Follow us on Wechat

用微信扫码二维码

分享至好友和朋友圈

Volume 5 Issue 4
Jul.  2020
Turn off MathJax
Article Contents
Zvorykin V. D., Shutov A. V., Ustinovskii N. N.. Review of nonlinear effects under TW-power PS pulses amplification in GARPUN-MTW Ti:sapphire-KrF laser facility[J]. Matter and Radiation at Extremes, 2020, 5(4): 045401. doi: 10.1063/5.0004130
Citation: Zvorykin V. D., Shutov A. V., Ustinovskii N. N.. Review of nonlinear effects under TW-power PS pulses amplification in GARPUN-MTW Ti:sapphire-KrF laser facility[J]. Matter and Radiation at Extremes, 2020, 5(4): 045401. doi: 10.1063/5.0004130

Review of nonlinear effects under TW-power PS pulses amplification in GARPUN-MTW Ti:sapphire-KrF laser facility

doi: 10.1063/5.0004130
More Information
  • Corresponding author: a)Author to whom correspondence should be addressed: zvorykin@sci.lebedev.ru
  • Received Date: 2020-02-07
  • Accepted Date: 2020-04-19
  • Available Online: 2020-07-01
  • Publish Date: 2020-07-15
  • Investigations were carried out at the multistage hybrid Ti:sapphire–KrF laser facility GARPUN-MTW on the direct amplification of TW-power picosecond UV laser pulses in e-beam-pumped KrF amplifiers and propagation along a 100 m laboratory air pass. The experiments identified the main nonlinear effects and their impact on the amplification efficiency, amplifier optics degradation, beam quality and focusability, and the evolution of radiation spectra. The research was performed towards an implementation of the shock-ignition concept of inertial-confinement fusion using krypton fluoride laser drivers.
  • loading
  • [1]
    V. A. Shcherbakov, “Ignition of a laser-fusion target by a focusing shock wave,” Sov. J. Plasma Phys. 9, 240 (1983).
    [2]
    R. Betti, C. D. Zhou, K. S. Anderson, L. J. Perkins, W. Theobald, and A. A. Solodov, “Shock ignition of thermonuclear fuel with high areal density,” Phys. Rev. Lett. 98, 155001 (2007).10.1103/physrevlett.98.155001 doi: 10.1103/physrevlett.98.155001
    [3]
    R. S. Craxton et al., “Direct-drive inertial confinement fusion: A review,” Phys. Plasmas 22, 110501 (2015).10.1063/1.4934714 doi: 10.1063/1.4934714
    [4]
    V. T. Tikhonchuk, “Physics of laser plasma interaction and particle transport in the context of inertial confinement fusion,” Nucl. Fusion 59, 032001 (2019).10.1088/1741-4326/aab21a doi: 10.1088/1741-4326/aab21a
    [5]
    J. D. Lindl, B. A. Hammel, G. B. Logan, D. D. Meyerhofer, S. A. Payne, and J. D. Sethian, “The US inertial confinement fusion (ICF) ignition programme and the inertial fusion energy (IFE) programme,” Plasma Phys. Control. Fusion 45(12A), A217 (2003).10.1088/0741-3335/45/12a/015 doi: 10.1088/0741-3335/45/12a/015
    [6]
    T. C. Sangster, R. L. McCrory, V. N. Goncharov, D. R. Harding, S. J. Loucks et al., “Overview of inertial fusion research in the United States,” Nucl. Fusion 47, S686 (2007).10.1088/0029-5515/47/10/s17 doi: 10.1088/0029-5515/47/10/s17
    [7]
