Citation: | Zvorykin V. D., Shutov A. V., Ustinovskii N. N.. Review of nonlinear effects under TW-power PS pulses amplification in GARPUN-MTW Ti:sapphire-KrF laser facility[J]. Matter and Radiation at Extremes, 2020, 5(4): 045401. doi: 10.1063/5.0004130 |
[1] |
V. A. Shcherbakov, “Ignition of a laser-fusion target by a focusing shock wave,” Sov. J. Plasma Phys. 9, 240 (1983).
|
[2] |
R. Betti, C. D. Zhou, K. S. Anderson, L. J. Perkins, W. Theobald, and A. A. Solodov, “Shock ignition of thermonuclear fuel with high areal density,” Phys. Rev. Lett. 98, 155001 (2007).10.1103/physrevlett.98.155001 doi: 10.1103/physrevlett.98.155001
|
[3] |
R. S. Craxton et al., “Direct-drive inertial confinement fusion: A review,” Phys. Plasmas 22, 110501 (2015).10.1063/1.4934714 doi: 10.1063/1.4934714
|
[4] |
V. T. Tikhonchuk, “Physics of laser plasma interaction and particle transport in the context of inertial confinement fusion,” Nucl. Fusion 59, 032001 (2019).10.1088/1741-4326/aab21a doi: 10.1088/1741-4326/aab21a
|
[5] |
J. D. Lindl, B. A. Hammel, G. B. Logan, D. D. Meyerhofer, S. A. Payne, and J. D. Sethian, “The US inertial confinement fusion (ICF) ignition programme and the inertial fusion energy (IFE) programme,” Plasma Phys. Control. Fusion 45(12A), A217 (2003).10.1088/0741-3335/45/12a/015 doi: 10.1088/0741-3335/45/12a/015
|
[6] |
T. C. Sangster, R. L. McCrory, V. N. Goncharov, D. R. Harding, S. J. Loucks et al., “Overview of inertial fusion research in the United States,” Nucl. Fusion 47, S686 (2007).10.1088/0029-5515/47/10/s17 doi: 10.1088/0029-5515/47/10/s17
|
[7] |
S. E. Bodner, A. J. Schmitt, and J. D. Sethian, “Laser requirements for a laser fusion energy power plant,” High Power Laser Sci. Eng. 1, 2 (2013).10.1017/hpl.2013.1 doi: 10.1017/hpl.2013.1
|
[8] |
S. Obenschain, R. Lehmberg, D. Kehne, F. Hegeler, M. Wolford et al., “High-energy krypton fluoride lasers for inertial fusion,” Appl. Opt. 54, F103 (2015).10.1364/ao.54.00f103 doi: 10.1364/ao.54.00f103
|
[9] |
L. A. Rosocha, P. S. Bowling, M. D. Burrows, M. Kang, J. Hanlon et al., “An overview of Aurora: A multi-kilojoule KrF laser system for inertial confinement fusion,” Laser Part. Beams 4(1), 55 (1986).10.1017/s0263034600001622 doi: 10.1017/s0263034600001622
|
[10] |
J. A. Sullivan, “Design of a 100-kJ KrF power amplifier module,” Fusion Tech. 11, 684 (1987).10.13182/fst87-a25043 doi: 10.13182/fst87-a25043
|
[11] |
I. N. Sviatoslavsky, M. E. Sawan, R. R. Peterson, G. L. Kulcinski, J. J. MacFarlane et al., “A KrF laser driven inertial fusion reactor “SOMBRERO”,” Fusion Tech. 21, 1470 (1992).10.13182/fst92-a29928 doi: 10.13182/fst92-a29928
|
[12] |
W. R. Meyer and C. W. von Rosenberg, Jr., “Economic modeling and parametric studies for SOMBRERO ‒ A laser-driven IFE power plant,” Fusion Tech. 21, 1552 (1992).10.13182/fst92-a29941 doi: 10.13182/fst92-a29941
|
[13] |
C. W. von Rosenberg, Jr., “KrF driver system architecture for a laser fusion power plant,” Fusion Tech. 21, 1600 (1992).10.13182/fst92-a29948 doi: 10.13182/fst92-a29948
|
[14] |
W. R. Meyer, “Osiris and SOMBRERO inertial fusion power plant designs summary, conclusions, and recommendations,” Fusion Eng. Des. 25, 145 (1994).10.1016/0920-3796(94)90060-4 doi: 10.1016/0920-3796(94)90060-4
|
[15] |
