics

    Article views (165) PDF downloads(20) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return