Gao Yanqi, Cui Yong, Ji Lailin, Rao Daxing, Zhao Xiaohui, Li Fujian, Liu Dong, Feng Wei, Xia Lan, Liu Jiani, Shi Haitao, Du Pengyuan, Liu Jia, Li Xiaoli, Wang Tao, Zhang Tianxiong, Shan Chong, Hua Yilin, Ma Weixin, Sun Xun, Chen Xianfeng, Huang Xiuguang, Zhu Jian, Pei Wenbing, Sui Zhan, Fu Sizu. Development of low-coherence high-power laser drivers for inertial confinement fusion[J]. Matter and Radiation at Extremes, 2020, 5(6): 065201. doi: 10.1063/5.0009319
Citation:
Gao Yanqi, Cui Yong, Ji Lailin, Rao Daxing, Zhao Xiaohui, Li Fujian, Liu Dong, Feng Wei, Xia Lan, Liu Jiani, Shi Haitao, Du Pengyuan, Liu Jia, Li Xiaoli, Wang Tao, Zhang Tianxiong, Shan Chong, Hua Yilin, Ma Weixin, Sun Xun, Chen Xianfeng, Huang Xiuguang, Zhu Jian, Pei Wenbing, Sui Zhan, Fu Sizu. Development of low-coherence high-power laser drivers for inertial confinement fusion[J]. Matter and Radiation at Extremes, 2020, 5(6): 065201. doi: 10.1063/5.0009319
Gao Yanqi, Cui Yong, Ji Lailin, Rao Daxing, Zhao Xiaohui, Li Fujian, Liu Dong, Feng Wei, Xia Lan, Liu Jiani, Shi Haitao, Du Pengyuan, Liu Jia, Li Xiaoli, Wang Tao, Zhang Tianxiong, Shan Chong, Hua Yilin, Ma Weixin, Sun Xun, Chen Xianfeng, Huang Xiuguang, Zhu Jian, Pei Wenbing, Sui Zhan, Fu Sizu. Development of low-coherence high-power laser drivers for inertial confinement fusion[J]. Matter and Radiation at Extremes, 2020, 5(6): 065201. doi: 10.1063/5.0009319
Citation:
Gao Yanqi, Cui Yong, Ji Lailin, Rao Daxing, Zhao Xiaohui, Li Fujian, Liu Dong, Feng Wei, Xia Lan, Liu Jiani, Shi Haitao, Du Pengyuan, Liu Jia, Li Xiaoli, Wang Tao, Zhang Tianxiong, Shan Chong, Hua Yilin, Ma Weixin, Sun Xun, Chen Xianfeng, Huang Xiuguang, Zhu Jian, Pei Wenbing, Sui Zhan, Fu Sizu. Development of low-coherence high-power laser drivers for inertial confinement fusion[J]. Matter and Radiation at Extremes, 2020, 5(6): 065201. doi: 10.1063/5.0009319
The use of low-coherence light is expected to be one of the effective ways to suppress or even eliminate the laser–plasma instabilities that arise in attempts to achieve inertial confinement fusion. In this paper, a review of low-coherence high-power laser drivers and related key techniques is first presented. Work at typical low-coherence laser facilities, including Gekko XII, PHEBUS, Pharos III, and Kanal-2 is described. The many key techniques that are used in the research and development of low-coherence laser drivers are described and analyzed, including low-coherence source generation, amplification, harmonic conversion, and beam smoothing of low-coherence light. Then, recent progress achieved by our group in research on a broadband low-coherence laser driver is presented. During the development of our low-coherence high-power laser facility, we have proposed and implemented many key techniques for working with low-coherence light, including source generation, efficient amplification and propagation, harmonic conversion, beam smoothing, and precise beam control. Based on a series of technological breakthroughs, a kilojoule low-coherence laser driver named Kunwu with a coherence time of only 300 fs has been built, and the first round of physical experiments has been completed. This high-power laser facility provides not only a demonstration and verification platform for key techniques and system integration of a low-coherence laser driver, but also a new type of experimental platform for research into, for example, high-energy-density physics and, in particular, laser–plasma interactions.
J. W.Goodman, Speckle Phenomena in Optics: Theory and Applications (Greenwood Village: Roberts and Company, 2007).
[2]
