Follow us on Wechat

用微信扫码二维码

分享至好友和朋友圈

Volume 5 Issue 5
Sep.  2020
Turn off MathJax
Article Contents
Kang Dongdong, Hou Yong, Zeng Qiyu, Dai Jiayu. Unified first-principles equations of state of deuterium-tritium mixtures in the global inertial confinement fusion region[J]. Matter and Radiation at Extremes, 2020, 5(5): 055401. doi: 10.1063/5.0008231
Citation: Kang Dongdong, Hou Yong, Zeng Qiyu, Dai Jiayu. Unified first-principles equations of state of deuterium-tritium mixtures in the global inertial confinement fusion region[J]. Matter and Radiation at Extremes, 2020, 5(5): 055401. doi: 10.1063/5.0008231

Unified first-principles equations of state of deuterium-tritium mixtures in the global inertial confinement fusion region

doi: 10.1063/5.0008231
More Information
  • Corresponding author: a)Author to whom correspondence should be addressed: jydai@nudt.edu.cn
  • Received Date: 2020-03-19
  • Accepted Date: 2020-08-16
  • Available Online: 2020-09-01
  • Publish Date: 2020-09-15
  • Accurate knowledge of the equation of state (EOS) of deuterium–tritium (DT) mixtures is critically important for inertial confinement fusion (ICF). Although the study of EOS is an old topic, there is a longstanding lack of global accurate EOS data for DT within a unified theoretical framework. DT fuel goes through very wide ranges of density and temperature from a cold condensed state to a hot dense plasma where ions are in a moderately or even strongly coupled state and electrons are in a partially or strongly degenerate state. The biggest challenge faced when using first-principles methods for obtaining accurate EOS data for DT fuel is the treatment of electron–ion interactions and the extremely high computational cost at high temperatures. In the present work, we perform extensive state-of-the-art ab initio quantum Langevin molecular dynamics simulations to obtain EOS data for DT mixtures at densities from 0.1 g/cm3 to 2000 g/cm3 and temperatures from 500 K to 2000 eV, which are relevant to ICF processes. Comparisons with average-atom molecular dynamics and orbital-free molecular dynamics simulations show that the ionic strong-coupling effect is important for determining the whole-range EOS. This work can supply accurate EOS data for DT mixtures within a unified ab initio framework, as well as providing a benchmark for various semiclassical methods.
  • loading
  • [1]
    E. M. Campbell, V. N. Goncharov, T. C. Sangster, S. P. Regan, P. B. Radha et al., “Laser-direct-drive program: Promise, challenge, and path forward,” Matter Radiat. Extremes 2, 37 (2017).10.1016/j.mre.2017.03.001 doi: 10.1016/j.mre.2017.03.001
    [2]
    Z. Li, Z. Wang, R. Xu, J. Yang, F. Ye et al., “Experimental investigation of Z-pinch radiation source for indirect drive inertial confinement fusion,” Matter Radiat. Extremes 4, 046201 (2019).10.1063/1.5099088 doi: 10.1063/1.5099088
    [3]
    J. Lindl, “Development of the indirect-drive approach to inertial confinement fusion and the target physics basis for ignition and gain,” Phys. Plasmas 2, 3933 (1995).10.1063/1.871025 doi: 10.1063/1.871025
    [4]
    L. Caillabet, S. Mazevet, and P. Loubeyre, “Multiphase equation of state of hydrogen from ab initio calculations in the range 0.2 to 5 g/cc up to 10 eV,” Phys. Rev. B 83, 094101 (2011).10.1103/physrevb.83.094101 doi: 10.1103/physrevb.83.094101
    [5]
    L. Caillabet, B. Canaud, G. Salin, S. Mazevet, and P. Loubeyre, “Change in inertial confinement fusion implosions upon using an ab initio multiphase DT equation of state,” Phys. Rev. Lett. 107, 115004 (2011).10.1103/physrevlett.107.115004 doi: 10.1103/physrevlett.107.115004