R. H. Lehmberg, J. L. Giuliani, and A. J. Schmitt, “Pulse shaping and energy storage capabilities of angularly multiplexed KrF laser fusion drivers,” J. Appl. Phys. 106, 023103 (2009).10.1063/1.3174444 doi: 10.1063/1.3174444
|
[16] |
V. D. Zvorykin, N. V. Didenko, A. A. Ionin, I. V. Kholin, A. V. Konyashchenko et al., “GARPUN-MTW: A hybrid Ti:Sapphire/KrF laser facility for simultaneous amplification of subpicosecond/nanosecond pulses relevant to fast-ignition ICF concept,” Laser Part. Beams 25, 435 (2007).10.1017/s0263034607000559 doi: 10.1017/s0263034607000559
|
[17] |
V. D. Zvorykin, A. A. Ionin, A. O. Levchenko, G. A. Mesyats, L. V. Seleznev et al., “Production of extended plasma channels in atmospheric air by amplitude-modulated UV radiation of GARPUN-MTW Ti: sapphire—KrF laser. Part 1. Regenerative amplification of subpicosecond pulses in a wide-aperture electron beam pumped KrF amplifier,” Quantum Electron. 43, 332 (2013).10.1070/qe2013v043n04abeh015140 doi: 10.1070/qe2013v043n04abeh015140
|
[18] |
S. P. Obenschain, J. D. Sethian, and A. J. Schmitt, “A laser based fusion test facility,” Fusion Sci. Tech. 56, 594 (2009).10.13182/fst56-594 doi: 10.13182/fst56-594
|
[19] |
L. A. Rosocha, J. Hanlon, J. McLeod, M. Kang, B. L. Kortegaard et al., “Aurora multikilojoule KrF laser system prototype for inertial confinement fusion,” Fusion Tech. 11 4(1), 497 (1987).10.13182/FST87-A25032 doi: 10.13182/FST87-A25032
|
[20] |
M. J. Shaw, B. Edwards, G. J. Hirst, C. J. Hooker, M. H. Key et al., “Development of high-performance KrF and Raman laser facilities for inertial confinement fusion and other applications,” Laser Part. Beams 11, 331 (1993).10.1017/s0263034600004936 doi: 10.1017/s0263034600004936
|
[21] |
Y. Owadano, I. Okuda, Y. Matsumoto, I. Matsushima, E. Takahashi et al., “Overview of ‘super-ASHURA’ KrF laser program,” Fusion Eng. Des. 44, 91 (1999).10.1016/s0920-3796(98)00350-0 doi: 10.1016/s0920-3796(98)00350-0
|
[22] |
Y. Shan, N. Wang, J. Ma, W. Ma, D. Yang et al., “A six-beam high-power KrF excimer laser system with energy of 100 J/23 ns,” Laser Part. Beams 20, 123 (2002).10.1017/s0263034602201184 doi: 10.1017/s0263034602201184
|
[23] |
J. Weaver, R. Lehmberg, S. Obenschain, D. Kehne, and M. Wolford, “Spectral and far-field broadening due to stimulated rotational Raman scattering driven by the Nike krypton fluoride laser,” Appl. Opt. 56, 8618 (2017).10.1364/ao.56.008618 doi: 10.1364/ao.56.008618
|
[24] |
I. A. McIntyre and C. K. Rhodes, “High power ultrafast excimer lasers,” J. Appl. Phys. 69, R1 (1991).10.1063/1.347665 doi: 10.1063/1.347665
|
[25] |
T. S. Luk, A. McPherson, G. Gibson, K. Boyer, and C. K. Rhodes, “Ultrahigh-intensity KrF* laser system,” Opt. Lett. 14, 1113 (1989).10.1364/ol.14.001113 doi: 10.1364/ol.14.001113
|
[26] |
E. J. Divall, C. B. Edwards, G. J. Hirst, C. J. Hooker et al., “Titania- a 1020 Wcm−2 ultraviolet laser,” J. Mod. Opt. 43, 1025 (1996).10.1080/09500349608233263 doi: 10.1080/09500349608233263
|
[27] |
M. J. Shaw, I. N. Ross, C. J. Hooker, J. M. Dodson, G. J. Hirst et al., “Ultrahigh-brightness KrF laser system for fast ignition studies,” Fusion Eng. Des. 44, 209 (1999).10.1016/s0920-3796(98)00361-5 doi: 10.1016/s0920-3796(98)00361-5
|
[28] |
Y. Owadano, I. Okuda, I. Matsushima, Y. Matsumoto, E. Takahashi et al., “KrF laser program at AIST,” in Inertial Fusion Sciences and Applications 2001, edited by K. A. Tanaka, D. D. Meyerhofer, and J. Meyer-ter-Vehn (Elsevier, 2001), pp. 465–469.