J. D.Rigden and E. I.Gordon, “The granularity of scattered optical maser light,” Proc. IRE50, 2367-2368 (1962).
[3]
W.Burns, C.-L.Chen, and R.Moeller, “Fiber-optic gyroscopes with broad-band sources,” J. Lightwave Technol.1, 98–105 (1983).10.1109/jlt.1983.1072090 doi: 10.1109/jlt.1983.1072090
[4]
J.Lindl, O.Landen, J.Edwardset al., “Review of the National Ignition Campaign 2009-2012,” Phys. Plasmas21(2), 020501 (2014).10.1063/1.4865400 doi: 10.1063/1.4865400
[5]
C.Labaune, “Incoherent light on the road to ignition,” Nat. Phys.3, 680–682 (2007).10.1038/nphys742 doi: 10.1038/nphys742
[6]
J. D.Lindl, P.Amendt, R. L.Bergeret al., “The physics basis for ignition using indirect-drive targets on the National Ignition Facility,” Phys. Plasmas11(2), 339–491 (2004).10.1063/1.1578638 doi: 10.1063/1.1578638
[7]
R. S.Craxton, K. S.Anderson, T. R.Boehlyet al., “Direct-drive inertial confinement fusion: A review,” Phys. Plasmas22, 110501 (2015).10.1063/1.4934714 doi: 10.1063/1.4934714
[8]
Z.Fan, M.Chen, Z.Daiet al., “A new ignition scheme using hybrid indirect-direct drive for inertial confinement fusion,” arXiv:1303.1252 [physics.plasm-ph] (2013).
[9]
V. A.Smalyuk, D.Shvarts, R.Bettiet al., “Role of hot-electron preheating in the compression of direct-drive imploding targets with cryogenic D2 ablators,” Phys. Rev. Lett.100, 185005 (2008).10.1103/physrevlett.100.185005 doi: 10.1103/physrevlett.100.185005
[10]
M.Karasik, J. L.Weaver, Y.Aglitskiyet al., “Suppression of laser nonuniformity imprinting using a thin high-Z coating,” Phys. Rev. Lett.114, 085001 (2015).10.1103/physrevlett.114.085001 doi: 10.1103/physrevlett.114.085001
[11]
D. S.Montgomery, “Two decades of progress in understanding and control of laser plasma instabilities in indirect drive inertial fusion,” Phys. Plasma23(5), 055601 (2016).10.1063/1.4946016 doi: 10.1063/1.4946016
[12]
S. H.Glenzer, D. H.Froula, L.Divolet al., “Experiments and multiscale simulations of laser propagation through ignition-scale plasmas,” Nat. Phys.3, 716–719 (2007).10.1038/nphys709 doi: 10.1038/nphys709
[13]
J.Lindl, “Development of the indirect-drive approach to inertial confinement fusion and the target physics basis for ignition and gain,” Phys. Plasmas2(11), 3933–4024 (1995).10.1063/1.871025 doi: 10.1063/1.871025
[14]
O. A.Hurricane, D. A.Callahan, D. T.Caseyet al., “Fuel gain exceeding unity in an inertially confined fusion implosion,” Nature506, 343–348 (2014).10.1038/nature13008 doi: 10.1038/nature13008
[15]
J. A.Marozas, M.Hohenberger, M. J.Rosenberget al., “First observation of cross-beam energy transfer mitigation for direct-drive inertial confinement fusion implosions using wavelength detuning at the National Ignition Facility,” Phys. Rev. Lett.120(8), 085001-1–085001-6 (2018).10.1103/physrevlett.120.085001 doi: 10.1103/physrevlett.120.085001
[16]
Y.Lin, G. N.Lawrence, and T. J.Kessler, “Distributed phase plates for super-Gaussian focal-plane irradiance profiles,” Opt. Lett.20(7), 764–766 (1995).10.1364/ol.20.000764 doi: 10.1364/ol.20.000764
[17]
Y.Kato, K.Mima, N.Miyanagaet al., “Random phasing of high-power lasers for uniform target acceleration and plasma-instability suppression,” Phys. Rev. Lett.53, 1057–1060 (1984).10.1103/physrevlett.53.1057 doi: 10.1103/physrevlett.53.1057
[18]
Y.Lin, G. N.Lawrence, and T. J.Kessler, “Design of continuous surface-relief phase plates by surface-based simulated annealing to achieve control of focal-plane irradiance,” Opt. Lett.21(20), 1703–1705 (1996).10.1364/ol.21.001703 doi: 10.1364/ol.21.001703
[19]
X.Deng, X.Liang, Z.Chenet al., “Uniform illumination of large targets using a lens array,” Appl. Opt.25(3), 377–381 (1986).10.1364/ao.25.000377 doi: 10.1364/ao.25.000377
[20]