    [6]
    S. X. Hu, B. Militzer, V. N. Goncharov, and S. Skupsky, “First-principles equation-of-state table of deuterium for inertial confinement fusion applications,” Phys. Rev. B 84, 224109 (2011).10.1103/physrevb.84.224109 doi: 10.1103/physrevb.84.224109
    [7]
    S. X. Hu, L. A. Collins, V. N. Goncharov, J. D. Kress, T. R. Boehly et al., “First-principles studies on the equation of state, thermal conductivity, and opacity of deuterium-tritium (DT) and polystyrene (CH) for inertial confinement fusion applications,” J. Phys.: Conf. Ser. 717, 012064 (2016).10.1088/1742-6596/717/1/012064 doi: 10.1088/1742-6596/717/1/012064
    [8]
    J. Danel, L. Kazandjian, and R. Piron, “Equation of state of warm dense deuterium and its isotopes from density-functional theory molecular dynamics,” Phys. Rev. E 93, 043210 (2016).10.1103/physreve.93.043210 doi: 10.1103/physreve.93.043210
    [9]
    C. Wang and P. Zhang, “Wide range equation of state for fluid hydrogen from density functional theory,” Phys. Plasmas 20, 092703 (2013).10.1063/1.4821839 doi: 10.1063/1.4821839
    [10]
    M. A. Morales, L. X. Benedict, D. S. Clark, E. Schwegler, I. Tamblyn et al., “Ab initio calculations of the equation of state of hydrogen in a regime relevant for inertial fusion applications,” High Energy Density Phys. 8, 5 (2012).10.1016/j.hedp.2011.09.002 doi: 10.1016/j.hedp.2011.09.002
    [11]
    H. Liu, G. Zhang, Q. Zhang, H. Song, Q. Li et al., “Progress on equation of state of hydrogen and deuterium,” Chin. J. High Pressure Phys. 32, 050101 (2018).10.11858/gywlxb.20180587 doi: 10.11858/gywlxb.20180587
    [12]
    J. A. Gaffney, S. X. Hu, P. Arnault, A. Becker, L. X. Benedict et al., “A review of equation-of-state models for inertial confinement fusion materials,” High Energy Density Phys. 28, 7 (2018).10.1016/j.hedp.2018.08.001 doi: 10.1016/j.hedp.2018.08.001
    [13]
    S. Faik, A. Tauschwitz, and I. Iosilevskiy, “The equation of state package FEOS for high energy density matter,” Comput. Phys. Commun. 227, 117 (2018).10.1016/j.cpc.2018.01.008 doi: 10.1016/j.cpc.2018.01.008
    [14]
    W. J. Nellis, “Dynamic compression of materials: Metallization of fluid hydrogen at high pressures,” Rep. Prog. Phys. 69, 1479 (2006).10.1088/0034-4885/69/5/r05 doi: 10.1088/0034-4885/69/5/r05
    [15]
    G. V. Boriskov, A. I. Bykov, R. Ilkaev, V. D. Selemir, G. V. Simakov et al., “Shock compression of liquid deuterium up to 109 GPa,” Phys. Rev. B 71, 092104 (2005).10.1103/physrevb.71.092104 doi: 10.1103/physrevb.71.092104
    [16]
    D. G. Hicks, T. R. Boehly, P. M. Celliers, J. H. Eggert, S. J. Moon et al., “Laser-driven single shock compression of fluid deuterium from 45 to 220 GPa,” Phys. Rev. B 79, 014112 (2009).10.1103/physrevb.79.014112 doi: 10.1103/physrevb.79.014112
    [17]
    R. Nora, W. Theobald, R. Betti, F. J. Marshall, D. T. Michel et al., “Gigabar spherical shock generation on the OMEGA laser,” Phys. Rev. Lett. 114, 045001 (2015).10.1103/physrevlett.114.045001 doi: 10.1103/physrevlett.114.045001
    [18]
    A. Fernandez-Pañella, M. Millot, D. E. Fratanduono, M. P. Desjarlais, S. Hamel et al., “Shock compression of liquid deuterium up to 1 TPa,” Phys. Rev. Lett. 122, 255702 (2019).10.1103/physrevlett.122.255702 doi: 10.1103/physrevlett.122.255702
    [19]
    M. D. Knudson, D. L. Hanson, J. E. Bailey, C. A. Hall, J. R. Asay et al., “Principal hugoniot, reverberating wave, and mechanical reshock measurements of liquid deuterium to 400 GPa using plate impact techniques,” Phys. Rev. B 69, 144209 (2004).10.1103/physrevb.69.144209 doi: 10.1103/physrevb.69.144209
    [20]