|
[29] |
V. D. Zvorykin, A. O. Levchenko, and N. N. Ustinovskii, “Amplification of subpicosecond UV laser pulses in the multistage GARPUN-MTW Ti:sapphire-KrF laser system,” Quantum Electron. 40, 381 (2010).10.1070/qe2010v040n05abeh014241 doi: 10.1070/qe2010v040n05abeh014241
|
[30] |
V. D. Zvorykin, A. A. Ionin, A. O. Levchenko, L. V. Seleznev, A. V. Shutov et al., “Multiple filamentation of supercritical UV laser beam in atmospheric air,” Nucl. Inst. Methods Phys. Res., Sect. B 355, 227 (2015).10.1016/j.nimb.2015.02.064 doi: 10.1016/j.nimb.2015.02.064
|
[31] |
I. V. Sinitsyn, A. O. Levchenko, A. V. Shutov, N. N. Ustinovskii, and V. D. Zvorykin, “Role of coherent resonant nonlinear processes in the ultrashort KrF laser pulse propagation and filamentation in air,” Nucl. Inst. Methods Phys. Res., Sect. B 369, 87 (2016).10.1016/j.nimb.2015.10.032 doi: 10.1016/j.nimb.2015.10.032
|
[32] |
D. Strickland and G. Mourou, “Compression of amplified chirped optical pulses,” Opt. Commun. 56, 219 (1985).10.1016/0030-4018(85)90120-8 doi: 10.1016/0030-4018(85)90120-8
|
[33] |
C. Danson, D. Hillier, N. Hopps, and D. Neely, “Petawatt class lasers worldwide,” High Power Laser Sci. Eng. 3, e3 (2015).10.1017/hpl.2014.52 doi: 10.1017/hpl.2014.52
|
[34] |
J. R. Houliston, I. N. Ross, M. H. Key, S. Szatmàri, and P. Simon, “Chirped pulse amplification in KrF lasers,” Opt. Commun. 104, 350 (1994).10.1016/0030-4018(94)90569-x doi: 10.1016/0030-4018(94)90569-x
|
[35] |
I. N. Ross, A. R. Damerell, E. J. Divall, J. Evans, G. J. Hirst et al., “A 1 TW KrF laser using chirped pulse amplification,” Opt. Commun. 109, 288 (1994).10.1016/0030-4018(94)90695-5 doi: 10.1016/0030-4018(94)90695-5
|
[36] |
R. H. Lehmberg, C. J. Pawley, A. V. Deniz, M. Klapisch, and Y. Leng, “Two-photon resonantly-enhanced nonlinear refractive index in Xe at 248 nm,” Opt. Commun. 121, 78 (1995).10.1016/0030-4018(95)00433-9 doi: 10.1016/0030-4018(95)00433-9
|
[37] |
M. M. Tilleman and J. H. Jacob, “Short pulse amplification in the presence of absorption,” Appl. Phys. Lett. 50, 121 (1987).10.1063/1.97690 doi: 10.1063/1.97690
|
[38] |
A. Couairon and A. Mysyrowicz, “Femtosecond filamentation in transparent media,” Phys. Rep. 441, 47 (2007).10.1016/j.physrep.2006.12.005 doi: 10.1016/j.physrep.2006.12.005
|
[39] |
V. D. Zvorykin, S. A. Goncharov, A. A. Ionin, D. V. Mokrousova, S. V. Ryabchuk et al., “Experimental capabilities of the GARPUN MTW Ti: sapphire – KrF laser facility for investigating the interaction of subpicosecond UV pulses with targets,” Quantum Electron. 47, 319 (2017).10.1070/qel16290 doi: 10.1070/qel16290
|
[40] |
A. V. Shutov, N. N. Ustinovskii, I. V. Smetanin, D. V. Mokrousova, S. A. Goncharov et al., “Major pathway for multiphoton air ionization at 248 nm laser wavelength,” Appl. Phys. Lett. 111, 224104 (2017).10.1063/1.5006939 doi: 10.1063/1.5006939
|
[41] |
A. V. Shutov, N. N. Ustinovskii, I. V. Smetanin, D. V. Mokrousova, S. A. Goncharov et al., “Erratum: “Major pathway for multiphoton air ionization at 248 nm laser wavelength” [Appl. Phys. Lett. 111, 224104 (2017)],” Appl. Phys. Lett. 113, 189902 (2018).10.1063/1.5063354 doi: 10.1063/1.5063354
