Follow us on Wechat

用微信扫码二维码

分享至好友和朋友圈

Volume 5 Issue 4
Jul.  2020
Turn off MathJax
Article Contents
Ciappina M. F., Peganov E. E., Popruzhenko S. V.. Focal-shape effects on the efficiency of the tunnel-ionization probe for extreme laser intensities[J]. Matter and Radiation at Extremes, 2020, 5(4): 044401. doi: 10.1063/5.0005380
Citation: Ciappina M. F., Peganov E. E., Popruzhenko S. V.. Focal-shape effects on the efficiency of the tunnel-ionization probe for extreme laser intensities[J]. Matter and Radiation at Extremes, 2020, 5(4): 044401. doi: 10.1063/5.0005380

Focal-shape effects on the efficiency of the tunnel-ionization probe for extreme laser intensities

doi: 10.1063/5.0005380
More Information
  • Corresponding author: a)Author to whom correspondence should be addressed: sergey.popruzhenko@gmail.com
  • Received Date: 2020-02-25
  • Accepted Date: 2020-06-16
  • Available Online: 2020-07-01
  • Publish Date: 2020-07-15
  • We examine the effect of laser focusing on the effectiveness of a recently discussed scheme [M. F. Ciappina et al., Phys. Rev. A 99 , 043405 (2019) and M. F. Ciappina and S. V. Popruzhenko, Laser Phys. Lett. 17 , 025301 (2020)] for in situ determination of ultrahigh intensities of electromagnetic radiation delivered by multi-petawatt laser facilities. Using two model intensity distributions in the focus of a laser beam, we show how the resulting yields of highly charged ions generated in the process of multiple sequential tunneling of electrons from atoms depend on the shapes of these distributions. Our findings lead to the conclusion that an accurate extraction of the peak laser intensity can be made either in the near-threshold regime, when the production of the highest charge state happens only in a small part of the laser focus close to the point where the intensity is maximal or through the determination of the points where the ion yields of close charges become equal. We show that for realistic parameters of the gas target, the number of ions generated in the central part of the focus in the threshold regime should be sufficient for a reliable measurement with highly sensitive time-of-flight detectors. Although the positions of the intersection points generally depend on the focal shape, they can be used to localize the peak intensity value in certain intervals. Finally, the slope of the intensity-dependent ion yields is shown to be robust with respect to both the focal spot size and the spatial distribution of the laser intensity in the focus. When these slopes can be measured, they will provide the most accurate determination of the peak intensity value within the considered tunnel ionization scheme. In addition to this analysis, we discuss the method in comparison with other recently proposed approaches for direct measurement of extreme laser intensities.
  • loading
  • [1]
    F. Krausz and M. Ivanov, “Attosecond physics,” Rev. Mod. Phys. 81, 163 (2009).10.1103/revmodphys.81.163 doi: 10.1103/revmodphys.81.163
    [2]
    L. F. DiMauro and P. Agostini, “Atomic and molecular ionization dynamics in strong laser fields: From optical to X-rays,” Adv. At., Mol., Opt. Phys. 61, 117 (2012).10.1016/B978-0-12-396482-3.00003-X doi: 10.1016/B978-0-12-396482-3.00003-X
    [3]
    B. M. Karnakov, V. D. Mur, S. V. Popruzhenko et al., “Current progress in developing the nonlinear ionization theory of atoms and ions,” Phys.-Usp. 58, 3 (2015).10.3367/ufne.0185.201501b.0003 doi: 10.3367/ufne.0185.201501b.0003
    [4]
    G. Mourou, T. Tajima, and S. V. Bulanov, “Optics in the relativistic regime,” Rev. Mod. Phys. 78, 309 (2009).10.1103/RevModPhys.78.309 doi: 10.1103/RevModPhys.78.309
    [5]