S.Skupsky, R. W.Short, T.Kessleret al., “Improved laser-beam uniformity using the angular dispersion of frequency-modulated light,” J. Appl. Phys.66(8), 3456–3462 (1989).10.1063/1.344101 doi: 10.1063/1.344101
[21]
S. H.Glenzer, R. L.Berger, L. M.Divolet al., “Reduction of stimulated scattering losses from hohlraum plasmas with laser beam smoothing,” Phys. Plasmas8(5), 1692–1696 (2001).10.1063/1.1363613 doi: 10.1063/1.1363613
[22]
R. H.Lehmberg, A. J.Schmitt, and S. E.Bodner, “Theory of induced spatial incoherence,” J. Appl. Phys.62(7), 2680–2701 (1987).10.1063/1.339419 doi: 10.1063/1.339419
[23]
D.Véron, G.Thiell, and C.Gouédard, “Optical smoothing of the high power PHEBUS Nd-glass laser using the multimode optical fiber technique,” Opt. Commun.97(3–4), 259–271 (1993).10.1016/0030-4018(93)90151-t doi: 10.1016/0030-4018(93)90151-t
[24]
C.Bibeau, D. R.Speck, R. B.Ehrlichet al., “Power, energy, and temporal performance of the Nova laser facility with recent improvements to the amplifier system,” Appl. Opt.31(27), 5799–5809 (1992).10.1364/ao.31.005799 doi: 10.1364/ao.31.005799
[25]
V. N.Goncharov, S. P.Regan, E. M.Campbellet al., “National direct-drive program on OMEGA and the National Ignition Facility,” Plasma. Phys. Controlled Fusion59, 014008 (2017).10.1088/0741-3335/59/1/014008 doi: 10.1088/0741-3335/59/1/014008
[26]
M. L.Spaeth, K. R.Manes, M.Bowerset al., “National Ignition Facility laser system performance,” Fusion Sci. Technol.69 (1), 366–394 (2016).10.13182/fst15-136 doi: 10.13182/fst15-136
[27]
N.Fleurot, C.Cavailler, and J. L.Bourgade, “The Laser Mégajoule (LMJ) project dedicated to inertial confinement fusion: Development and construction status,” Fusion Eng. Des.74(1-4), 147–154 (2005).10.1016/j.fusengdes.2005.06.251 doi: 10.1016/j.fusengdes.2005.06.251
S.Jiang, F.Wang, Y.Dinget al., “Experimental progress of inertial confinement fusion based at the ShenGuang-III laser facility in China,” Nucl. Fusion59, 032006 (2019).10.1088/1741-4326/aabdb6 doi: 10.1088/1741-4326/aabdb6
[30]
J. E.Rothenberg, “Polarization beam smoothing for inertial confinement fusion,” J. Appl. Phys.87(8), 3654 (2000).10.1063/1.372395 doi: 10.1063/1.372395
[31]
A. N.Mostovych, S. P.Obenschain, J. H.Gardneret al., “Brillouin scattering measurements from plasmas irradiated with spatially and temporally incoherent laser light,” Phys. Rev. Lett.59(11), 1193–1196 (1987).10.1103/physrevlett.59.1193 doi: 10.1103/physrevlett.59.1193
[32]
J. D.Moody, P.Michel, L.Divolet al., “Multistep redirection by cross-beam power transfer of ultrahigh-power lasers in a plasma,” Nat. Phys.8, 344–349 (2012).10.1038/nphys2239 doi: 10.1038/nphys2239
[33]
R.Betti and O. A.Hurricane, “Inertial-confinement fusion with lasers,” Nat. Phys.12, 435–448 (2016).10.1038/nphys3736 doi: 10.1038/nphys3736
[34]
M. S.Pronko, R. H.Lehmberg, S.Obenschainet al., “Efficient second harmonic conversion of broad-band high-peak-power Nd:glass laser radiation using large-aperture KDP crystal in quadrature,” IEEE J. Quantum Electron.26(2), 337–347 (1990).10.1109/3.44967 doi: 10.1109/3.44967
[35]
M.Nakatsuka, N.Miyanaga, T.Kanabeet al., “Partially coherent light sources for ICF experiment,” Proc. SPIE1870, 151–162 (1993).10.1117/12.154482 doi: 10.1117/12.154482
[36]
S. I.Fedotov, L. P.Feoktistov, M. V.Osipovet al., “Lasers for ICF with a controllable function of mutual coherence of radiation,” J. Russ. Laser Res.25(1), 79–92 (2004).10.1023/b:jorr.0000012486.89881.d8 doi: 10.1023/b:jorr.0000012486.89881.d8
[37]
E. L.Dewald, S. H.Glenzer, O. L.Landenet al., “First laser–plasma interaction and hohlraum experiments on the National Ignition Facility,” Plasma Phys. Controlled Fusion47, B405–B417 (2005).10.1088/0741-3335/47/12b/s29 doi: 10.1088/0741-3335/47/12b/s29
[38]