|
[42] |
J. R. Peñano, P. Sprangle, B. Hafizi, A. Ting, D. F. Gordon, and C. A. Kapetanakos, “Propagation of ultra-short, intense laser pulses in air,” Phys. Plasmas 11, 2865 (2004).10.1063/1.1648020 doi: 10.1063/1.1648020
|
[43] |
V. Loriot, E. Hertz, O. Faucher, and B. Lavorel, “Measurement of high order Kerr refractive index of major air components,” Opt. Exp. 17, 13429 (2009).10.1364/oe.17.013429 doi: 10.1364/oe.17.013429
|
[44] |
P. Bejot, J. Kasparian, S. Henin, V. Loriot, E. Hertz et al., “Higher-order Kerr terms allow ionization-free filamentation in gases,” Phys. Rev. Lett. 104, 103903 (2010).10.1103/physrevlett.104.103903 doi: 10.1103/physrevlett.104.103903
|
[45] |
P. Bejot, E. Hertz, J. Kasparian, B. Lavorel, J.-P. Wolf, and O. Faucher, “Transition from plasma-driven to Kerr-driven laser filamentation,” Phys. Rev. Lett. 106, 243902 (2011).10.1103/physrevlett.106.243902 doi: 10.1103/physrevlett.106.243902
|
[46] |
J. Doussot, G. Karras, F. Billard, P. Béjot, and O. Faucher, “Resonantly enhanced filamentation in gases,” Optica 4, 764 (2017).10.1364/optica.4.000764 doi: 10.1364/optica.4.000764
|
[47] |
V. D. Zvorykin, A. S. Alimov, S. V. Arlantsev, B. S. Ishkhanov, A. O. Levchenko et al., “Degradation of the transmissive optics for a laser-driven IFE power plant under electron and X-ray irradiation,” Plasma Fusion Res. 8, 3405046 (2013).10.1585/pfr.8.3405046 doi: 10.1585/pfr.8.3405046
|
[48] |
V. D. Zvorykin, A. S. Averyushkin, S. V. Arlantsev, N. V. Morozov, V. I. Shvedunov, and D. S. Yurov, “Darkening of UV optics irradiated at a CW 1-MeV linear electron accelerator,” J. Nucl. Mater. 509, 73 (2018).10.1016/j.jnucmat.2018.06.030 doi: 10.1016/j.jnucmat.2018.06.030
|
[49] |
P. B. Sergeev, A. P. Sergeev, and V. D. Zvorykin, “Effect of KrF laser radiation on electron-beam-induced absorption in fluorite and quartz glasses,” Quantum Electron. 37, 711 (2007).10.1070/qe2007v037n08abeh013445 doi: 10.1070/qe2007v037n08abeh013445
|
[50] |
G. Méchain, C. D’Amico, Y.-B. André, S. Tzortzakis, M. Franco et al., “Range of plasma filaments created in air by a multi-terawatt femtosecond laser,” Opt. Commun. 247, 171 (2005).10.1016/j.optcom.2004.11.052 doi: 10.1016/j.optcom.2004.11.052
|
[51] |
M. Rodriguez, R. Bourayou, G. Mejean, J. Kasparian, J. Yu et al., “Kilometer-range nonlinear propagation of femtosecond laser pulses,” Phys. Rev. E 69, 036607 (2004).10.1103/physreve.69.036607 doi: 10.1103/physreve.69.036607
|
[52] |
M. Durand, A. Houard, B. Prade, A. Mysyrowicz, A. Durecu et al., “Kilometer range filamentation,” Opt. Express 21, 26836 (2013).10.1364/oe.21.026836 doi: 10.1364/oe.21.026836
|
[53] |
G. Méchain, A. Couairon, Y.-B. André, C. D’Amico, M. Franco et al., “Long-range self-channeling of infrared laser pulses in air: A new propagation regime without ionization,” Appl. Phys. B 79, 379 (2004).10.1007/s00340-004-1557-8 doi: 10.1007/s00340-004-1557-8
|
[54] |
J. Schwarz, P. Rambo, J.-C. Diels, M. Kolesik, E. M. Wright, and J. V. Moloney, “Ultraviolet filamentation in air,” Opt. Commun. 180, 383 (2000).10.1016/s0030-4018(00)00731-8 doi: 10.1016/s0030-4018(00)00731-8
|
[55] |