    A. Di Piazza, C. Müller, K. Z. Hatsagortsyan et al., “Extremely high-intensity laser interactions with fundamental quantum systems,” Rev. Mod. Phys. 84, 1177 (2012).10.1103/revmodphys.84.1177 doi: 10.1103/revmodphys.84.1177
    [6]
    N. B. Narozhny and A. M. Fedotov, “Extreme light physics,” Contemp. Phys. 56, 249 (2015).10.1080/00107514.2015.1028768 doi: 10.1080/00107514.2015.1028768
    [7]
    M. D. Perry, D. Pennington, B. C. Stuart et al., “Petawatt laser pulses,” Opt. Lett. 24, 160 (1999).10.1364/ol.24.000160 doi: 10.1364/ol.24.000160
    [8]
    S.-W. Bahk, P. Rousseau, T. A. Planchon et al., “Generation and characterization of the highest laser intensities (1022 W/cm2),” Opt. Lett. 29, 2837 (2004).10.1364/ol.29.002837 doi: 10.1364/ol.29.002837
    [9]
    V. Yanovsky, V. Chvykov, G. Kalinchenko et al., “Ultra-high intensity 300-TW laser at 0.1 Hz repetition rate,” Opt. Express 16, 2109 (2008).10.1364/oe.16.002109 doi: 10.1364/oe.16.002109
    [10]
    Z. Guo, L. Yu, J. Wang et al., “Improvement of the focusing ability by double deformable mirrors for 10-PW-level Ti:sapphire chirped pulse amplification laser system,” Opt. Exp. 26, 26776 (2018).10.1364/oe.26.026776 doi: 10.1364/oe.26.026776
    [11]
    D. N. Papadopoulos, J. P. Zou, C. Le Blanc et al., “The Apollon 10 PW laser: Experimental and theoretical investigation of the temporal characteristics,” High Power Laser Sci. Eng. 4, E34 (2016); 10.1017/hpl.2016.34 doi: 10.1017/hpl.2016.34
    [12]
    J. H. Sung, H. W. Lee, J. Y. Yoo et al., “4.2 PW, 20 fs Ti:sapphire laser at 0.1 Hz,” Opt. Lett. 42, 2058 (2017).10.1364/ol.42.002058 doi: 10.1364/ol.42.002058
    [13]
    X. Zeng, K. Zhou, Y. Zuo et al., “Multi-petawatt laser facility fully based on optical parametric chirped-pulse amplification,” Opt. Lett. 42, 2014 (2017).10.1364/ol.42.002014 doi: 10.1364/ol.42.002014
    [14]
    W. Li, Z. Gan, L. Yu et al., “339 J high-energy Ti:sapphire chirped-pulse amplifier for 10 PW laser facility,” Opt. Lett. 43, 5681 (2018).10.1364/ol.43.005681 doi: 10.1364/ol.43.005681
    [15]
    J.-P. Chambaret, O. Chekhlov, G. Cheriaux et al., “Extreme light infrastructure: Laser architecture and major challenges,” Proc. SPIE 7721, 77211D (2010).10.1117/12.854687 doi: 10.1117/12.854687
    [16]
    S. Weber, S. Bechet, S. Borneiset et al., “P3: An installation for high-energy density plasma physics and ultra-high intensity laser–matter interaction at ELI-beamlines,” Matter Radiat. Extremes 2, 149 (2017).10.1016/j.mre.2017.03.003 doi: 10.1016/j.mre.2017.03.003
    [17]
    A. V. Bashinov, A. A. Gonoskov, A. V. Kim et al., “New horizons for extreme light physics with mega-science project XCELS,” Eur. Phys. J.: Spec. Top. 223, 1105 (2014).10.1140/epjst/e2014-02161-7 doi: 10.1140/epjst/e2014-02161-7
    [18]
    C. A. Chowdhury, C. P. J. Barty, and B. C. Walker, ““Nonrelativistic” ionization of the L-shell states in argon by a “relativistic” 1019 W/cm2 laser field,” Phys. Rev. A 63, 042712 (2001).10.1103/physreva.63.042712 doi: 10.1103/physreva.63.042712
    [19]
    E. A. Chowdhury and B. C. Walker, “Multielectron ionization processes in ultrastrong laser fields,” J. Opt. Soc. Am. B 20, 109 (2003).10.1364/josab.20.000109 doi: 10.1364/josab.20.000109
    [20]
    K. Yamakawa, Y. Akahane, Y. Fukuda et al., “Ionization of many-electron atoms by ultrafast laser pulses with peak intensities greater than 1019 W/cm2,” Phys. Rev. A 68, 065403 (2003).10.1103/physreva.68.065403 doi: 10.1103/physreva.68.065403
    [21]
    K. Yamakawa, Y. Akahane, Y. Fukuda et al., “Super strong field ionization of atoms by 1019 W/cm2, 10 Hz laser pulses,” J. Mod. Opt. 50, 2515 (2003).10.1080/09500340308233581 doi: 10.1080/09500340308233581
    [22]