    M. D. Knudson, M. P. Desjarlais, A. Becker, R. W. Lemke, K. R. Cochrance et al., “Direct observation of an abrupt insulator-to-metal transition in dense liquid deuterium,” Science 348, 1455 (2015).10.1126/science.aaa7471 doi: 10.1126/science.aaa7471
    [21]
    D. Saumon and G. Chabrier, “Fluid hydrogen at high density: Pressure ionization,” Phys. Rev. A 46, 2084 (1992).10.1103/physreva.46.2084 doi: 10.1103/physreva.46.2084
    [22]
    F. J. Rogers, “New activity expansion calculations for warm dense deuterium,” Contrib. Plasma Phys. 41, 179 (2001).10.1002/1521-3986(200103)41:2/3<179::aid-ctpp179>3.0.co;2-h doi: 10.1002/1521-3986(200103)41:2/3<179::aid-ctpp179>3.0.co;2-h
    [23]
    H. Juranek, R. Redmer, and Y. Rosenfeld, “Fluid variational theory for pressure dissociation in dense hydrogen: Multicomponent reference system and nonadditivity effects,” J. Chem. Phys. 117, 1768 (2002).10.1063/1.1486210 doi: 10.1063/1.1486210
    [24]
    V. K. Gryaznov, I. L. Iosilevskiy, and V. E. Fortov, “Thermodynamics of hydrogen and helium plasmas in megabar and multi-megabar pressure range under strong shock and isentropic compression,” Plasma Phys. Controlled Fusion 58, 014012 (2016).10.1088/0741-3335/58/1/014012 doi: 10.1088/0741-3335/58/1/014012
    [25]
    G. I. Kerley, “Equation of state and phase diagram of dense hydrogen,” Phys. Earth Planet. Inter. 6, 78 (1972).10.1016/0031-9201(72)90036-2 doi: 10.1016/0031-9201(72)90036-2
    [26]
    G. I. Kerley, Technical Report No. SAND2003-3613, Sandia National Laboratory, Albuquerque, NM, 2003.
    [27]
    Y. Hou, F. Jin, and J. Yuan, “Influence of the electronic energy level broadening on the ionization of atoms in hot and dense plasmas: An average atom model demonstration,” Phys. Plasmas 13, 093301 (2006).10.1063/1.2338023 doi: 10.1063/1.2338023
    [28]
    J. Chihara, “Average atom model based on quantum hyper-netted chain method,” High Energy Density Phys. 19, 38 (2016).10.1016/j.hedp.2016.03.002 doi: 10.1016/j.hedp.2016.03.002
    [29]
    Y. Hou and J. Yuan, “Alternative ion-ion pair-potential model applied to molecular dynamics simulations of hot and dense plasmas: Al and Fe as examples,” Phys. Rev. E 79, 016402 (2009).10.1103/physreve.79.016402 doi: 10.1103/physreve.79.016402
    [30]
    S. X. Hu, B. Militzer, V. N. Goncharov, and S. Skupsky, “Strong coupling and degeneracy effects in inertial confinement fusion implosions,” Phys. Rev. Lett. 104, 235003 (2010).10.1103/physrevlett.104.235003 doi: 10.1103/physrevlett.104.235003
    [31]
    P. Hohenberg and W. Kohn, “Inhomogeneous electron gas,” Phys. Rev. 136, B864 (1964).10.1103/physrev.136.b864 doi: 10.1103/physrev.136.b864
    [32]
    W. Kohn and L. J. Sham, “Self-consistent equations including exchange and correlation effects,” Phys. Rev. 140, A1133 (1965).10.1103/physrev.140.a1133 doi: 10.1103/physrev.140.a1133
    [33]
    N. D. Mermin, “Thermal properties of the inhomogeneous electron gas,” Phys. Rev. 137, A1441 (1965).10.1103/physrev.137.a1441 doi: 10.1103/physrev.137.a1441
    [34]
    T. J. Lenosky, S. R. Bickham, J. D. Kress, and L. A. Collins, “Density-functional calculation of the Hugoniot of shocked liquid deuterium,” Phys. Rev. B 61, 1 (2000).10.1103/physrevb.61.1 doi: 10.1103/physrevb.61.1
    [35]
    M. P. Desjarlais, “Density-functional calculations of the liquid deuterium Hugoniot, reshock, and reverberation timing,” Phys. Rev. B 68, 064204 (2003).10.1103/physrevb.68.064204 doi: 10.1103/physrevb.68.064204
    [36]
    B. Holst, R. Redmer, and M. P. Desjarlais, “Thermophysical properties of warm dense hydrogen using quantum molecular dynamics simulations,” Phys. Rev. B 77, 184201 (2008).10.1103/physrevb.77.184201 doi: 10.1103/physrevb.77.184201