R.Zhang, H.Jia, X.Tianet al., “Research of beam conditioning technologies using continuous phase plate, multi-FM smoothing by spectral dispersion and polarization smoothing,” Opt. Laser. Eng.85, 38–47 (2016).10.1016/j.optlaseng.2016.04.015 doi: 10.1016/j.optlaseng.2016.04.015
[39]
A. N.Starodub, S. I.Fedotov, A. A.Kozhevnikova, et al., “Interaction of partially coherent laser radiation with matter,” Proc. SPIE6595, 65950A (2007).10.1117/12.725697
[40]
C.Dorrer, E. M.Hill, and J. D.Zuegel, “High-energy parametric amplification of spectrally incoherent broadband pulses,” Opt. Express28(1), 451–471 (2020).10.1364/oe.28.000451 doi: 10.1364/oe.28.000451
[41]
J. W.Bates, J. F.Myatt, J. G.Shawet al., “Mitigation of cross-beam energy transfer in inertial-confinement-fusion plasmas with enhanced laser bandwidth,” Phys. Rev. E97, 061202 (2018).10.1103/physreve.97.061202 doi: 10.1103/physreve.97.061202
[42]
Y.Zhao, S.Weng, M.Chenet al., “Stimulated Raman scattering excited by incoherent light in plasma,” Matter Radiat. Extremes2, 190–196 (2017).10.1016/j.mre.2017.06.001 doi: 10.1016/j.mre.2017.06.001
X. H.Zhao, L. L.Ji, D.Liuet al., “Second-harmonic generation of temporally low-coherence light,” APL Photonics5(9), 091301 (2020).10.1063/5.0022307 doi: 10.1063/5.0022307
[47]
F. J.Li, Y. Q.Gao, X. H.Zhaoet al., “Induced spatial incoherence combined with continuous phase plate for the improved beam smoothing effect,” Opt. Eng.57, 066117 (2018).10.1117/1.oe.57.6.066117 doi: 10.1117/1.oe.57.6.066117
[48]
X.Zhao, Y.Gao, F.Liet al., “Beam smoothing by a diffraction-weakened lens array combining with induced spatial incoherence,” Appl. Opt.58(8), 2121–2126 (2019).10.1364/ao.58.002121 doi: 10.1364/ao.58.002121
[49]
F.Li, Y.Gao, X.Zhaoet al., “Experiment and theory of beam smoothing using induced spatial incoherence with lens array,” Appl. Opt.59(10), 2976–2982 (2020).10.1364/ao.383292 doi: 10.1364/ao.383292
P. J.Wisoff, M. W.Bowers, G. V.Erbertet al., “NIF injection laser system,” Proc. SPIE5341, 146–155 (2004).10.1117/12.538466 doi: 10.1117/12.538466
[52]
M.Bowers, S.Burkhart, S.Cohenet al., “The injection laser system on the National Ignition Facility,” Proc. SPIE6451, 64511M (2007).10.1117/12.700478 doi: 10.1117/12.700478
[53]
W.Fan, Y.Jiang, J.Wanget al., “Progress of the injection laser system of SG-II,” High Power Laser Sci.6, e34 (2018).10.1017/hpl.2018.31 doi: 10.1017/hpl.2018.31
[54]
H.Nakano, T.Kanabe, K.Yagiet al., “Amplification and propagation of partially coherent amplified spontaneous emission from Nd:glass,” Opt. Commun.78(2), 123 (1990).10.1016/0030-4018(90)90107-5 doi: 10.1016/0030-4018(90)90107-5
[55]
H.Nakano, K.Tsubakimoto, N.Miyanagaet al., “Spectrally dispersed amplified spontaneous emission for improving irradiation uniformity into high power Nd:glass laser system,” J. Appl. Phys.73(5), 2122 (1993).10.1063/1.353159 doi: 10.1063/1.353159
[56]
H.Nakano, N.Miyanaga, K.Yagiet al., “Partially coherent light generated by using single and multimode optical fibers in a high‐power Nd:glass laser system,” Appl. Phys. Lett.63(5), 580 (1993).10.1063/1.109955 doi: 10.1063/1.109955
[57]
V. G.Dmitriev, M. V.Osipov, V. N.Puzyrevet al., “Nonlinear optical conversion of Nd:glass laser multimode radiation into the second harmonic in KDP crystal,” J. Phys. B: At., Mol. Opt. Phys.45(16), 165401 (2012).10.1088/0953-4075/45/16/165401 doi: 10.1088/0953-4075/45/16/165401
[58]
N. A.Fleurot, M. A.Andre, P.Estraillieret al., “Output pulse and energy capabilities of the PHEBUS laser facility,” paper presented at the Industrial and Scientific Uses of High-Power Lasers, 1991.
[59]
L.Videau, A. C. L.Boscheron, J. C.Garnieret al., “Recent results of optical smoothing on the PHEBUS laser,” Proc. SPIE3047, 757 (1997)10.1117/12.294253.
