Follow us on Wechat

用微信扫码二维码

分享至好友和朋友圈

Volume 5 Issue 4
Jul.  2020
Turn off MathJax
Article Contents
Gribkov V. A., Borovitskaya I. V., Demina E. V., Kazilin E. E., Latyshev S. V., Maslyaev S. A., Pimenov V. N., Laas T., Paduch M., Rogozhkin S. V.. Application of dense plasma focus devices and lasers in the radiation material sciences for the goals of inertial fusion beyond ignition[J]. Matter and Radiation at Extremes, 2020, 5(4): 045403. doi: 10.1063/5.0005852
Citation: Gribkov V. A., Borovitskaya I. V., Demina E. V., Kazilin E. E., Latyshev S. V., Maslyaev S. A., Pimenov V. N., Laas T., Paduch M., Rogozhkin S. V.. Application of dense plasma focus devices and lasers in the radiation material sciences for the goals of inertial fusion beyond ignition[J]. Matter and Radiation at Extremes, 2020, 5(4): 045403. doi: 10.1063/5.0005852

Application of dense plasma focus devices and lasers in the radiation material sciences for the goals of inertial fusion beyond ignition

doi: 10.1063/5.0005852
More Information
  • Corresponding author: e)Author to whom correspondence should be addressed: maslyaev@mail.ru
  • Received Date: 2020-03-02
  • Accepted Date: 2020-03-29
  • Available Online: 2020-07-01
  • Publish Date: 2020-07-15
  • Specimens of materials for prospective use in chambers of nuclear fusion reactors with inertial plasma confinement, namely, W, ODS steels, Eurofer 97 steel, a number of ceramics, etc., have been irradiated by dense plasma focus devices and a laser in the Q-switched mode of operation with a wide range of parameters, including some that noticeably exceeded those expected in reactors. By means of 1-ns laser interferometry and neutron measurements, the characteristics of plasma streams and fast ion beams, as well as the dynamics of their interaction with solid-state targets, have been investigated. 3D profilometry, optical and scanning electron microscopy, atomic emission spectroscopy, X-ray elemental and structural analyses, and precise weighing of specimens before and after irradiation have provided data on the roughening threshold and the susceptibility to damage of the materials under investigation. Analysis of the results, together with numerical modeling, has revealed the important role of shock waves in the damage processes. It has been shown that a so-called integral damage factor may be used only within restricted ranges of the irradiation parameters. It has also been found that in the irradiation regime with well-developed gasdynamic motion of secondary plasma, the overall amount of radiation energy is spent preferentially either on removing large masses of cool matter from the material surface or on heating a small amount of plasma to high temperature (and, consequently, imparting to it a high velocity), depending on the power flux density and characteristics of the pulsed irradiation.
  • loading
  • [1]
    [2]
    S. Brezinsek, J. W. Coenen, T. Schwarz-Selinger, K. Schmid, A. Kirschner et al. (WP PFC Contributors), Nucl. Fusion 57, 116041 (2017).10.1088/1741-4326/aa796e doi: 10.1088/1741-4326/aa796e
    [3]
    I. E.Garkusha, I. Landman, J. Linke, V. A. Makhlaj, A. V. Medvedev et al., “Performance of deformed tungsten under ELM-like plasma exposures in QSPA Kh-50,” J. Nucl. Mater. 415, S65–S69 (2011).10.1016/j.jnucmat.2010.11.047 doi: 10.1016/j.jnucmat.2010.11.047
    [4]