J. Schwarz and J.-C. Diels, “Long distance propagation of UV filaments,” J. Mod. Opt. 49, 2583 (2002).10.1080/0950034021000011374 doi: 10.1080/0950034021000011374
|
[56] |
S. Tzortzakis, B. Lamouroux, A. Chiron, M. Franco, B. Prade, and A. Mysyrowicz, “Nonlinear propagation of subpicosecond ultraviolet laser pulses in air,” Opt. Lett. 25, 1270 (2000).10.1364/ol.25.001270 doi: 10.1364/ol.25.001270
|
[57] |
S. Moustaizis, B. Lamouroux, A. Chiron, S. D. Moustaizis, D. Anglos, M. Franco, B. Prade, and A. Mysyrowicz, “Femtosecond and picosecond ultraviolet laser filaments in air: Experiments and simulations,” Opt. Commun. 197, 131 (2001).10.1016/s0030-4018(01)01443-2 doi: 10.1016/s0030-4018(01)01443-2
|
[58] |
V. Zvorykin, A. Ionin, D. Mokrousova, L. Seleznev, I. Smetanin et al., “Range of multiple filamentation of TW-power large-aperture KrF laser beam in atmospheric air,” JOSA B 36, G25 (2019).10.1364/josab.36.000g25 doi: 10.1364/josab.36.000g25
|
[59] |
V. D. Zvorykin, S. A. Goncharov, A. A. Ionin, D. V. Mokrousova, S. V. Ryabchuk et al., “Kerr self-defocusing of multiple filaments in TW peak power UV laser beam,” Laser Phys. Lett. 13, 125404 (2016).10.1088/1612-2011/13/12/125404 doi: 10.1088/1612-2011/13/12/125404
|
[60] |
J. Schwarz and J.-K. Diels, “Analytic solution for UV filaments,” Phys. Rev. A 65, 013806 (2001).10.1103/physreva.65.013806 doi: 10.1103/physreva.65.013806
|
[61] |
M. J. Shaw, C. J. Hooker, and D. C. Wilson, “Measurement of the nonlinear refractive index of air and other gases at 248 nm,” Opt. Commun. 103, 153 (1993).10.1016/0030-4018(93)90657-q doi: 10.1016/0030-4018(93)90657-q
|
[62] |
A. Tünnermann, K. Mossavi, and B. Wellegehausen, “Nonlinear-optical processes in the nearresonant two-photon excitation of xenon by femtosecond KrF-excimer-laser pulses,” Phys. Rev. A 46, 2707 (1992).10.1103/physreva.46.2707 doi: 10.1103/physreva.46.2707
|
[63] |
A. J. Taylor, R. B. Gibson, and J. P. Roberts, “Two-photon absorption at 248 nm in ultraviolet window materials,” Opt. Lett. 13, 814 (1988).10.1364/ol.13.000814 doi: 10.1364/ol.13.000814
|
[64] |
T. Tomie, I. Okuda, and M. Yano, “Three-photon absorption in CaF2 at 248.5 nm,” Appl. Phys. Lett. 55, 325 (1989).10.1063/1.102417 doi: 10.1063/1.102417
|
[65] |
P. Simon, S. Szatmári, and H. Gerhardt, “Intensity-dependent loss properties of window materials at 248 nm,” Opt. Lett. 14, 1207 (1989).10.1364/ol.14.001207 doi: 10.1364/ol.14.001207
|
[66] |
K. Hata, M. Watanabe, and S. Watanabe, “Nonlinear processes in UV optical materials at 248 nm,” Appl. Phys. B 50, 55 (1990).10.1007/bf00330094 doi: 10.1007/bf00330094
|
[67] |
Y. P. Kim and M. H. R. Hutchinson, “Intensity-induced nonlinear effects in UV window materials,” Appl. Phys. B 49, 469 (1989).10.1007/bf00325351 doi: 10.1007/bf00325351
|
[68] |
J. P. Russel, “The Raman spectrum of calcium fluoride,” Proc. Phys. Soc. 85, 194 (1965).10.1088/0370-1328/85/1/129 doi: 10.1088/0370-1328/85/1/129
|
[69] |
R. S. Krishnan and N. Krishnamurthy, “The second order Raman spectrum of calcium fluoride,” J. Phys. 26, 633 (1965).10.1051/jphys:019650026011063301 doi: 10.1051/jphys:019650026011063301
|