Follow us on Wechat

用微信扫码二维码

分享至好友和朋友圈

Volume 5 Issue 4
Jul.  2020
Turn off MathJax
Article Contents
Ramakrishna B., Krishnamurthy S., Tayyab M., Bagchi S., Makur K., Trines Raoul, Scott Robbie, Robinson Alex, Chakera J. A.. Ion source perturbation and control in intense laser plasma interaction[J]. Matter and Radiation at Extremes, 2020, 5(4): 045402. doi: 10.1063/5.0004801
Citation: Ramakrishna B., Krishnamurthy S., Tayyab M., Bagchi S., Makur K., Trines Raoul, Scott Robbie, Robinson Alex, Chakera J. A.. Ion source perturbation and control in intense laser plasma interaction[J]. Matter and Radiation at Extremes, 2020, 5(4): 045402. doi: 10.1063/5.0004801

Ion source perturbation and control in intense laser plasma interaction

doi: 10.1063/5.0004801
More Information
  • Corresponding author: a)Author to whom correspondence should be addressed: bhuvan@iith.ac.in
  • Received Date: 2020-02-15
  • Accepted Date: 2020-05-17
  • Available Online: 2020-07-01
  • Publish Date: 2020-07-15
  • We present here experimental results on the optimization of the mega-electronvolt ion source from the target front surface by using relativistic (1018 W/cm2) interactions with ultra-short laser pulses (50 fs). The source perturbation in the accelerated proton/ion beam was primarily controlled by the addition of a pre-pulse to main pulse contrast ratio. The 2D particle-in-cell simulations agreed well with the observed experimental results for the ion source perturbation and mitigation. This work provides insights into ion source perturbations (temporal and spatial) and the need to control them in intense laser–plasma interactions. Our results may assist in the efficient guiding of proton/ion beams to the core of fusion fuel or of ions in cancer therapy.
  • loading
  • [1]
    R. A. Snavely, M. H. Key, S. P. Hatchett, T. E. Cowan, M. Roth et al., “Intense high-energy proton beams from petawatt-laser irradiation of solids,” Phys. Rev. Lett. 85, 2945 (2000).10.1103/physrevlett.85.2945 doi: 10.1103/physrevlett.85.2945
    [2]
    A. Macchi, M. Borghesi, and M. Passoni, “Ion acceleration by superintense laser-plasma interaction,” Rev. Mod. Phys. 85, 751 (2013).10.1103/RevModPhys.85.751 doi: 10.1103/RevModPhys.85.751
    [3]
    J. Fuchs, P. Antici, E. d’Humières, E. Lefebvre, M. Borghesi et al., “Laser-driven proton scaling laws and new paths towards energy increase,” Nat. Phys. 2, 48 (2006).10.1038/nphys199 doi: 10.1038/nphys199
    [4]
    T. Tajima and J. M. Dawson, “Laser electron accelerator,” Phys. Rev. Lett. 43, 267 (1979).10.1103/physrevlett.43.267 doi: 10.1103/physrevlett.43.267
    [5]
    M. Borghesi, S. Bulanov, D. H. Campbell, R. J. Clarke, T. Zh. Esirkepov et al., “Macroscopic evidence of soliton formation in multiterawatt laser-plasma interaction,” Phys. Rev. Lett. 88, 135002 (2002).10.1103/physrevlett.88.135002 doi: 10.1103/physrevlett.88.135002
    [6]
    K. Quinn, P. A. Wilson, C. A. Cecchetti, B. Ramakrishna, L. Romagnani et al., “Laser-driven ultrafast field propagation on solid surfaces,” Phys. Rev. Lett. 102, 194801 (2009).10.1103/physrevlett.102.194801 doi: 10.1103/physrevlett.102.194801
    [7]
    K. Quinn, P. A. Wilson, B. Ramakrishna, L. Romagnani, G. Sarri et al., “Modified proton radiography arrangement for the detection of ultrafast field fronts,” Rev. Sci. Instrum. 80, 113506 (2009).10.1063/1.3262630 doi: 10.1063/1.3262630
    [8]
    S. V. Bulanov, T. Z. Esirkepov, V. S. Khoroshkov, A. V. Kuznetsov, and F. Pegoraro, “Oncological hadron therapy with laser ion accelerators,” Phys. Lett. A 299, 240 (2002).10.1016/s0375-9601(02)00521-2 doi: 10.1016/s0375-9601(02)00521-2
    [9]
    V. Malka, S. Fritzler, E. Lefebvre, E. d'Humières, R. Ferrand et al., “Practicability of proton therapy using compact laser systems,” Med. Phys. 31, 1587 (2004).10.1118/1.1747751 doi: 10.1118/1.1747751
