Follow us on Wechat

用微信扫码二维码

分享至好友和朋友圈

Volume 5 Issue 5
Sep.  2020
Turn off MathJax
Article Contents
Liang Zhenfeng, Shen Baifei, Zhang Xiaomei, Zhang Lingang. High-repetition-rate few-attosecond high-quality electron beams generated from crystals driven by intense X-ray laser[J]. Matter and Radiation at Extremes, 2020, 5(5): 054401. doi: 10.1063/5.0004524
Citation: Liang Zhenfeng, Shen Baifei, Zhang Xiaomei, Zhang Lingang. High-repetition-rate few-attosecond high-quality electron beams generated from crystals driven by intense X-ray laser[J]. Matter and Radiation at Extremes, 2020, 5(5): 054401. doi: 10.1063/5.0004524

High-repetition-rate few-attosecond high-quality electron beams generated from crystals driven by intense X-ray laser

doi: 10.1063/5.0004524
More Information
  • Corresponding author: a)Author to whom correspondence should be addressed: bfshen@shnu.edu.cn
  • Received Date: 2020-02-11
  • Accepted Date: 2020-07-06
  • Available Online: 2020-09-01
  • Publish Date: 2020-09-15
  • Advances in X-ray laser sources have paved the way to relativistic attosecond X-ray laser pulses and opened up the possibility of exploring high-energy-density physics with this technology. With particle-in-cell simulations, we investigate the interaction of realistic metal crystals with relativistic X-ray laser pulses of parameters that will be available in the near future. A wakefield of the order of TV/cm is excited in the crystal and accelerates trapped electrons stably even though the wakefield is locally modulated by the crystal lattice. Electron injection either occurs at the sharp crystal–vacuum boundary or is controlled by coating the crystal with a high-density film. High-repetition-rate attosecond (20 as) monoenergetic electron beams of energy 125 MeV, charge 100 fC, and emittance 1.6 × 10−9 m rad can be produced by shining MHz X-ray laser pulses of energy 2.1 mJ onto coated crystals several micrometers thick. Such a miniature crystal accelerator, which has high reproducibility and allows sufficient control of the parameters of the electron beams, greatly expands the applications of X-ray free electron lasers. For example, it could serve as an ideal electron source for ultrafast electron diffraction and ultrafast electron microscopy to achieve attosecond resolution.
  • loading
  • [1]
    R. P. Drake, High Energy Density Physics (Springer, Berlin, 2006).
    [2]
    T. Tajima and J. M. Dawson, “Laser electron accelerator,” Phys. Rev. Lett. 43, 267 (1979).10.1103/physrevlett.43.267 doi: 10.1103/physrevlett.43.267
    [3]
    A. Pukhov and J. Meyer-ter-Vehn, “Laser wake field acceleration: The highly non-linear broken-wave regime,” Appl. Phys. B 74, 355 (2002).10.1007/s003400200795 doi: 10.1007/s003400200795
    [4]
    W. Lu, M. Tzoufras, C. Joshi et al., “Generating multi-GeV electron bunches using single stage laser wakefield acceleration in a 3D nonlinear regime,” Phys. Rev. Spec. Top.: Accel. Beams 10, 061301 (2007).10.1103/physrevstab.10.061301 doi: 10.1103/physrevstab.10.061301
    [5]
    S. Kalmykov, S. A. Yi, V. Khudik et al., “Electron self-injection and trapping into an evolving plasma bubble,” Phys. Rev. Lett. 103, 135004 (2009).10.1103/physrevlett.103.135004 doi: 10.1103/physrevlett.103.135004
    [6]
    E. Esarey, R. F. Hubbard, W. P. Leemans et al., “Electron injection into plasma wake fields by colliding laser pulses,” Phys. Rev. Lett. 79, 2682 (1997).10.1103/physrevlett.79.2682 doi: 10.1103/physrevlett.79.2682
    [7]
    J. Faure, C. Rechatin, A. Norlin et al., “Controlled injection and acceleration of electrons in plasma wakefields by colliding laser pulses,” Nature 444, 737 (2006).10.1038/nature05393 doi: 10.1038/nature05393
    [8]
    X. Davoine, E. Lefebvre, C. Rechatin et al., “Optical injection producing monoenergetic, multi-Gev electron bunches,” Phys. Rev. Lett. 102, 065001 (2009).10.1103/physrevlett.102.065001 doi: 10.1103/physrevlett.102.065001
    [9]
    C. Rechatin, J. Faure, A. Ben-Ismail et al., “Controlling the phase-space volume of injected electrons in a laser-plasma accelerator,” Phys. Rev. Lett. 102, 164801 (2009).10.1103/physrevlett.102.164801 doi: 10.1103/physrevlett.102.164801