    S. E. Bodner, A. J. Schmitt, and J. D. Sethian, “Laser requirements for a laser fusion energy power plant,” High Power Laser Sci. Eng. 1, 2 (2013).10.1017/hpl.2013.1 doi: 10.1017/hpl.2013.1
    [8]
    S. Obenschain, R. Lehmberg, D. Kehne, F. Hegeler, M. Wolford et al., “High-energy krypton fluoride lasers for inertial fusion,” Appl. Opt. 54, F103 (2015).10.1364/ao.54.00f103 doi: 10.1364/ao.54.00f103
    [9]
    L. A. Rosocha, P. S. Bowling, M. D. Burrows, M. Kang, J. Hanlon et al., “An overview of Aurora: A multi-kilojoule KrF laser system for inertial confinement fusion,” Laser Part. Beams 4(1), 55 (1986).10.1017/s0263034600001622 doi: 10.1017/s0263034600001622
    [10]
    J. A. Sullivan, “Design of a 100-kJ KrF power amplifier module,” Fusion Tech. 11, 684 (1987).10.13182/fst87-a25043 doi: 10.13182/fst87-a25043
    [11]
    I. N. Sviatoslavsky, M. E. Sawan, R. R. Peterson, G. L. Kulcinski, J. J. MacFarlane et al., “A KrF laser driven inertial fusion reactor “SOMBRERO”,” Fusion Tech. 21, 1470 (1992).10.13182/fst92-a29928 doi: 10.13182/fst92-a29928
    [12]
    W. R. Meyer and C. W. von Rosenberg, Jr., “Economic modeling and parametric studies for SOMBRERO ‒ A laser-driven IFE power plant,” Fusion Tech. 21, 1552 (1992).10.13182/fst92-a29941 doi: 10.13182/fst92-a29941
    [13]
    C. W. von Rosenberg, Jr., “KrF driver system architecture for a laser fusion power plant,” Fusion Tech. 21, 1600 (1992).10.13182/fst92-a29948 doi: 10.13182/fst92-a29948
    [14]
    W. R. Meyer, “Osiris and SOMBRERO inertial fusion power plant designs summary, conclusions, and recommendations,” Fusion Eng. Des. 25, 145 (1994).10.1016/0920-3796(94)90060-4 doi: 10.1016/0920-3796(94)90060-4
    [15]
    R. H. Lehmberg, J. L. Giuliani, and A. J. Schmitt, “Pulse shaping and energy storage capabilities of angularly multiplexed KrF laser fusion drivers,” J. Appl. Phys. 106, 023103 (2009).10.1063/1.3174444 doi: 10.1063/1.3174444
    [16]
    V. D. Zvorykin, N. V. Didenko, A. A. Ionin, I. V. Kholin, A. V. Konyashchenko et al., “GARPUN-MTW: A hybrid Ti:Sapphire/KrF laser facility for simultaneous amplification of subpicosecond/nanosecond pulses relevant to fast-ignition ICF concept,” Laser Part. Beams 25, 435 (2007).10.1017/s0263034607000559 doi: 10.1017/s0263034607000559
    [17]
    V. D. Zvorykin, A. A. Ionin, A. O. Levchenko, G. A. Mesyats, L. V. Seleznev et al., “Production of extended plasma channels in atmospheric air by amplitude-modulated UV radiation of GARPUN-MTW Ti: sapphire—KrF laser. Part 1. Regenerative amplification of subpicosecond pulses in a wide-aperture electron beam pumped KrF amplifier,” Quantum Electron. 43, 332 (2013).10.1070/qe2013v043n04abeh015140 doi: 10.1070/qe2013v043n04abeh015140
    [18]
    S. P. Obenschain, J. D. Sethian, and A. J. Schmitt, “A laser based fusion test facility,” Fusion Sci. Tech. 56, 594 (2009).10.13182/fst56-594 doi: 10.13182/fst56-594
    [19]