    A. Link, E. A. Chowdhury, J. T. Morrison et al., “Development of an in situ peak intensity measurement method for ultraintense single shot laser-plasma experiments at the Sandia Z petawatt facility,” Rev. Sci. Instrum. 77, 10E723 (2006).10.1063/1.2336469 doi: 10.1063/1.2336469
    [23]
    M. F. Ciappina, S. V. Popruzhenko, S. V. Bulanov et al., “Progress toward atomic diagnostics of ultrahigh laser intensities,” Phys. Rev. A 99, 043405 (2019).10.1103/physreva.99.043405 doi: 10.1103/physreva.99.043405
    [24]
    M. F. Ciappina, S. V. Bulanov, T. Ditmire et al., “Towards laser intensity calibration using high-field ionization,” in Progress in Ultrafast Intense Laser Science XV, Topics in Applied Physics Vol. 136, edited by K. Yamanouchi and D. Charalambidis (Springer Nature, Switzerland, 2020) (in press).
    [25]
    M. F. Ciappina and S. V. Popruzhenko, “Diagnostics of ultra-intense laser pulses using tunneling ionization,” Laser Phys. Lett. 17, 025301 (2020).10.1088/1612-202x/ab6559 doi: 10.1088/1612-202x/ab6559
    [26]
    O. Har-Shemesh and A. Di Piazza, “Peak intensity measurement of relativistic lasers via nonlinear Thomson scattering,” Opt. Lett. 37, 1352 (2012).10.1364/ol.37.001352 doi: 10.1364/ol.37.001352
    [27]
    C. Z. He, A. Longman, J. A. Pérez-Hernández et al., “Towards an in situ, full-power gauge of the focal-volume intensity of petawatt-class lasers,” Opt. Exp. 27, 30020 (2019).10.1364/oe.27.030020 doi: 10.1364/oe.27.030020
    [28]
    [29]
    F. Mackenroth, A. R. Holkundkar, and H.-P. Schlenvoigt, “Ultra-intense laser pulse characterization using ponderomotive electron scattering,” New J. Phys. 21, 123028 (2019).10.1088/1367-2630/ab5c4d doi: 10.1088/1367-2630/ab5c4d
    [30]
    O. E. Vais, A. G. R. Thomas, A. M. Maksimchuk et al., “Characterizing extreme laser intensities by ponderomotive acceleration of protons from rarified gas,” New J. Phys. 22, 023003 (2020).10.1088/1367-2630/ab6eac doi: 10.1088/1367-2630/ab6eac
    [31]
    A. Yandow, T. Toncian, and T. Ditmire, “Direct laser ion acceleration and above-threshold ionization at intensities from 1021 W/cm2 to 3 × 1023 W/cm2,” Phys. Rev. A 100, 053406 (2019).10.1103/physreva.100.053406 doi: 10.1103/physreva.100.053406
    [32]
    J. R. Oppenheimer, “Three notes on the quantum theory of aperiodic effects,” Phys. Rev. 31, 66 (1928).10.1103/physrev.31.66 doi: 10.1103/physrev.31.66
    [33]
    N. B. Narozhny and M. S. Fofanov, “Scattering of relativistic electrons by a focused laser pulse,” J. Exp. Theor. Phys. 90, 753 (2000).10.1134/1.559160 doi: 10.1134/1.559160
    [34]
    A. I. Nikishov and V. I. Ritus, [Sov. Phys. JETP 19, 529 (1964) (in English)].
    [35]
    V. B. Berestetskii, E. M. Lifshitz, and L. P. Pitaevskii, Quantum Electrodynamics (Butterworth-Heinemann, 1982), Chap. IV, Sec. 101, ISBN: 978-0-7506-3371-0.
    [36]
    E. S. Sarachik and G. T. Schappert, “Classical theory of the scattering of intense laser radiation by free electrons,” Phys. Rev. D 1, 2738 (1970).10.1103/physrevd.1.2738 doi: 10.1103/physrevd.1.2738
    [37]
    O. E. Vais and V. Yu. Bychenkov, “Direct electron acceleration for diagnostics of a laser pulse focused by an off-axis parabolic mirror,” Appl. Phys. B 124, 211 (2018).10.1007/s00340-018-7084-9 doi: 10.1007/s00340-018-7084-9
    [38]
    T. W. B. Kibble, “Mutual refraction of electrons and photons,” Phys. Rev. 150, 1060 (1966).10.1103/physrev.150.1060 doi: 10.1103/physrev.150.1060
    [39]
    S. P. Goreslavsky and N. B. Narozhny, “Ponderomotive scattering at relativistic laser intensities,” J. Nonlinear Opt. Phys. Matter 04, 799 (1995).10.1142/s0218863595000355 doi: 10.1142/s0218863595000355
    [40]
