| Citation: | Liang Zhenfeng, Shen Baifei, Zhang Xiaomei, Zhang Lingang. High-repetition-rate few-attosecond high-quality electron beams generated from crystals driven by intense X-ray laser[J]. Matter and Radiation at Extremes, 2020, 5(5): 054401. doi: 10.1063/5.0004524 | 
	                | [1] | 
					 R. P. Drake, High Energy Density Physics (Springer, Berlin, 2006). 
						
					 | 
			
| [2] | 
					 T. Tajima and J. M. Dawson, “Laser electron accelerator,” Phys. Rev. Lett. 43, 267 (1979).10.1103/physrevlett.43.267 doi:  10.1103/physrevlett.43.267 
						
					 | 
			
| [3] | 
					 A. Pukhov and J. Meyer-ter-Vehn, “Laser wake field acceleration: The highly non-linear broken-wave regime,” Appl. Phys. B 74, 355 (2002).10.1007/s003400200795 doi:  10.1007/s003400200795 
						
					 | 
			
| [4] | 
					 W. Lu, M. Tzoufras, C. Joshi et al., “Generating multi-GeV electron bunches using single stage laser wakefield acceleration in a 3D nonlinear regime,” Phys. Rev. Spec. Top.: Accel. Beams 10, 061301 (2007).10.1103/physrevstab.10.061301 doi:  10.1103/physrevstab.10.061301 
						
					 | 
			
| [5] | 
					 S. Kalmykov, S. A. Yi, V. Khudik et al., “Electron self-injection and trapping into an evolving plasma bubble,” Phys. Rev. Lett. 103, 135004 (2009).10.1103/physrevlett.103.135004 doi:  10.1103/physrevlett.103.135004 
						
					 | 
			
| [6] | 
					 E. Esarey, R. F. Hubbard, W. P. Leemans et al., “Electron injection into plasma wake fields by colliding laser pulses,” Phys. Rev. Lett. 79, 2682 (1997).10.1103/physrevlett.79.2682 doi:  10.1103/physrevlett.79.2682 
						
					 | 
			
| [7] | 
					 J. Faure, C. Rechatin, A. Norlin et al., “Controlled injection and acceleration of electrons in plasma wakefields by colliding laser pulses,” Nature 444, 737 (2006).10.1038/nature05393 doi:  10.1038/nature05393 
						
					 | 
			
| [8] | 
					 X. Davoine, E. Lefebvre, C. Rechatin et al., “Optical injection producing monoenergetic, multi-Gev electron bunches,” Phys. Rev. Lett. 102, 065001 (2009).10.1103/physrevlett.102.065001 doi:  10.1103/physrevlett.102.065001 
						
					 | 
			
| [9] | 
					 C. Rechatin, J. Faure, A. Ben-Ismail et al., “Controlling the phase-space volume of injected electrons in a laser-plasma accelerator,” Phys. Rev. Lett. 102, 164801 (2009).10.1103/physrevlett.102.164801 doi:  10.1103/physrevlett.102.164801 
						
					 | 
			
| [10] | 
					 A. Pak, K. A. Marsh, S. F. Martins et al., “Injection and trapping of tunnel-ionized electrons into laser-produced wakes,” Phys. Rev. Lett. 104, 025003 (2010).10.1103/physrevlett.104.025003 doi:  10.1103/physrevlett.104.025003 
						
					 | 
			
| [11] | 
					 C. McGuffey, A. G. R. Thomas, W. Schumaker et al., “Ionization induced trapping in a laser wakefield accelerator,” Phys. Rev. Lett. 104, 025004 (2010).10.1103/physrevlett.104.025004 doi:  10.1103/physrevlett.104.025004 
						
					 | 
			
| [12] | 
					 C. E. Clayton, J. E. Ralph, F. Albert et al., “Self-guided laser wakefield acceleration beyond 1 GeV using ionization-induced injection,” Phys. Rev. Lett. 105, 105003 (2010).10.1103/physrevlett.105.105003 doi:  10.1103/physrevlett.105.105003 
						
					 | 
			
| [13] | 
					 S. Bulanov, N. Naumova, F. Pegoraro et al., “Particle injection into the wave acceleration phase due to nonlinear wake wave breaking,” Phys. Rev. E 58, R5257 (1998).10.1103/physreve.58.r5257 doi:  10.1103/physreve.58.r5257 
						
					 | 
			
| [14] | 
					 H. Suk, N. Barov, J. B. Rosenzweig et al., “Plasma electron trapping and acceleration in a plasma wake field using a density transition,” Phys. Rev. Lett. 86, 1011 (2001).10.1103/physrevlett.86.1011 doi:  10.1103/physrevlett.86.1011 
						