    L. A. Rosocha, J. Hanlon, J. McLeod, M. Kang, B. L. Kortegaard et al., “Aurora multikilojoule KrF laser system prototype for inertial confinement fusion,” Fusion Tech. 11 4(1), 497 (1987).10.13182/FST87-A25032 doi: 10.13182/FST87-A25032
    [20]
    M. J. Shaw, B. Edwards, G. J. Hirst, C. J. Hooker, M. H. Key et al., “Development of high-performance KrF and Raman laser facilities for inertial confinement fusion and other applications,” Laser Part. Beams 11, 331 (1993).10.1017/s0263034600004936 doi: 10.1017/s0263034600004936
    [21]
    Y. Owadano, I. Okuda, Y. Matsumoto, I. Matsushima, E. Takahashi et al., “Overview of ‘super-ASHURA’ KrF laser program,” Fusion Eng. Des. 44, 91 (1999).10.1016/s0920-3796(98)00350-0 doi: 10.1016/s0920-3796(98)00350-0
    [22]
    Y. Shan, N. Wang, J. Ma, W. Ma, D. Yang et al., “A six-beam high-power KrF excimer laser system with energy of 100 J/23 ns,” Laser Part. Beams 20, 123 (2002).10.1017/s0263034602201184 doi: 10.1017/s0263034602201184
    [23]
    J. Weaver, R. Lehmberg, S. Obenschain, D. Kehne, and M. Wolford, “Spectral and far-field broadening due to stimulated rotational Raman scattering driven by the Nike krypton fluoride laser,” Appl. Opt. 56, 8618 (2017).10.1364/ao.56.008618 doi: 10.1364/ao.56.008618
    [24]
    I. A. McIntyre and C. K. Rhodes, “High power ultrafast excimer lasers,” J. Appl. Phys. 69, R1 (1991).10.1063/1.347665 doi: 10.1063/1.347665
    [25]
    T. S. Luk, A. McPherson, G. Gibson, K. Boyer, and C. K. Rhodes, “Ultrahigh-intensity KrF* laser system,” Opt. Lett. 14, 1113 (1989).10.1364/ol.14.001113 doi: 10.1364/ol.14.001113
    [26]
    E. J. Divall, C. B. Edwards, G. J. Hirst, C. J. Hooker et al., “Titania- a 1020 Wcm−2 ultraviolet laser,” J. Mod. Opt. 43, 1025 (1996).10.1080/09500349608233263 doi: 10.1080/09500349608233263
    [27]
    M. J. Shaw, I. N. Ross, C. J. Hooker, J. M. Dodson, G. J. Hirst et al., “Ultrahigh-brightness KrF laser system for fast ignition studies,” Fusion Eng. Des. 44, 209 (1999).10.1016/s0920-3796(98)00361-5 doi: 10.1016/s0920-3796(98)00361-5
    [28]
    Y. Owadano, I. Okuda, I. Matsushima, Y. Matsumoto, E. Takahashi et al., “KrF laser program at AIST,” in Inertial Fusion Sciences and Applications 2001, edited by K. A. Tanaka, D. D. Meyerhofer, and J. Meyer-ter-Vehn (Elsevier, 2001), pp. 465–469.
    [29]
    V. D. Zvorykin, A. O. Levchenko, and N. N. Ustinovskii, “Amplification of subpicosecond UV laser pulses in the multistage GARPUN-MTW Ti:sapphire-KrF laser system,” Quantum Electron. 40, 381 (2010).10.1070/qe2010v040n05abeh014241 doi: 10.1070/qe2010v040n05abeh014241
    [30]
    V. D. Zvorykin, A. A. Ionin, A. O. Levchenko, L. V. Seleznev, A. V. Shutov et al., “Multiple filamentation of supercritical UV laser beam in atmospheric air,” Nucl. Inst. Methods Phys. Res., Sect. B 355, 227 (2015).10.1016/j.nimb.2015.02.064 doi: 10.1016/j.nimb.2015.02.064
    [31]
    I. V. Sinitsyn, A. O. Levchenko, A. V. Shutov, N. N. Ustinovskii, and V. D. Zvorykin, “Role of coherent resonant nonlinear processes in the ultrashort KrF laser pulse propagation and filamentation in air,” Nucl. Inst. Methods Phys. Res., Sect. B 369, 87 (2016).10.1016/j.nimb.2015.10.032 doi: 10.1016/j.nimb.2015.10.032