[60]
C. A.Haynam, P. J.Wegner, J. M.Auerbachet al., “National Ignition Facility laser performance status,” Appl. Opt.46(16), 3276 (2007).10.1364/ao.46.003276 doi: 10.1364/ao.46.003276
[61]
L. M.Frantz and J. S.Nodvik, “Theory of pulse propagation in a laser amplifier,” J. Appl. Phys.34, 2346 (1963).10.1063/1.1702744 doi: 10.1063/1.1702744
[62]
D.Veron, G.Thiell, C.Gouedardet al., “Focal spot smoothing by amplification of reduced coherence pulse in the high power Nd-glass PHEBUS laser,” Proc. SPIE1870, 140–150 (1993).10.1117/12.154480 doi: 10.1117/12.154480
[63]
P.Donnat, C.Gouédard, D.Veronet al., “Induced spatial incoherence and nonlinear effects in Nd:glass amplifiers,” Opt. Lett.17(5), 331–333 (1992).10.1364/ol.17.000331 doi: 10.1364/ol.17.000331
[64]
L.Videau, E.Bar, C.Rouyeret al., “Control of the amplification of large band amplitude modulated pulses in Nd-glass amplifier chain,” Proc. SPIE3492, 277–284 (1998).10.1117/12.354243 doi: 10.1117/12.354243
[65]
J.Garnier, J. P.Fouque, L.Videauet al., “Amplification of broadband incoherent light in homogeneously broadened media in the presence of Kerr nonlinearity,” J. Opt. Soc. Am. B14(10), 2563–2569 (1997).10.1364/josab.14.002563 doi: 10.1364/josab.14.002563
[66]
J.Garnier, L.Videau, C.Gouédardet al., “Propagation and amplification of incoherent pulses in dispersive and nonlinear media,” J. Opt. Soc. Am. B15(11), 2773–2781 (1998).10.1364/josab.15.002773 doi: 10.1364/josab.15.002773
[67]
P. A.Franken, A. E.Hill, C. W.Peterset al., “Generation of optical harmonics,” Phys. Rev. Lett.7(4), 118–119 (1961).10.1103/physrevlett.7.118 doi: 10.1103/physrevlett.7.118
[68]
N.Bloembergen and P. S.Pershan, “Light waves at boundary of nonlinear media,” Phys. Rev.128(2), 606–622 (1962).10.1103/physrev.128.606 doi: 10.1103/physrev.128.606
[69]
R.Eckardt and J.Reintjes, “Phase matching limitations of high efficiency second harmonic generation,” IEEE J. Quantum Electron.20(10), 1178–1187 (1984).10.1109/jqe.1984.1072294 doi: 10.1109/jqe.1984.1072294
[70]
O. E.Martinez, “Achromatic phase matching for second harmonic generation of femtosecond pulses,” IEEE J. Quantum Electron.25, 2464–2468 (1989).10.1109/3.40630 doi: 10.1109/3.40630
[71]
G.Szabo and Z.Bor, “Broadband frequency doubler for femtosecond pulses,” Appl. Phys. B50, 51–54 (1990).10.1007/BF00330093 doi: 10.1007/BF00330093
[72]
B. A.Richman, S. E.Bisson, R.Trebinoet al., “Efficient broadband second-harmonic generation by dispersive achromatic nonlinear conversion using only prisms,” Opt. Lett.23, 497–499 (1998).10.1364/ol.23.000497 doi: 10.1364/ol.23.000497
[73]
M.Brown, “Increased spectral bandwidths in nonlinear conversion processes by use of multicrystal designs,” Opt. Lett.23, 1591–1593 (1998).10.1364/ol.23.001591 doi: 10.1364/ol.23.001591
[74]
S.Ashihara, T.Shimura, and K.Kuroda, “Group-velocity matched second-harmonic generation in tilted quasiphase-matched gratings,” J. Opt. Soc. Am. B20, 853–856 (2003).10.1364/josab.20.000853 doi: 10.1364/josab.20.000853
[75]
G. Y.Wang and E. M.Garmire, “High-efficiency generation of ultrashort second-harmonic pulses based on the Cerenkov geometry,” Opt. Lett.19, 254–256 (1994).10.1364/ol.19.000254 doi: 10.1364/ol.19.000254
[76]
L. E.Nelson, S. B.Fleischer, G.Lenzet al., “Efficient frequency doubling of a femtosecond fiber laser,” Opt. Lett.21, 1759–1761 (1996).10.1364/ol.21.001759 doi: 10.1364/ol.21.001759
[77]
X.Liu, L.Qian, and F. W.Wise, “Efficient generation of 50-fs red pulses by frequency doubling in LiB3O5,” Opt. Commun.144, 265–268 (1997).10.1016/s0030-4018(97)00367-2 doi: 10.1016/s0030-4018(97)00367-2
[78]
N. E.Yu, J. H.Ro, M.Chaet al., “Broadband quasi-phase-matched second-harmonic generation in MgO-doped periodically poled LiNbO3 at the communications band,” Opt. Lett.27, 1046–1048 (2002).10.1364/ol.27.001046 doi: 10.1364/ol.27.001046
[79]
M. S.Webb, D.Eimerl, and S. P.Velsko, “Wavelength insensitive phase-matched second-harmonic generation in partially deuterated KDP,” J. Opt. Soc. Am. B9, 1118–1127 (1992).10.1364/josab.9.001118 doi: 10.1364/josab.9.001118
[80]
L.Ji, B.Zhu, C.Liuet al., “Optimization of quadrature frequency conversion with type-II KDP for second harmonic generation of the nanosecond chirp pulse at 1053 nm,” Chin. Opt. Lett.12(3), 031902 (2014).10.3788/col201412.031902 doi: 10.3788/col201412.031902
[81]
D.Eimerl, J. M.Auerbach, C. E.Barkeret al., “Multicrystal designs for efficient third-harmonic generation,” Opt. Lett.22(16), 1208–1210 (1997).10.1364/ol.22.001208 doi: 10.1364/ol.22.001208
[82]
“Optomechanical system,” in OMEGA System Operations Manual: Volume I–System Description (Laboratory for Laser Energetics, University of Rochester, 2003), Chap. 5.