					 | 
			
| [15] | 
					 H. Ekerfelt, M. Hansson, I. Gallardo González et al., “A tunable electron beam source using trapping of electrons in a density down-ramp in laser wakefield acceleration,” Sci. Rep. 7, 12229 (2017).10.1038/s41598-017-12560-8 doi:  10.1038/s41598-017-12560-8 
						
					 | 
			
| [16] | 
					 A. M. de la Ossa, Z. Hu, M. J. V. Streeter et al., “Optimizing density down-ramp injection for beam-driven plasma wakefield accelerators,” Phys. Rev. Accel. Beams 20, 091301 (2017).10.1103/physrevaccelbeams.20.091301 doi:  10.1103/physrevaccelbeams.20.091301 
						
					 | 
			
| [17] | 
					 S. A. Samant, A. K. Upadhyay, and S. Krishnagopal, “High brightness electron beams from density transition laser wakefield acceleration for shortwavelength free-electron lasers,” Plasma Phys. Control. Fusion 56, 095003 (2014).10.1088/0741-3335/56/9/095003 doi:  10.1088/0741-3335/56/9/095003 
						
					 | 
			
| [18] | 
					 W. P. Leemans, A. J. Gonsalves, H. S. Mao et al., “Multi-GeV electron beams from capillary-discharge-guided subpetawatt laser pulses in the self-trapping regime,” Phys. Rev. Lett. 113, 245002 (2014).10.1103/physrevlett.113.245002 doi:  10.1103/physrevlett.113.245002 
						
					 | 
			
| [19] | 
					 O. Lundh, J. Lim, C. Rechatin et al., “Few femtosecond, few kiloampere electron bunch produced by a laser–plasma accelerator,” Nat. Phys. 7, 219 (2011).10.1038/nphys1872 doi:  10.1038/nphys1872 
						
					 | 
			
| [20] | 
					 M. J. H. Luttikhof, A. G. Khachatryan, F. A. van Goor et al., “Generating ultrarelativistic attosecond electron bunches with laser wakefield accelerators,” Phys. Rev. Lett. 105, 124801 (2010).10.1103/physrevlett.105.124801 doi:  10.1103/physrevlett.105.124801 
						
					 | 
			
| [21] | 
					 F. Y. Li, Z. M. Sheng, Y. Liu et al., “Dense attosecond electron sheets from laser wakefields using an up-ramp density transition,” Phys. Rev. Lett. 110, 135002 (2013).10.1103/physrevlett.110.135002 doi:  10.1103/physrevlett.110.135002 
						
					 | 
			
| [22] | 
					 M. P. Tooley, B. Ersfeld, S. R. Yoffe et al., “Towards attosecond high-energy electron bunches: Controlling self-injection in laser-wakefield accelerators through plasma-density modulation,” Phys. Rev. Lett. 119, 044801 (2017).10.1103/physrevlett.119.044801 doi:  10.1103/physrevlett.119.044801 
						
					 | 
			
| [23] | 
					 M. Gao, C. Lu, H. Jean-Ruel et al., “Mapping molecular motions leading to charge delocalization with ultrabright electrons,” Nature 496, 343 (2013).10.1038/nature12044 doi:  10.1038/nature12044 
						
					 | 
			
| [24] | 
					 J. Yang, J. Beck, C. J. Uiterwaal et al., “Imaging of alignment and structural changes of carbon disulfide molecules using ultrafast electron diffraction,” Nat. Commun. 6, 8172 (2015).10.1038/ncomms9172 doi:  10.1038/ncomms9172 
						
					 | 
			
| [25] | 
					 G. Sciaini, M. Harb, S. G. Kruglik et al., “Electronic acceleration of atomic motions and disordering in bismuth,” Nature 458, 56 (2009).10.1038/nature07788 doi:  10.1038/nature07788 
						
					 | 
			
| [26] | 
					 G. Geloni, E. Saldin, L. Samoylova et al., “Coherence properties of the European XFEL,” New J. Phys. 12, 035021 (2010).10.1088/1367-2630/12/3/035021 doi:  10.1088/1367-2630/12/3/035021 
						
					 | 
			
| [27] | 
					 C. Pellegrini, A. Marinelli, and S. Reiche, “The physics of x-ray free-electron lasers,” Rev. Mod. Phys. 88, 015006 (2016).10.1103/revmodphys.88.015006 doi:  10.1103/revmodphys.88.015006 
						
					 | 
			
| [28] | 
					 P. Emma, R. Akre, J. Arthur et al., “First lasing and operation of an ångstrom-wavelength free-electron laser,” Nat. Photonics 4, 641 (2010).10.1038/nphoton.2010.176 doi:  10.1038/nphoton.2010.176 
						
					 | 
			
| [29] | 
					 A. A. Lutman, J. P. MacArthur, M. Ilchen et al., “Polarization control in an X-ray free-electron laser,” Nat. Photonics 10, 468 (2016).10.1038/nphoton.2016.79 doi:  10.1038/nphoton.2016.79 
						