    [10]
    [11]
    [12]
    M. Borghesi, A. J. Mackinnon, D. H. Campbell, D. G. Hicks, S. Kar et al., “Multi-MeV proton source investigations in ultraintense laser-foil interactions,” Phys. Rev. Lett. 92, 055003 (2004).10.1103/physrevlett.92.055003 doi: 10.1103/physrevlett.92.055003
    [13]
    A. J. Mackinnon, P. K. Patel, M. Borghesi, R. C. Clarke, R. R. Freeman et al., “Proton radiography of a laser-driven implosion,” Phys. Rev. Lett. 97, 045001 (2006).10.1103/physrevlett.97.045001 doi: 10.1103/physrevlett.97.045001
    [14]
    L. Romagnani, J. Fuchs, M. Borghesi, P. Antici, P. Audebert et al., “Dynamics of electric fields driving the laser acceleration of multi-MeV protons,” Phys. Rev. Lett. 95, 195001 (2005).10.1103/physrevlett.95.195001 doi: 10.1103/physrevlett.95.195001
    [15]
    H. Schwoerer, S. Pfotenhauer, O. Jäckel, K.-U. Amthor, B. Liesfeld et al., “Laser-plasma acceleration of quasi-monoenergetic protons from microstructured targets,” Nature 439, 445 (2006).10.1038/nature04492 doi: 10.1038/nature04492
    [16]
    S. M. Pfotenhauer, O. Jäckel, A. Sachtleben, J. Polz, W. Ziegler et al., “Spectral shaping of laser generated proton beams,” New J. Phys. 10, 033034 (2008).10.1088/1367-2630/10/3/033034 doi: 10.1088/1367-2630/10/3/033034
    [17]
    B. Ramakrishna, M. Murakami, M. Borghesi, L. Ehrentraut, P. V. Nickles et al., “Laser-driven quasimonoenergetic proton burst from water spray target,” Phys. Plasmas 17, 083113 (2010).10.1063/1.3479832 doi: 10.1063/1.3479832
    [18]
    T. E. Cowan, J. Fuchs, H. Ruhl, A. Kemp, P. Audebert et al., “Ultralow emittance, multi-MeV proton beams from a laser virtual-cathode plasma accelerator,” Phys. Rev. Lett. 92, 204801 (2004).10.1103/physrevlett.92.204801 doi: 10.1103/physrevlett.92.204801
    [19]
    K. Ziel, J. Metzkes, T. Kluge, M. Bussmann, T. E. Cowan et al., “Direct observation of prompt pre-thermal laser ion sheath acceleration,” Nat. Commun. 3, 874 (2012).10.1038/ncomms1883 doi: 10.1038/ncomms1883
    [20]
    J. Schreiber, S. Ter-Avetisyan, E. Risse, M. P. Kalachnikov, P. V. Nickles, W. Sandner, U. Schramm, D. Habs, J. Witte, and M. Schnürer, “Pointing of laser-accelerated proton beams,” Phys. Plasmas 13, 033111 (2006).10.1063/1.2181978 doi: 10.1063/1.2181978
    [21]
    J. Schreiber, M. Kaluza, F. Grüner, U. Schramm, B. M. Hegelich, J. Cobble, M. Geissler, E. Brambrink, J. Fuchs, P. Audebert, D. Habs, and K. Witte, “Source-size measurements and charge distributions of ions accelerated from thin foils irradiated by high-intensity laser pulse,” Appl. Phys. B: Lasers Opt. 79, 1041 (2004).10.1007/s00340-004-1665-5 doi: 10.1007/s00340-004-1665-5
    [22]
    S. Busch, M. Schnürer, M. Kalashnikov, H. Schönnagel, H. Stiel et al., “Ion acceleration with ultrafast lasers,” Appl. Phys. Lett. 82, 3354 (2003).10.1063/1.1573363 doi: 10.1063/1.1573363
    [23]
    V. T. Tikhonchuk, A. A. Andreev, S. G. Bochkarev, V. Y. Bychenkov et al., “Ion acceleration in short-laser-pulse interaction with solid foils,” Plasma Phys. Controlled Fusion 47(12B), B869–B877 (2005).10.1088/0741-3335/47/12b/s69 doi: 10.1088/0741-3335/47/12b/s69
    [24]
    A. P. L. Robinson, D. Neely, P. McKenna, and R. G. Evans, “Spectral control in proton acceleration with multiple laser pulses,” Plasma Phys. Controlled Fusion 49(4), 373–384 (2007).10.1088/0741-3335/49/4/002 doi: 10.1088/0741-3335/49/4/002
    [25]
    R. A. Fonseca, L. O. Silva, F. S. Tsung, V. K. Decyk, W. Lu et al., “OSIRIS: A three-dimensional, fully relativistic particle in cell code for modeling plasma based accelerators,” Lect. Notes Comput. Sci. 2331, 342 (2002).10.1007/3-540-47789-6_36 doi: 10.1007/3-540-47789-6_36
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(4)

    Article Metrics

    Article views (178) PDF downloads(4) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return