[83]
A.Babushkin, R. S.Craxton, S.Oskouiet al., “Demonstration of the dual-tripler scheme for increased-bandwidth third-harmonic generation,” Opt. Lett.23, 927–929 (1998).10.1364/ol.23.000927 doi: 10.1364/ol.23.000927
[84]
F.Raoult, A. C. L.Boscheron, D.Hussonet al., “Ultrashort, intense ultraviolet pulse generation by efficient frequency tripling and adapted phase matching,” Opt. Lett.24(5), 354–356 (1999).10.1364/ol.24.000354 doi: 10.1364/ol.24.000354
[85]
A. C. L.Boscheron, C. J.Sauteret, and A.Migus, “Efficient broadband sum frequency based on controlled phase-modulated input fields: Theory for 351-nm ultrabroadband or ultrashort-pulse generation,” J. Opt. Soc. Am. B13, 818–826 (1996).10.1364/josab.13.000818 doi: 10.1364/josab.13.000818
[86]
L. J.Qian, “Chirp matched third-harmonic generation for broad-band laser,” Acta. Opt. Sin.15(6), 662–664 (1995).10.1007/BF02658170 doi: 10.1007/BF02658170
[87]
Y.Chen, P.Yuan, and L.Qian, “A broadband frequency-tripling scheme for an Nd:glass laser-based chirped-pulse amplification system: An approach for efficiently generating ultraviolet petawatt pulses,” J. Opt.13(7), 075205 (2011).10.1088/2040-8978/13/7/075205 doi: 10.1088/2040-8978/13/7/075205
[88]
H.Zhu, T.Wang, W.Zhenget al., “Efficient second harmonic generation of femtosecond laser at 1 μm,” Opt. Express12(10), 2150–21555 (2004).10.1364/opex.12.002150 doi: 10.1364/opex.12.002150
[89]
E.Rozenberg and A.Arie, “Broadband and robust adiabatic second-harmonic generation by a temperature gradient in birefringently phase-matched lithium triborate crystal,” Opt. Lett.44(13), 3358–3361 (2019).10.1364/ol.44.003358 doi: 10.1364/ol.44.003358
[90]
P.Yuan, L.Qian, W.Zhenget al., “Broadband frequency tripling based on segmented partially deuterated KDP crystals,” J. Opt. A: Pure Appl. Opt.9(11), 1082–1086 (2007).10.1088/1464-4258/9/11/019 doi: 10.1088/1464-4258/9/11/019
[91]
S.Skupsky and K.Lee, “Uniformity of energy deposition for laser driven fusion,” J. Appl. Phys.54, 3662–3671 (1983).10.1063/1.332599 doi: 10.1063/1.332599
[92]
S. N.Dixit, I. M.Thomas, B. W.Woodset al., “Random phase plates for beam smoothing on the Nova laser,” Appl. Opt.32(14), 2543–2554 (1993).10.1364/ao.32.002543 doi: 10.1364/ao.32.002543
[93]
J. K.Terrance, L.Ying, J. J.Armstronget al., “Phase conversion of lasers with low-loss distributed phase plates,” Proc. SPIE1870, 95 (1993).10.1117/12.154474 doi: 10.1117/12.154474
[94]
S. N.Dixit, J. K.Lawson, K. R.Maneset al., “Kinoform phase plates for focal plane irradiance profile control,” Opt. Lett.19(6), 417–419 (1994).10.1364/ol.19.000417 doi: 10.1364/ol.19.000417
[95]
J. A.Marozas, “Fourier transform-based continuous phase-plate design technique: A high-pass phase-plate design as an application for OMEGA and the National Ignition Facility,” J. Opt. Soc. Am. A24(1), 74–83 (2007).10.1364/josaa.24.000074 doi: 10.1364/josaa.24.000074
[96]
R. H.Lehmberg and S. P.Obenschain, “Use of induced spatial incoherence for uniform illumination of laser fusion targets,” Opt. Commun.46, 27–31 (1983).10.1016/0030-4018(83)90024-x doi: 10.1016/0030-4018(83)90024-x
[97]
T. A.Peyser, C. K.Manka, S. P.Obenschainet al., “Reduction of 3ω0/2 emission from laser‐produced plasmas with broad bandwidth, induced spatial incoherence at 0.53 μm,” Phys. Fluids B3(6), 1479–1484 (1991).10.1063/1.859715 doi: 10.1063/1.859715
[98]
S.Skupsky and R. S.Craxton, “Irradiation uniformity for high-compression laser-fusion experiments,” Phys. Plasmas6(5), 2157–2163 (1999).10.1063/1.873501 doi: 10.1063/1.873501
[99]
S. P.Regan, J. A.Marozas, R. S.Craxtonet al., “Performance of 1-THz-bandwidth two-dimensional smoothing by spectral dispersion and polarization smoothing of high-power, solid-state laser beams,” J. Opt. Soc. Am. B22(5), 998 (2005).10.1364/josab.22.000998 doi: 10.1364/josab.22.000998
[100]
G.Miyaji, N.Miyanaga, S.Urushiharaet al., “Three-directional spectral dispersion for smoothing of a laser irradiance profile,” Opt. Lett.27(9), 725–727 (2002).10.1364/ol.27.000725 doi: 10.1364/ol.27.000725
[101]
J. E.Rothenberg, “Comparison of beam-smoothing methods for direct-drive inertial confinement fusion,” J. Opt. Soc. Am. B14(7), 1664–1671 (1997).10.1364/josab.14.001664 doi: 10.1364/josab.14.001664
[102]
D. M.Pennington, S. N.Dixit, T. L.Weilandet al., “Implementation and performance of beam smoothing on 10 beams of the Nova laser,” Proc. SPIE3047, 725–735 (1997).10.1117/12.294250 doi: 10.1117/12.294250
[103]
T. E.Gunderman, J.Lee, T. J.Kessleret al., “Liquid crystal distributed polarization rotator for improved uniformity of focused laser light,” in Conference on Lasers and Electro-Optics, OSA Technical Digest. 7, CTHC7 (1990).