    [37]
    B. Militzer and D. M. Ceperley, “Path integral Monte Carlo calculation of the deuterium Hugoniot,” Phys. Rev. Lett. 85, 1890 (2000).10.1103/physrevlett.85.1890 doi: 10.1103/physrevlett.85.1890
    [38]
    K. P. Driver and B. Militzer, “All-electron path integral Monte Carlo simulations of warm dense matter: Application to water and carbon plasmas,” Phys. Rev. Lett. 108, 115502 (2012).10.1103/physrevlett.108.115502 doi: 10.1103/physrevlett.108.115502
    [39]
    C. Pierleoni, D. M. Ceperley, and M. Holzmann, “Coupled electron-ion Monte Carlo calculations of dense metallic hydrogen,” Phys. Rev. Lett. 93, 146402 (2004).10.1103/physrevlett.93.146402 doi: 10.1103/physrevlett.93.146402
    [40]
    M. A. Morales, C. Pierleoni, and D. M. Ceperley, “Equation of state of metallic hydrogen from coupled electron-ion Monte Carlo simulations,” Phys. Rev. E 81, 021202 (2010).10.1103/physreve.81.021202 doi: 10.1103/physreve.81.021202
    [41]
    R. C. Clay III, M. P. Desjarlais, and L. Shulenburger, “Deuterium Hugoniot: Pitfalls of thermodynamic sampling beyond density functional theory,” Phys. Rev. B 100, 075103 (2019).10.1103/physrevb.100.075103 doi: 10.1103/physrevb.100.075103
    [42]
    F. Lambert, J. Clérouin, and G. Zérah, “Very-high-temperature molecular dynamics,” Phys. Rev. E 73, 016403 (2006).10.1103/physreve.73.016403 doi: 10.1103/physreve.73.016403
    [43]
    V. V. Karasiev, T. Sjostrom, and S. B. Trickey, “Generalized-gradient-approximation noninteracting free-energy functionals for orbital-free density functional calculations,” Phys. Rev. B 86, 115101 (2012).10.1103/physrevb.86.115101 doi: 10.1103/physrevb.86.115101
    [44]
    H. Y. Sun, D. Kang, Y. Hou, and J. Y. Dai, “Transport properties of warm and hot dense iron from orbital free and corrected Yukawa potential molecular dynamics,” Matter Radiat. Extremes 2, 287 (2017).10.1016/j.mre.2017.09.001 doi: 10.1016/j.mre.2017.09.001
    [45]
    S. Zhang, H. Wang, W. Kang, P. Zhang, and X. T. He, “Extended application of Kohn–Sham first-principles molecular dynamics method with plane wave approximation at high energyąłFrom cold materials to hot dense plasmas,” Phys. Plasmas 23, 042707 (2016).10.1063/1.4947212 doi: 10.1063/1.4947212
    [46]
    J. Dai, Y. Hou, and J. Yuan, “Unified first principles description from warm dense matter to ideal ionized gas plasma: Electron-ion collisions induced friction,” Phys. Rev. Lett. 104, 245001 (2010).10.1103/physrevlett.104.245001 doi: 10.1103/physrevlett.104.245001
    [47]
    J. Dai and J. Yuan, “Large-scale efficient Langevin dynamics, and why it works,” Europhys. Lett. 88, 20001 (2009).10.1209/0295-5075/88/20001 doi: 10.1209/0295-5075/88/20001
    [48]
    J. Dai, Y. Hou, and J. Yuan, “Quantum Langevin molecular dynamic determination of the solar-interior equation of state,” Astrophys. J. 721, 1158 (2010).10.1088/0004-637x/721/2/1158 doi: 10.1088/0004-637x/721/2/1158
    [49]
    J. Dai, Y. Hou, and J. Yuan, “Influence of ordered structures on electrical conductivity and XANES from warm to hot dense matter,” High Energy Density Phys. 7, 84 (2011).10.1016/j.hedp.2011.02.002 doi: 10.1016/j.hedp.2011.02.002
    [50]
    J. Dai, D. Kang, Z. Zhao, Y. Wu, and J. Yuan, “Dynamic ionic clusters with flowing electron bubbles from warm to hot dense iron along the Hugoniot curve,” Phys. Rev. Lett. 109, 175701 (2012).10.1103/physrevlett.109.175701 doi: 10.1103/physrevlett.109.175701
    [51]