    N. Klimov, V. Podkovyrov, A. Zhitlukhin, and D. Kovalenko, “Experimental study of PFCs erosion under ITER-like transient loads at plasma gun facility QSPA,” J. Nucl. Mater. 390-391, 721–726 (2009).10.1016/j.jnucmat.2009.01.197 doi: 10.1016/j.jnucmat.2009.01.197
    [5]
    P. Fiflis, T. W. Morgan, S. Brons, G. G. Van Eden, M. A. Van Den Berg et al, “Performance of the lithium metal infused trenches in the magnum PSI linear plasma simulator,” Nucl. Fusion 55, 113004 (2015).10.1088/0029-5515/55/11/113004 doi: 10.1088/0029-5515/55/11/113004
    [6]
    N. Almousa, L. Winfrey, J. Gilligan, and M. Bourham, “Radiative heat transport through vapor plasma for fusion heat flux studies and electrothermal plasma sources applications,” J. Nucl. Energy Sci. Power Generat. Technol. 3, 1000116 (2014).10.4172/2325-9809.1000116 doi: 10.4172/2325-9809.1000116
    [7]
    Th. Loewenhoff, T. Hirai, S. Keusemann, J. Linke, G. Pintsuk et al., “Experimental simulation of edge localized modes using focused electron beams—Features of a circular load pattern,” J. Nucl. Mater. 415(1), S51–S54 (2011).10.1016/j.jnucmat.2010.08.065 doi: 10.1016/j.jnucmat.2010.08.065
    [8]
    E. V.Morozov, A. S. Demin, V. N. Pimenov, V. A. Gribkov, V. V. Roshchupkin et al., “Features of damage and structural changes in the surface layer of tungsten under the pulsed action of laser radiation, ion and plasma fluxes,” Phys. Chem. Mater. Treatment. 4, 5–18 (2017) (in Russian).
    [9]
    [10]
    [11]
    T. J. Tanaka, G. A. Rochau, R. R. Peterson, and C. L. Olson, “Testing IFE materials on Z,” J. Nucl. Mater. 347, 244–254 (2005).10.1016/j.jnucmat.2005.08.016 doi: 10.1016/j.jnucmat.2005.08.016
    [12]
    J. F. Latkowski, R. P. Abbott, R. C. Schmitt, and B. K. Bell, “Effect of multi-shot X-ray exposures in IFE armor materials,” J. Nucl. Mater. 347, 255–265 (2005).10.1016/j.jnucmat.2005.08.018 doi: 10.1016/j.jnucmat.2005.08.018
    [13]
    A. M. Stoneham, J. R. Matthews, and I. J. Ford, “Innovative materials for fusion power plant structures: Separating functions,” J. Phys.: Condens. Matter 16, s2597–s2621 (2004).10.1088/0953-8984/16/27/001 doi: 10.1088/0953-8984/16/27/001
    [14]
    Handbook of Physical Quantities, edited by I. S. Grigoriev, E. Z. Meilikhov, and A. A. Radzig (CRC Press, Boca Raton, 1997), 1548 p., ISBN: 9780849328619, CAT No. 2861.
    [15]
    [16]
    M. Fujitsuka, H. Shinno, T. Tanabe, and H. Shiraishi, “Thermal shock experiments for carbon materials by electron beams,” J. Nucl. Mater. 179-181(part A), 189–192 (1991).10.1016/0022-3115(91)90058-f doi: 10.1016/0022-3115(91)90058-f
    [17]
    M. A. Orlova, O. A. Kost, V. A. Gribkov, I. G. Gazaryan, A. V. Egorov et al., “Enzyme activation and inactivation induced by low doses of irradiation,” Appl. Biochem. Biotechnol. 88, 243–255 (2000).10.1385/abab:88:1-3:243 doi: 10.1385/abab:88:1-3:243
    [18]
    O. A.Troshina, D. A. Callahan, D. T. Casey, P. M. Celliers, C. Cerjan et al, “Fuel gain exceeding unity in an inertially confined fusion implosion,” Nature 506, 343–348 (2014).10.1038/nature13008 doi: 10.1038/nature13008
    [19]
    A. Bernard, H. Bruzzone, P. Choi, H. Chuaqui, V. Gribkov et al., “Scientific status of plasma focus research,” J. Moscow Phys. Soc. 8, 93–170 (1998).
    [20]
    V. A. Gribkov, L. Karpinski, P. Strzyzewski, M. Scholz, and A. Dubrovskij, “New efficient low-energy dense plasma focus in IPPLM,” Czech J. Phys. 54(Suppl. C), 191–197 (2004).10.1007/bf03166399 doi: 10.1007/bf03166399