[104]
K.Tsubakimoto, M.Nakatsuka, H.Nakanoet al., “Suppression of interference speckles produced by a random phase plate, using a polarization control plate,” Opt. Commun.91, 9–12 (1992).10.1016/0030-4018(92)90091-5 doi: 10.1016/0030-4018(92)90091-5
[105]
T. R.Boehly, V. A.Smalyuk, D. D.Meyerhoferet al., “Reduction of laser imprinting using polarization smoothing on a solid-state fusion laser,” J. Appl. Phys.85(7), 3444 (1999).10.1063/1.369702 doi: 10.1063/1.369702
[106]
S. P.Obenschain, S. E.Bodner, D.Colombantet al., “The Nike KrF laser facility: Performance and initial target experiments,” Phys. Plasmas3, 2098–2107 (1996).10.1063/1.871661 doi: 10.1063/1.871661
J.Faure, J.-R.Marquès, V.Malkaet al., “Dynamics of Raman instabilities using chirped laser pulses,” Phys. Rev. E63, 065401 (2001).10.1103/physreve.63.065401 doi: 10.1103/physreve.63.065401
[109]
B. J.Albright, L.Yin, and B.Afeyan, “Control of stimulated Raman scattering in the strongly nonlinear and kinetic regime using spike trains of uneven duration and delay,” Phys. Rev. Lett.113, 045002 (2014).10.1103/physrevlett.113.045002 doi: 10.1103/physrevlett.113.045002
[110]
J.Park and X.Li, “Theoretical and numerical analysis of superluminescent diodes,” J. Lightwave Technol.24(6), 2473 (2006).10.1109/jlt.2006.874601 doi: 10.1109/jlt.2006.874601
[111]
G. A.Alphonse, D. B.Gilbert, M. G.Harveyet al., “High-power superluminescent diodes,” IEEE J. Quantum Electron.24(12), 2454–2457 (1988).10.1109/3.14376 doi: 10.1109/3.14376
[112]
T.Takayama, O.Imafuji, Y.Kouchiet al., “100-mW high-power angled-stripe superluminescent diodes with a new real refractive-index-guided self-aligned structure,” IEEE J. Quantum Electron.32(11), 1981–1987 (1996).10.1109/3.541685 doi: 10.1109/3.541685
[113]
L.Wang and A. M.Weiner, “Programmable spectral phase coding of an amplified spontaneous emission light source,” Opt. Commun.167(1-6), 211–224 (1999).10.1016/s0030-4018(99)00302-8 doi: 10.1016/s0030-4018(99)00302-8
[114]
V.Torres-Company, J.Lancis, and P.Andres, “Arbitrary waveform generator based on all-incoherent pulse shaping,” IEEE Photonics Technol. Lett.18(24), 2626–2628 (2006).10.1109/lpt.2006.887215 doi: 10.1109/lpt.2006.887215
Figure 1. SHG with two type II crystals in quadrature.
Figure 2. Broadband frequency tripling with two triplers for the OMEGA facility.
Figure 3. Phase-matching curve for frequency tripling of chirp pulses. Reprinted with permission from Raoult et al., Opt. Lett. 24(5), 354-356 (1999). Copyright 1999 Optical Society of America.
Figure 4. Focal spot reshaping using a phase element.
Figure 5. Schematic of the ISI method. Reprinted with permission from Zhao et al., Appl. Opt. 58(8), 2121–2126 (2019). Copyright 2019 Optical Society of America.
Figure 6. (a) Demonstration of the echelon-free ISI method. Reprinted with permission from Lehmberg et al., J. Appl. Phys. 62(7), 2680–2701 (1987). Copyright 1987 AIP Publishing LLC. (b) Spatial mode dispersion in the optical fiber smoothing method. Reprinted with permission from Veron et al., Opt. Commun. 65, 42–46 (1988). Copyright 1988 Elsevier.