    J. Dai, Y. Hou, D. Kang, H. Sun, J. Wu et al., “Structure, equation of state, diffusion and viscosity of warm dense Fe under the conditions of a giant planet core,” New J. Phys. 15, 045003 (2013).10.1088/1367-2630/15/4/045003 doi: 10.1088/1367-2630/15/4/045003
    [52]
    D. Kang and J. Dai, “Dynamic electron–cion collisions and nuclear quantum effects in quantum simulation of warm dense matter,” J. Phys.: Condens. Matter 30, 073002 (2018).10.1088/1361-648x/aa9e29 doi: 10.1088/1361-648x/aa9e29
    [53]
    A. V. Plyukhin, “Generalized Fokker-Planck equation, Brownian motion, and ergodicity,” Phys. Rev. E 77, 061136 (2008).10.1103/physreve.77.061136 doi: 10.1103/physreve.77.061136
    [54]
    R. G. Gordon and Y. S. Kim, “Theory for the forces between closed-shell atoms and molecules,” J. Chem. Phys. 56, 3122 (1972).10.1063/1.1677649 doi: 10.1063/1.1677649
    [55]
    S. Ichimaru, “Strongly coupled plasmas: High-density classical plasmas and degenerate electron liquids,” Rev. Mod. Phys. 54, 1017 (1982).10.1103/revmodphys.54.1017 doi: 10.1103/revmodphys.54.1017
    [56]
    P. Giannozzi, O. Andreussi, T. Brumme, O. Bunau, M. B. Nardelli et al., “Advanced capabilities for materials modelling with quantum ESPRESSO,” J. Phys.: Condens. Matter 29, 465901 (2017).10.1088/1361-648x/aa8f79 doi: 10.1088/1361-648x/aa8f79
    [57]
    J. P. Perdew, K. Burke, and M. Ernzerhof, “Generalized gradient approximation made simple,” Phys. Rev. Lett. 77, 3865 (1996).10.1103/physrevlett.77.3865 doi: 10.1103/physrevlett.77.3865
    [58]
    R. P. Feynman, N. Metropolis, and E. Teller, “Equations of state of elements based on the generalized Fermi-Thomas theory,” Phys. Rev. 75, 1561 (1949).10.1103/physrev.75.1561 doi: 10.1103/physrev.75.1561
    [59]
    F. Perrot, “Gradient correction to the statistical electronic free energy at nonzero temperatures: Application to equation-of-state calculations,” Phys. Rev. A 20, 586 (1979).10.1103/physreva.20.586 doi: 10.1103/physreva.20.586
    [60]
    M. Chen, X. C. Huang, J. M. Dieterich, L. Hung, I. Shin et al., “Introducing PROFESS 3.0: An advanced program for orbital-free density functional theory molecular dynamics simulations,” Comput. Phys. Commun. 190, 228 (2015).10.1016/j.cpc.2014.12.021 doi: 10.1016/j.cpc.2014.12.021
    [61]
    K. Luo, V. V. Karasiev, and S. B. Trickey, “A simple generalized gradient approximation for the noninteracting kinetic energy density functional,” Phys. Rev. B 98, 041111(R) (2018).10.1103/physrevb.98.041111 doi: 10.1103/physrevb.98.041111
    [62]
    K. Luo, V. V. Karasiev, and S. B. Trickey, “Towards accurate orbital-free simulations: A generalized gradient approximation for the noninteracting free energy density functional,” Phys. Rev. B 101, 075116 (2020).10.1103/physrevb.101.075116 doi: 10.1103/physrevb.101.075116
    [63]
    V. A. Baturin, W. Däppen, A. V. Oreshina, S. V. Ayukov, and A. B. Gorshkov, “Interpolation of equation-of-state data,” Astron. Astrophys. 626, A108 (2019).10.1051/0004-6361/201935669 doi: 10.1051/0004-6361/201935669
    [64]
    D. Kang, H. Sun, J. Dai, W. Chen, Z. Zhao et al., “Nuclear quantum dynamics in dense hydrogen,” Sci. Rep. 4, 5484 (2014).10.1038/srep05484 doi: 10.1038/srep05484
    [65]
    B. Lu, D. Kang, D. Wang, T. Gao, and J. Dai, “Towards the same line of liquid-liquid phase transition of dense hydrogen from various theoretical predictions,” Chin. Phys. Lett. 36, 103102 (2019).10.1088/0256-307x/36/10/103102 doi: 10.1088/0256-307x/36/10/103102
    [66]
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(3)  / Tables(2)

    Article Metrics

    Article views (179) PDF downloads(8) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return