    [21]
    M. Scholz, R. Miklaszewski, V. A. Gribkov, and F. Mezzetti, “PF-1000 device,” Nukleonika 45(3), 155–158 (2000).
    [22]
    V. A. Gribkov, I. V. Borovitskaya, A. S. Demin, E. V. Morozov, S. A. Maslyaev et al., “The Vikhr plasma focus device for diagnosing the radiation-thermal resistance of materials intended for thermonuclear energy and aerospace engineering,” Instrum. Exp. Techn. 63(1), 68–76 (2020).10.1134/s0020441219060162 doi: 10.1134/s0020441219060162
    [23]
    V. Shirokova, T. Laas, A. Ainsaar, J. Priimets, Ü. Ugaste et al., “Comparison of damages in tungsten and tungsten doped with lanthanum-oxide exposed to dense deuterium plasma shots,” J. Nucl. Mater. 435, 181–188 (2013).10.1016/j.jnucmat.2012.12.027 doi: 10.1016/j.jnucmat.2012.12.027
    [24]
    V. A. Gribkov, M. Paduch, E. Zielinska, A. S. Demin, E. V. Demina et al., “Comparative analysis of damageability produced by powerful pulsed ion/plasma streams and laser radiation on the plasma-facing W samples,” Radiat. Phys. Chem. 150, 20–29 (2018).10.1016/j.radphyschem.2018.03.020 doi: 10.1016/j.radphyschem.2018.03.020
    [25]
    V. A. Gribkov, A. S. Demin, N. A. Epifanov, E. E. Kazilin, S. V. Latyshev et al, “Damageability of the Al2O3 oxide coating on the aluminum substrate by pulsed beam plasma and laser radiation,” Inorg. Mater. Appl. Res. 10, 339–346 (2019).10.1134/S2075113319020151 doi: 10.1134/S2075113319020151
    [26]
    T. Laas, K. Laas, J. Paju, J. Priimets, S. Tõkke et al, “Behavior of tungsten alloy with iron and nickel under repeated high temperature plasma pulses,” Fusion Eng. Des. 151, 111408 (2020).10.1016/j.fusengdes.2019.111408 doi: 10.1016/j.fusengdes.2019.111408
    [27]
    E. V. Demina, V. A. Gribkov, M. D. Prusakova, V. N. Pimenov, V. P. Sirotinkin et al., “Behavior of the 16%Cr ODS ferritic steel intended for nuclear fusion power industry after tests in the conditions of irradiation in the Dense Plasma Focus facility PF-1000U,” J. Phys.: Conf. Ser. 1347, 012069 (2019).10.1088/1742-6596/1347/1/0120691. doi: 10.1088/1742-6596/1347/1/0120691
    [28]
    V. A. Gribkov, E. V. Demina, E. E. Kazilin, S. V. Latyshev, S. A. Maslyaev et al., “Testing of materials perspective for nuclear fusion reactors with inertial plasma confinement by Plasma Focus and laser devices,” J. Phys.: Conf. Ser. 1347(1), 012071 (2019).10.1088/1742-6596/1347/1/012071 doi: 10.1088/1742-6596/1347/1/012071
    [29]
    G. Pintsuk, “Tungsten as a plasma-facing material,” in Comprehensive Nuclear Materials, edited by R. J. M. Konings (Elsevier, Amsterdam, The Netherlands, 2012).
    [30]
    Ya. B. Zel’dovich and Yu. P. Raizer, Physics of Shock Waves and High-Temperature Hydrodynamic Phenomena (Academic, New York, 1966), Vols. 1 and 2.
    [31]
    V. A. Gribkov, S. V. Latyshev, S. A. Maslyaev, and V. N. Pimenov, “Numerical modeling of interaction of pulsed streams of energy with material in the dense plasma focus devices,” Phys. Chem. Mater. Treatment. 6, 16–22 (2011) (in Russian).
    [32]
    S. V. Latyshev, V. A. Gribkov, S. A. Maslyaev, V. N. Pimenov, M. Paduch et al., “Generation of shock waves in materials science experiments with dense plasma focus device,” Inorg. Mater.: Appl. Res. 6(2), 91–95 (2015).10.1134/s2075113315020100 doi: 10.1134/s2075113315020100
    [33]
    [34]