    [32]
    D. Strickland and G. Mourou, “Compression of amplified chirped optical pulses,” Opt. Commun. 56, 219 (1985).10.1016/0030-4018(85)90120-8 doi: 10.1016/0030-4018(85)90120-8
    [33]
    C. Danson, D. Hillier, N. Hopps, and D. Neely, “Petawatt class lasers worldwide,” High Power Laser Sci. Eng. 3, e3 (2015).10.1017/hpl.2014.52 doi: 10.1017/hpl.2014.52
    [34]
    J. R. Houliston, I. N. Ross, M. H. Key, S. Szatmàri, and P. Simon, “Chirped pulse amplification in KrF lasers,” Opt. Commun. 104, 350 (1994).10.1016/0030-4018(94)90569-x doi: 10.1016/0030-4018(94)90569-x
    [35]
    I. N. Ross, A. R. Damerell, E. J. Divall, J. Evans, G. J. Hirst et al., “A 1 TW KrF laser using chirped pulse amplification,” Opt. Commun. 109, 288 (1994).10.1016/0030-4018(94)90695-5 doi: 10.1016/0030-4018(94)90695-5
    [36]
    R. H. Lehmberg, C. J. Pawley, A. V. Deniz, M. Klapisch, and Y. Leng, “Two-photon resonantly-enhanced nonlinear refractive index in Xe at 248 nm,” Opt. Commun. 121, 78 (1995).10.1016/0030-4018(95)00433-9 doi: 10.1016/0030-4018(95)00433-9
    [37]
    M. M. Tilleman and J. H. Jacob, “Short pulse amplification in the presence of absorption,” Appl. Phys. Lett. 50, 121 (1987).10.1063/1.97690 doi: 10.1063/1.97690
    [38]
    A. Couairon and A. Mysyrowicz, “Femtosecond filamentation in transparent media,” Phys. Rep. 441, 47 (2007).10.1016/j.physrep.2006.12.005 doi: 10.1016/j.physrep.2006.12.005
    [39]
    V. D. Zvorykin, S. A. Goncharov, A. A. Ionin, D. V. Mokrousova, S. V. Ryabchuk et al., “Experimental capabilities of the GARPUN MTW Ti: sapphire – KrF laser facility for investigating the interaction of subpicosecond UV pulses with targets,” Quantum Electron. 47, 319 (2017).10.1070/qel16290 doi: 10.1070/qel16290
    [40]
    A. V. Shutov, N. N. Ustinovskii, I. V. Smetanin, D. V. Mokrousova, S. A. Goncharov et al., “Major pathway for multiphoton air ionization at 248 nm laser wavelength,” Appl. Phys. Lett. 111, 224104 (2017).10.1063/1.5006939 doi: 10.1063/1.5006939
    [41]
    A. V. Shutov, N. N. Ustinovskii, I. V. Smetanin, D. V. Mokrousova, S. A. Goncharov et al., “Erratum: “Major pathway for multiphoton air ionization at 248 nm laser wavelength” [Appl. Phys. Lett. 111, 224104 (2017)],” Appl. Phys. Lett. 113, 189902 (2018).10.1063/1.5063354 doi: 10.1063/1.5063354
    [42]
    J. R. Peñano, P. Sprangle, B. Hafizi, A. Ting, D. F. Gordon, and C. A. Kapetanakos, “Propagation of ultra-short, intense laser pulses in air,” Phys. Plasmas 11, 2865 (2004).10.1063/1.1648020 doi: 10.1063/1.1648020
    [43]
    V. Loriot, E. Hertz, O. Faucher, and B. Lavorel, “Measurement of high order Kerr refractive index of major air components,” Opt. Exp. 17, 13429 (2009).10.1364/oe.17.013429 doi: 10.1364/oe.17.013429
    [44]
    P. Bejot, J. Kasparian, S. Henin, V. Loriot, E. Hertz et al., “Higher-order Kerr terms allow ionization-free filamentation in gases,” Phys. Rev. Lett. 104, 103903 (2010).10.1103/physrevlett.104.103903 doi: 10.1103/physrevlett.104.103903