Figure 7. Optical frequency as a function of time for different light sources: (a1) high-coherence pulse; (b1) chirped pulse and transform-limited pulse; (c1) phase-modulated pulse; (d1) instantaneous broadband pulse. (a2), (b2), (c2), and (d2) are the corresponding frequency–phase diagrams.
Figure 8. Schematic of the low-coherence front-end system. AWG, arbitrary waveform generator; AM, amplitude modulator; OC, optical circulator; SM LD, single-mode laser diode; WDM, wavelength division multiplexer; AOM, acoustic optical modulator; FC, fiber collimator; M, mirror; HWP, half-wave plate; P, polarizer; BC, birefringent crystal; MMLD, multimode laser diode. Reprinted with permission from Rao et al., Opt. Laser Technol. 122, 105850 (2020). Copyright 2020 Elsevier.
Figure 9. Illustration of the pulse shapes that can be generated by our system: (a) square pulse; (b) high-contrast pulse; (c) exponential pulse; (d) spectra of different pulse shapes. Reprinted with permission from Rao et al., Opt. Laser Technol. 122, 105850 (2020). Copyright 2020 Elsevier.
Figure 10. (a) Spectrum without spectral control. (b) Spectrum with a nearly flat top. (c) Saddle-type spectrum for a Nd:glass amplifier. (d) Temporal profiles of the spectra in (a)–(c). Reprinted with permission from Rao et al., Opt. Laser Technol. 122, 105850 (2020). Copyright 2020 Elsevier.
Figure 11. Schematic of the high-gain preamplifier: FE, front end; RA, repetitive amplifier; SA, single-shot amplifier; FA, fiber amplifier; HWP, half-wave plate; FR, Faraday rotator; PC, Pockels cell; PBS, polarizing beam splitter; BF, birefringent filter; P, polarizer; M, mirror; BE, beam expander; LCSM, liquid crystal spatial modulator; PSF, spatial filter; Φ, Nd:glass rod (diameter, mm); EOS, electro-optical switch. Reprinted with permission from Cui et al., Opt. Lett. 44(11), 2859–2862 (2019). Copyright 2019 Optical Society of America.
Figure 12. (a) Temporal and (b) spectral profiles of the light in the single-shot amplifier. The “sa” label indicates the saddle-shaped spectrum. Reprinted with permission from Cui et al., Opt. Lett. 44(11), 2859–2862 (2019). Copyright 2019 Optical Society of America.
Figure 13. Visibility of interference fringes at different locations. The dots are experimental results, and the curves are fitting results. FE, front end, RA, repetitive amplifier, SA, single-shot amplifier. Reprinted with permission from Cui et al., Opt. Lett. 44(11), 2859–2862 (2019). Copyright 2019 Optical Society of America.
Figure 14. Schematic layout of the main amplifier. SF, spatial filter, M, mirror, L, lens.
Figure 15. Spectra of preamplifier and main amplifier.
Figure 16. (a) Temporal profile and (b) output energy of main amplifier.
Figure 17. (a) Near-field pattern and (b) far-field profile in the main amplifier section.
Figure 18. Results of SHG in the low-coherence laser facility. Reprinted with permission from Ji et al., Opt. Lett. 44(17), 4359–4362 (2019). Copyright 2019 Optical Society of America.
Figure 19. Near fields of the fundamental wave (a) and the second harmonic (b), and the corresponding far fields of the fundamental wave (c) and the second harmonic (d). (a) and (c) are reprinted with permission from Cui et al., Opt. Lett. 44(11), 2859–2862 (2019). Copyright 2019 Optical Society of America. (b) and (d) are reprinted with permission from Ji et al., Opt. Lett. 44(17), 4359–4362 (2019). Copyright 2019 Optical Society of America.
Figure 20. Experimental and simulation results for second-harmonic efficiency vs fundamental wave energy when a KDP crystal is used.
Figure 21. Temporal intensity distribution of second-harmonic conversion measured by a streak camera with a resolution of 11 ps.
Figure 22. Schematic of ISI + LA method.
Figure 23. Focal spots obtained using ISI + LA with smoothing times (a) T = τ, (b) T = 10τ, (c) T = 100τ, and (d) T = 1000τ. (e)–(h) show the corresponding x-axis intensity distributions. Reprinted with permission from Zhao et al., Appl. Opt. 58(8), 2121–2126 (2019). Copyright 2019 Optical Society of America.
Figure 24. (a) Experimental focal spot using partial ISI + LA with broadband light. (b) Theoretical result. Reprinted with permission from Li et al., Appl. Opt. 59(10), 2976–2982 (2020). Copyright 2020 Optical Society of America.
Figure 25. (a) Phase distribution of a CPP for a 200 µm circular spot. (b) Corresponding simulated focal spot using the CPP with 10 × 10 ISI.