    [10]
    A. Pak, K. A. Marsh, S. F. Martins et al., “Injection and trapping of tunnel-ionized electrons into laser-produced wakes,” Phys. Rev. Lett. 104, 025003 (2010).10.1103/physrevlett.104.025003 doi: 10.1103/physrevlett.104.025003
    [11]
    C. McGuffey, A. G. R. Thomas, W. Schumaker et al., “Ionization induced trapping in a laser wakefield accelerator,” Phys. Rev. Lett. 104, 025004 (2010).10.1103/physrevlett.104.025004 doi: 10.1103/physrevlett.104.025004
    [12]
    C. E. Clayton, J. E. Ralph, F. Albert et al., “Self-guided laser wakefield acceleration beyond 1 GeV using ionization-induced injection,” Phys. Rev. Lett. 105, 105003 (2010).10.1103/physrevlett.105.105003 doi: 10.1103/physrevlett.105.105003
    [13]
    S. Bulanov, N. Naumova, F. Pegoraro et al., “Particle injection into the wave acceleration phase due to nonlinear wake wave breaking,” Phys. Rev. E 58, R5257 (1998).10.1103/physreve.58.r5257 doi: 10.1103/physreve.58.r5257
    [14]
    H. Suk, N. Barov, J. B. Rosenzweig et al., “Plasma electron trapping and acceleration in a plasma wake field using a density transition,” Phys. Rev. Lett. 86, 1011 (2001).10.1103/physrevlett.86.1011 doi: 10.1103/physrevlett.86.1011
    [15]
    H. Ekerfelt, M. Hansson, I. Gallardo González et al., “A tunable electron beam source using trapping of electrons in a density down-ramp in laser wakefield acceleration,” Sci. Rep. 7, 12229 (2017).10.1038/s41598-017-12560-8 doi: 10.1038/s41598-017-12560-8
    [16]
    A. M. de la Ossa, Z. Hu, M. J. V. Streeter et al., “Optimizing density down-ramp injection for beam-driven plasma wakefield accelerators,” Phys. Rev. Accel. Beams 20, 091301 (2017).10.1103/physrevaccelbeams.20.091301 doi: 10.1103/physrevaccelbeams.20.091301
    [17]
    S. A. Samant, A. K. Upadhyay, and S. Krishnagopal, “High brightness electron beams from density transition laser wakefield acceleration for shortwavelength free-electron lasers,” Plasma Phys. Control. Fusion 56, 095003 (2014).10.1088/0741-3335/56/9/095003 doi: 10.1088/0741-3335/56/9/095003
    [18]
    W. P. Leemans, A. J. Gonsalves, H. S. Mao et al., “Multi-GeV electron beams from capillary-discharge-guided subpetawatt laser pulses in the self-trapping regime,” Phys. Rev. Lett. 113, 245002 (2014).10.1103/physrevlett.113.245002 doi: 10.1103/physrevlett.113.245002
    [19]
    O. Lundh, J. Lim, C. Rechatin et al., “Few femtosecond, few kiloampere electron bunch produced by a laser–plasma accelerator,” Nat. Phys. 7, 219 (2011).10.1038/nphys1872 doi: 10.1038/nphys1872
    [20]
    M. J. H. Luttikhof, A. G. Khachatryan, F. A. van Goor et al., “Generating ultrarelativistic attosecond electron bunches with laser wakefield accelerators,” Phys. Rev. Lett. 105, 124801 (2010).10.1103/physrevlett.105.124801 doi: 10.1103/physrevlett.105.124801
    [21]
    F. Y. Li, Z. M. Sheng, Y. Liu et al., “Dense attosecond electron sheets from laser wakefields using an up-ramp density transition,” Phys. Rev. Lett. 110, 135002 (2013).10.1103/physrevlett.110.135002 doi: 10.1103/physrevlett.110.135002
    [22]
    M. P. Tooley, B. Ersfeld, S. R. Yoffe et al., “Towards attosecond high-energy electron bunches: Controlling self-injection in laser-wakefield accelerators through plasma-density modulation,” Phys. Rev. Lett. 119, 044801 (2017).10.1103/physrevlett.119.044801 doi: 10.1103/physrevlett.119.044801
    [23]
    M. Gao, C. Lu, H. Jean-Ruel et al., “Mapping molecular motions leading to charge delocalization with ultrabright electrons,” Nature 496, 343 (2013).10.1038/nature12044 doi: 10.1038/nature12044
    [24]
    J. Yang, J. Beck, C. J. Uiterwaal et al., “Imaging of alignment and structural changes of carbon disulfide molecules using ultrafast electron diffraction,” Nat. Commun. 6, 8172 (2015).10.1038/ncomms9172 doi: 10.1038/ncomms9172
    [25]
    G. Sciaini, M. Harb, S. G. Kruglik et al., “Electronic acceleration of atomic motions and disordering in bismuth,” Nature 458, 56 (2009).10.1038/nature07788 doi: 10.1038/nature07788
    [26]