    K. L. Murty and I. Charit, “Structural materials for Gen-IV nuclear reactors: Challenges and opportunities,” J. Nucl. Mater. 383(1-2), 189–195 (2008).10.1016/j.jnucmat.2008.08.044 doi: 10.1016/j.jnucmat.2008.08.044
    [35]
    C. R. F. Azevedo, “Selection of fuel cladding material for nuclear fission reactors,” Eng. Failure Anal. 18(8), 1943–1962 (2011).10.1016/j.engfailanal.2011.06.010 doi: 10.1016/j.engfailanal.2011.06.010
    [36]
    P. Yvon and F. Carré, “Structural materials challenges for advanced reactor systems,” J. Nucl. Mater. 385(2), 217–222 (2009).10.1016/j.jnucmat.2008.11.026 doi: 10.1016/j.jnucmat.2008.11.026
    [37]
    S. Ukai and M. Fujiwara, “Perspective of ODS alloys application in nuclear environments,” J. Nucl. Mater. 307-311(Part 1), 749–757 (2002).10.1016/s0022-3115(02)01043-7 doi: 10.1016/s0022-3115(02)01043-7
    [38]
    R. Kasada, N. Toda, K. Yutani, H. S. Cho, H. Kishimoto et al., “Pre- and post-deformation microstructures of oxide dispersion strengthened ferritic steels,” J. Nucl. Mater. 367-370(Part А), 222–228 (2007).10.1016/j.jnucmat.2007.03.141 doi: 10.1016/j.jnucmat.2007.03.141
    [39]
    R. Kimura, A. Möslang, M. Schirra, P. Schlossmacher, and M. Klimenkov, “Mechanical and microstructural properties of a hipped RAFM ODS-steel,” J. Nucl. Mater. 307-311, 769–772 (2002).10.1016/s0022-3115(02)01045-0 doi: 10.1016/s0022-3115(02)01045-0
    [40]
    R. L. Klueh, P. J. Maziasz, I. S. Kim, L. Heatherly, D. T. Hoelzer et al, “Tensile and creep properties of an oxide dispersion-strengthened ferritic steel,” J. Nucl. Mater. 307-311, 773–777 (2002).10.1016/s0022-3115(02)01046-2 doi: 10.1016/s0022-3115(02)01046-2
    [41]
    D. A. McClintock, M. A. Sokolov, D. T. Hoelzer, and R. K. Nanstad, “Mechanical properties of irradiated ODS-EUROFER and nanocluster strengthened 14YWT,” J. Nucl. Mater. 392, 353–359 (2009).10.1016/j.jnucmat.2009.03.024 doi: 10.1016/j.jnucmat.2009.03.024
    [42]
    N. V. Luzginova, J. Rensman, P. Pierick, and J. B. J. Hegeman, “Irradiation response of ODS Eurofer97 steel,” J. Nucl. Mater. 428, 192–196 (2012).10.1016/j.jnucmat.2011.08.030 doi: 10.1016/j.jnucmat.2011.08.030
    [43]
    S. A. Maslyaev, “Thermal effects during pulsed irradiation of materials in the plasma focus device,” Adv. Mater. 5, 47–55 (2007) (in Russian).
    [44]
    G. G. Bondarenko, Radiation Physics, Structure and Strength of Solids (Pilot LZ, Moscow, 2016) (in Russian).
    [45]
    L. P. Putilov, A. N. Varaksin, and V. I. Tsidilkovski, “Defect formation and water incorporation in Y2O3,” J. Phys. Chem. Solids 72, 1090–1095 (2011).10.1016/j.jpcs.2011.06.010 doi: 10.1016/j.jpcs.2011.06.010
    [46]
    L. I. Larikov and V. I. Isaichev, Diffusion in Metals and Alloys (Naukova Dumka, Handbook, Kiyev, 1989), 510 p. (in Russian).
    [47]
    A. A. Vostryakov, E. A. Pastukhov, N. I. Sidorov, and I. S. Sipatov, “Diffusion in Ta, Nb, and Zr melts,” Butlerov Commun. 30(5), 20–24 (2012) (in Russian).
    [48]
    V. A. Gribkov, S. V. Latyshev, S. A. Maslyaev, and V. N. Pimenov, “Numerical simulation of the interaction of pulsed energy fluxes with material in Plasma focus device,” Phys. Chem. Mater. Treatment. 6, 16–22 (2011) (in Russian).
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(27)  / Tables(4)

    Article Metrics

    Article views (146) PDF downloads(8) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return