					 | 
			
| [30] | 
					 S. Huang, Y. Ding, Y. Feng et al., “Generating single-spike hard x-ray pulses with nonlinear bunch compression in free-electron lasers,” Phys. Rev. Lett. 119, 154801 (2017).10.1103/physrevlett.119.154801 doi:  10.1103/physrevlett.119.154801 
						
					 | 
			
| [31] | 
					 Z. Wang, C. Feng, and Z. Zhao, “Generating isolated terawatt-attosecond x-ray pulses via a chirped-laser-enhanced high-gain free-electron laser,” Phys. Rev. Accel. Beams 20, 040701 (2017).10.1103/physrevaccelbeams.20.040701 doi:  10.1103/physrevaccelbeams.20.040701 
						
					 | 
			
| [32] | 
					 G. Mourou, “Single cycle thin film compressor opening the door to Zeptosecond-Exawatt physics,” Eur. Phys. J. Spec. Top. 223, 1181 (2014).10.1140/epjst/e2014-02171-5 doi:  10.1140/epjst/e2014-02171-5 
						
					 | 
			
| [33] | 
					 N. Naumova, I. Sokolov, J. Nees et al., “Attosecond electron bunches,” Phys. Rev. Lett. 93, 195003 (2004).10.1103/physrevlett.93.195003 doi:  10.1103/physrevlett.93.195003 
						
					 | 
			
| [34] | 
					 H. Mimura, S. Handa, T. Kimura et al., “Breaking the 10 nm barrier in hard-X-ray focusing,” Nat. Phys. 6, 122 (2009).10.1038/nphys1457 doi:  10.1038/nphys1457 
						
					 | 
			
| [35] | 
					 T. Tajima and M. Cavenago, “Crystal X-ray accelerator,” Phys. Rev. Lett. 59, 1440 (1987).10.1103/physrevlett.59.1440 doi:  10.1103/physrevlett.59.1440 
						
					 | 
			
| [36] | 
					 X. Zhang, T. Tajima, D. Farinella et al., “Particle-in-cell simulation of x-ray wakefield acceleration and betatron radiation in nanotubes,” Phys. Rev. Accel. Beams 19, 101004 (2016).10.1103/physrevaccelbeams.19.101004 doi:  10.1103/physrevaccelbeams.19.101004 
						
					 | 
			
| [37] | 
					 T. Tajima, “Laser acceleration in novel media,” Eur. Phys. J. Spec. Top. 223, 1037 (2014).10.1140/epjst/e2014-02154-6 doi:  10.1140/epjst/e2014-02154-6 
						
					 | 
			
| [38] | 
					 S. Hakimi, T. Nguyen, D. Farinella et al., “Wakefield in solid state plasma with the ionic lattice force,” Phys. Plasmas 25, 023112 (2018).10.1063/1.5016445 doi:  10.1063/1.5016445 
						
					 | 
			
| [39] | 
					 B. Svedung Wettervik, A. Gonoskov, and M. Marklund, “Prospects and limitations of wakefield acceleration in solids,” Phys. Plasmas 25, 013107 (2018).10.1063/1.5003857 doi:  10.1063/1.5003857 
						
					 | 
			
| [40] | 
					 T. Tajima, K. Nakajima, and G. Mourou, “Laser acceleration,” Riv. Nuovo Cim. 40, 1 (2017).10.1393/ncr/i2017-10132-x doi:  10.1393/ncr/i2017-10132-x 
						
					 | 
			
| [41] | 
					 T. D. Arber, K. Bennett, C. S. Brady et al., “Contemporary particle-in-cell approach to laser-plasma modelling,” Plasma Phys. Control. Fusion 57, 113001 (2015).10.1088/0741-3335/57/11/113001 doi:  10.1088/0741-3335/57/11/113001 
						
					 | 
			
| [42] | 
					 S. Augst, D. D. Meyerhofer, D. Strickland et al., “Laser ionization of noble gases by Coulomb-barrier suppression,” J. Opt. Soc. Am. B 8, 858 (1991).10.1364/josab.8.000858 doi:  10.1364/josab.8.000858 
						
					 | 
			
| [43] | 
					 S. V. Bulanov, T. Z. Esirkepov, J. Koga et al., “Interaction of electromagnetic waves with plasma in the radiation-dominated regime,” Plasma Phys. Rep. 30, 196 (2004).10.1134/1.1687021 doi:  10.1134/1.1687021 
						
					 | 
			
| [44] | 
					 S. V. Bulanov, I. N. Inovenkov, N. M. Naumova et al., “Excitation of a relativistic Langmuir wave and electron acceleration through the action of an electromagnetic pulse on a collisionless plasma,” Sov. J. Plasma Phys. 16, 444 (1990). 
						
					 |