    [45]
    P. Bejot, E. Hertz, J. Kasparian, B. Lavorel, J.-P. Wolf, and O. Faucher, “Transition from plasma-driven to Kerr-driven laser filamentation,” Phys. Rev. Lett. 106, 243902 (2011).10.1103/physrevlett.106.243902 doi: 10.1103/physrevlett.106.243902
    [46]
    J. Doussot, G. Karras, F. Billard, P. Béjot, and O. Faucher, “Resonantly enhanced filamentation in gases,” Optica 4, 764 (2017).10.1364/optica.4.000764 doi: 10.1364/optica.4.000764
    [47]
    V. D. Zvorykin, A. S. Alimov, S. V. Arlantsev, B. S. Ishkhanov, A. O. Levchenko et al., “Degradation of the transmissive optics for a laser-driven IFE power plant under electron and X-ray irradiation,” Plasma Fusion Res. 8, 3405046 (2013).10.1585/pfr.8.3405046 doi: 10.1585/pfr.8.3405046
    [48]
    V. D. Zvorykin, A. S. Averyushkin, S. V. Arlantsev, N. V. Morozov, V. I. Shvedunov, and D. S. Yurov, “Darkening of UV optics irradiated at a CW 1-MeV linear electron accelerator,” J. Nucl. Mater. 509, 73 (2018).10.1016/j.jnucmat.2018.06.030 doi: 10.1016/j.jnucmat.2018.06.030
    [49]
    P. B. Sergeev, A. P. Sergeev, and V. D. Zvorykin, “Effect of KrF laser radiation on electron-beam-induced absorption in fluorite and quartz glasses,” Quantum Electron. 37, 711 (2007).10.1070/qe2007v037n08abeh013445 doi: 10.1070/qe2007v037n08abeh013445
    [50]
    G. Méchain, C. D’Amico, Y.-B. André, S. Tzortzakis, M. Franco et al., “Range of plasma filaments created in air by a multi-terawatt femtosecond laser,” Opt. Commun. 247, 171 (2005).10.1016/j.optcom.2004.11.052 doi: 10.1016/j.optcom.2004.11.052
    [51]
    M. Rodriguez, R. Bourayou, G. Mejean, J. Kasparian, J. Yu et al., “Kilometer-range nonlinear propagation of femtosecond laser pulses,” Phys. Rev. E 69, 036607 (2004).10.1103/physreve.69.036607 doi: 10.1103/physreve.69.036607
    [52]
    M. Durand, A. Houard, B. Prade, A. Mysyrowicz, A. Durecu et al., “Kilometer range filamentation,” Opt. Express 21, 26836 (2013).10.1364/oe.21.026836 doi: 10.1364/oe.21.026836
    [53]
    G. Méchain, A. Couairon, Y.-B. André, C. D’Amico, M. Franco et al., “Long-range self-channeling of infrared laser pulses in air: A new propagation regime without ionization,” Appl. Phys. B 79, 379 (2004).10.1007/s00340-004-1557-8 doi: 10.1007/s00340-004-1557-8
    [54]
    J. Schwarz, P. Rambo, J.-C. Diels, M. Kolesik, E. M. Wright, and J. V. Moloney, “Ultraviolet filamentation in air,” Opt. Commun. 180, 383 (2000).10.1016/s0030-4018(00)00731-8 doi: 10.1016/s0030-4018(00)00731-8
    [55]
    J. Schwarz and J.-C. Diels, “Long distance propagation of UV filaments,” J. Mod. Opt. 49, 2583 (2002).10.1080/0950034021000011374 doi: 10.1080/0950034021000011374
    [56]
    S. Tzortzakis, B. Lamouroux, A. Chiron, M. Franco, B. Prade, and A. Mysyrowicz, “Nonlinear propagation of subpicosecond ultraviolet laser pulses in air,” Opt. Lett. 25, 1270 (2000).10.1364/ol.25.001270 doi: 10.1364/ol.25.001270