    G. Geloni, E. Saldin, L. Samoylova et al., “Coherence properties of the European XFEL,” New J. Phys. 12, 035021 (2010).10.1088/1367-2630/12/3/035021 doi: 10.1088/1367-2630/12/3/035021
    [27]
    C. Pellegrini, A. Marinelli, and S. Reiche, “The physics of x-ray free-electron lasers,” Rev. Mod. Phys. 88, 015006 (2016).10.1103/revmodphys.88.015006 doi: 10.1103/revmodphys.88.015006
    [28]
    P. Emma, R. Akre, J. Arthur et al., “First lasing and operation of an ångstrom-wavelength free-electron laser,” Nat. Photonics 4, 641 (2010).10.1038/nphoton.2010.176 doi: 10.1038/nphoton.2010.176
    [29]
    A. A. Lutman, J. P. MacArthur, M. Ilchen et al., “Polarization control in an X-ray free-electron laser,” Nat. Photonics 10, 468 (2016).10.1038/nphoton.2016.79 doi: 10.1038/nphoton.2016.79
    [30]
    S. Huang, Y. Ding, Y. Feng et al., “Generating single-spike hard x-ray pulses with nonlinear bunch compression in free-electron lasers,” Phys. Rev. Lett. 119, 154801 (2017).10.1103/physrevlett.119.154801 doi: 10.1103/physrevlett.119.154801
    [31]
    Z. Wang, C. Feng, and Z. Zhao, “Generating isolated terawatt-attosecond x-ray pulses via a chirped-laser-enhanced high-gain free-electron laser,” Phys. Rev. Accel. Beams 20, 040701 (2017).10.1103/physrevaccelbeams.20.040701 doi: 10.1103/physrevaccelbeams.20.040701
    [32]
    G. Mourou, “Single cycle thin film compressor opening the door to Zeptosecond-Exawatt physics,” Eur. Phys. J. Spec. Top. 223, 1181 (2014).10.1140/epjst/e2014-02171-5 doi: 10.1140/epjst/e2014-02171-5
    [33]
    N. Naumova, I. Sokolov, J. Nees et al., “Attosecond electron bunches,” Phys. Rev. Lett. 93, 195003 (2004).10.1103/physrevlett.93.195003 doi: 10.1103/physrevlett.93.195003
    [34]
    H. Mimura, S. Handa, T. Kimura et al., “Breaking the 10 nm barrier in hard-X-ray focusing,” Nat. Phys. 6, 122 (2009).10.1038/nphys1457 doi: 10.1038/nphys1457
    [35]
    T. Tajima and M. Cavenago, “Crystal X-ray accelerator,” Phys. Rev. Lett. 59, 1440 (1987).10.1103/physrevlett.59.1440 doi: 10.1103/physrevlett.59.1440
    [36]
    X. Zhang, T. Tajima, D. Farinella et al., “Particle-in-cell simulation of x-ray wakefield acceleration and betatron radiation in nanotubes,” Phys. Rev. Accel. Beams 19, 101004 (2016).10.1103/physrevaccelbeams.19.101004 doi: 10.1103/physrevaccelbeams.19.101004
    [37]
    T. Tajima, “Laser acceleration in novel media,” Eur. Phys. J. Spec. Top. 223, 1037 (2014).10.1140/epjst/e2014-02154-6 doi: 10.1140/epjst/e2014-02154-6
    [38]
    S. Hakimi, T. Nguyen, D. Farinella et al., “Wakefield in solid state plasma with the ionic lattice force,” Phys. Plasmas 25, 023112 (2018).10.1063/1.5016445 doi: 10.1063/1.5016445
    [39]
    B. Svedung Wettervik, A. Gonoskov, and M. Marklund, “Prospects and limitations of wakefield acceleration in solids,” Phys. Plasmas 25, 013107 (2018).10.1063/1.5003857 doi: 10.1063/1.5003857
    [40]
    T. Tajima, K. Nakajima, and G. Mourou, “Laser acceleration,” Riv. Nuovo Cim. 40, 1 (2017).10.1393/ncr/i2017-10132-x doi: 10.1393/ncr/i2017-10132-x
    [41]
    T. D. Arber, K. Bennett, C. S. Brady et al., “Contemporary particle-in-cell approach to laser-plasma modelling,” Plasma Phys. Control. Fusion 57, 113001 (2015).10.1088/0741-3335/57/11/113001 doi: 10.1088/0741-3335/57/11/113001
    [42]
    S. Augst, D. D. Meyerhofer, D. Strickland et al., “Laser ionization of noble gases by Coulomb-barrier suppression,” J. Opt. Soc. Am. B 8, 858 (1991).10.1364/josab.8.000858 doi: 10.1364/josab.8.000858
    [43]
    S. V. Bulanov, T. Z. Esirkepov, J. Koga et al., “Interaction of electromagnetic waves with plasma in the radiation-dominated regime,” Plasma Phys. Rep. 30, 196 (2004).10.1134/1.1687021 doi: 10.1134/1.1687021
    [44]
    S. V. Bulanov, I. N. Inovenkov, N. M. Naumova et al., “Excitation of a relativistic Langmuir wave and electron acceleration through the action of an electromagnetic pulse on a collisionless plasma,” Sov. J. Plasma Phys. 16, 444 (1990).
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(4)

    Article Metrics

    Article views (178) PDF downloads(10) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return