    D. B. Milosević, G. G. Paulus, D. Bauer et al., “Above-threshold ionization by few-cycle pulses,” J. Phys. B: At., Mol. Opt. Phys. 39, R203 (2006).10.1088/0953-4075/39/14/r01 doi: 10.1088/0953-4075/39/14/r01
    [41]
    S. V. Popruzhenko, “Keldysh theory of strong field ionization: History, applications, difficulties and perspectives,” J. Phys. B: At., Mol. Opt. Phys. 47, 204001 (2014).10.1088/0953-4075/47/20/204001 doi: 10.1088/0953-4075/47/20/204001
    [42]
    W. Becker, S. P. Goreslavski, D. B. Miloñević et al., “The plateau in above-threshold ionization: The keystone of rescattering physics,” J. Phys. B: At., Mol. Opt. Phys. 51, 162002 (2018).10.1088/1361-6455/aad150 doi: 10.1088/1361-6455/aad150
    [43]
    M. Kübel, M. Arbeiter, C. Burger et al., “Phase- and intensity-resolved measurements of above threshold ionization by few-cycle pulses,” J. Phys. B: At., Mol. Opt. Phys. 51, 134007 (2018).10.1088/1361-6455/aac584 doi: 10.1088/1361-6455/aac584
    [44]
    V. V. Strelkov, E. Mével, and E. Constant, “Short pulse carrier-envelope phase absolute single-shot measurement by photoionization of gases with a guided laser beam,” Opt. Exp. 22, 6239 (2014).10.1364/oe.22.006239 doi: 10.1364/oe.22.006239
    [45]
    M. G. Pullen, W. C. Wallace, D. E. Laban et al., “Measurement of laser intensities approaching 1015 W/cm2 with an accuracy of 1%,” Phys. Rev. A 87, 053411 (2013).10.1103/physreva.87.053411 doi: 10.1103/physreva.87.053411
    [46]
    L. V. Keldysh, [Sov. Phys. JETP 20, 1307 (1965) (in English)].
    [47]
    A. M. Perelomov, V. S. Popov and M. V. Terentev, [Sov. Phys. JETP 23, 924 (1966) (in English)].
    [48]
    A. M. Perelomov and V. S. Popov, [Sov. Phys. JETP 25, 336 (1967) (in English)].
    [49]
    V. S. Popov, [Phys.-Usp. 47, 855 (2004) (in English)10.1070/pu2004v047n09abeh001812]. doi: 10.1070/pu2004v047n09abeh001812
    [50]
    X. M. Tong and C. D. Lin, “Empirical formula for static field ionization rates of atoms and molecules by lasers in the barrier-suppression regime,” J. Phys. B: At., Mol. Opt. Phys. 38, 2593 (2005).10.1088/0953-4075/38/15/001 doi: 10.1088/0953-4075/38/15/001
    [51]
    I. Yu. Kostyukov and A. A. Golovanov, “Field ionization in short and extremely intense laser pulses,” Phys. Rev. A 98, 043407 (2018).10.1103/physreva.98.043407 doi: 10.1103/physreva.98.043407
    [52]
    E. B. Saloman, “Energy levels and observed spectral lines of ionized argon, Ar II through Ar XVIII,” J. Phys. Chem. Ref. Data 39, 033101 (2010).10.1063/1.3337661 doi: 10.1063/1.3337661
    [53]
    E. B. Saloman, “Energy levels and observed spectral lines of krypton, Kr I through Kr XXXVI,” J. Phys. Chem. Ref. Data 36, 215 (2007).10.1063/1.2227036 doi: 10.1063/1.2227036
    [54]
    E. B. Saloman, “Energy levels and observed spectral lines of xenon, Xe I through Xe LIV,” J. Phys. Chem. Ref. Data 33, 765 (2004).10.1063/1.1649348 doi: 10.1063/1.1649348
    [55]
    E. A. Chowdhury, I. Ghebregziabher, J. Macdonald et al., “Electron momentum states and bremsstrahlung radiation from the ultraintense field ionization of atoms,” Opt. Express 12, 3911 (2004).10.1364/opex.12.003911 doi: 10.1364/opex.12.003911
    [56]
    G. Pariente, V. Gallet, A. Borot et al., “Space-time characterization of ultra-intense femtosecond laser beams,” Nat. Photonics 10, 547 (2016).10.1038/nphoton.2016.140 doi: 10.1038/nphoton.2016.140
    [57]
    A. Jeandet, A. Borot, K. Nakamura et al., “Spatio-temporal structure of a petawatt femtosecond laser beam,” J. Phys.: Photonics 1, 035001 (2019).10.1088/2515-7647/ab250d doi: 10.1088/2515-7647/ab250d
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(4)  / Tables(1)

    Article Metrics

    Article views (138) PDF downloads(3) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return