    [57]
    S. Moustaizis, B. Lamouroux, A. Chiron, S. D. Moustaizis, D. Anglos, M. Franco, B. Prade, and A. Mysyrowicz, “Femtosecond and picosecond ultraviolet laser filaments in air: Experiments and simulations,” Opt. Commun. 197, 131 (2001).10.1016/s0030-4018(01)01443-2 doi: 10.1016/s0030-4018(01)01443-2
    [58]
    V. Zvorykin, A. Ionin, D. Mokrousova, L. Seleznev, I. Smetanin et al., “Range of multiple filamentation of TW-power large-aperture KrF laser beam in atmospheric air,” JOSA B 36, G25 (2019).10.1364/josab.36.000g25 doi: 10.1364/josab.36.000g25
    [59]
    V. D. Zvorykin, S. A. Goncharov, A. A. Ionin, D. V. Mokrousova, S. V. Ryabchuk et al., “Kerr self-defocusing of multiple filaments in TW peak power UV laser beam,” Laser Phys. Lett. 13, 125404 (2016).10.1088/1612-2011/13/12/125404 doi: 10.1088/1612-2011/13/12/125404
    [60]
    J. Schwarz and J.-K. Diels, “Analytic solution for UV filaments,” Phys. Rev. A 65, 013806 (2001).10.1103/physreva.65.013806 doi: 10.1103/physreva.65.013806
    [61]
    M. J. Shaw, C. J. Hooker, and D. C. Wilson, “Measurement of the nonlinear refractive index of air and other gases at 248 nm,” Opt. Commun. 103, 153 (1993).10.1016/0030-4018(93)90657-q doi: 10.1016/0030-4018(93)90657-q
    [62]
    A. Tünnermann, K. Mossavi, and B. Wellegehausen, “Nonlinear-optical processes in the nearresonant two-photon excitation of xenon by femtosecond KrF-excimer-laser pulses,” Phys. Rev. A 46, 2707 (1992).10.1103/physreva.46.2707 doi: 10.1103/physreva.46.2707
    [63]
    A. J. Taylor, R. B. Gibson, and J. P. Roberts, “Two-photon absorption at 248 nm in ultraviolet window materials,” Opt. Lett. 13, 814 (1988).10.1364/ol.13.000814 doi: 10.1364/ol.13.000814
    [64]
    T. Tomie, I. Okuda, and M. Yano, “Three-photon absorption in CaF2 at 248.5 nm,” Appl. Phys. Lett. 55, 325 (1989).10.1063/1.102417 doi: 10.1063/1.102417
    [65]
    P. Simon, S. Szatmári, and H. Gerhardt, “Intensity-dependent loss properties of window materials at 248 nm,” Opt. Lett. 14, 1207 (1989).10.1364/ol.14.001207 doi: 10.1364/ol.14.001207
    [66]
    K. Hata, M. Watanabe, and S. Watanabe, “Nonlinear processes in UV optical materials at 248 nm,” Appl. Phys. B 50, 55 (1990).10.1007/bf00330094 doi: 10.1007/bf00330094
    [67]
    Y. P. Kim and M. H. R. Hutchinson, “Intensity-induced nonlinear effects in UV window materials,” Appl. Phys. B 49, 469 (1989).10.1007/bf00325351 doi: 10.1007/bf00325351
    [68]
    J. P. Russel, “The Raman spectrum of calcium fluoride,” Proc. Phys. Soc. 85, 194 (1965).10.1088/0370-1328/85/1/129 doi: 10.1088/0370-1328/85/1/129
    [69]
    R. S. Krishnan and N. Krishnamurthy, “The second order Raman spectrum of calcium fluoride,” J. Phys. 26, 633 (1965).10.1051/jphys:019650026011063301 doi: 10.1051/jphys:019650026011063301
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(13)

    Article Metrics

    Article views (282) PDF downloads(14) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return