Follow us on Wechat

用微信扫码二维码

分享至好友和朋友圈

Volume 5 Issue 3
May  2020
Turn off MathJax
Article Contents
Gregoryanz Eugene, Ji Cheng, Dalladay-Simpson Philip, Li Bing, Howie Ross T., Mao Ho-Kwang. Everything you always wanted to know about metallic hydrogen but were afraid to ask[J]. Matter and Radiation at Extremes, 2020, 5(3): 038101. doi: 10.1063/5.0002104
Citation: Gregoryanz Eugene, Ji Cheng, Dalladay-Simpson Philip, Li Bing, Howie Ross T., Mao Ho-Kwang. Everything you always wanted to know about metallic hydrogen but were afraid to ask[J]. Matter and Radiation at Extremes, 2020, 5(3): 038101. doi: 10.1063/5.0002104

Everything you always wanted to know about metallic hydrogen but were afraid to ask

doi: 10.1063/5.0002104
More Information
  • Corresponding author: a)Author to whom correspondence should be addressed: e.gregoryanz@ed.ac.uk
  • Received Date: 2020-01-22
  • Accepted Date: 2020-03-05
  • Available Online: 2020-05-01
  • Publish Date: 2020-05-15
  • The hydrogen molecule is made from the first and lightest element in the periodic table. When hydrogen gas is either compressed or cooled, it forms the simplest molecular solid. This solid exhibits many interesting and fundamental physical phenomena. It is believed that if the density of the solid is increased by compressing it to very high pressures, hydrogen will transform into the lightest known metal with very unusual and fascinating properties, such as room temperature superconductivity and/or superfluidity. In this article, we provide a critical look at the numerous claims of hydrogen metallization and the current experimental state of affairs.
  • loading
  • [1]
    V. L. Ginzburg, “What problems of physics and astrophysics seem now to be especially important and interesting (thirty years later, already on the verge of XXI century),” Phys. - Usp. 42, 353 (1999).10.1070/pu1999v042n04abeh000562 doi: 10.1070/pu1999v042n04abeh000562
    [2]
    K. B. Davis et al., “Bose-einstein condensation in a gas of sodium atoms,” Phys. Rev. Lett. 75, 3969 (1995).10.1103/physrevlett.75.3969 doi: 10.1103/physrevlett.75.3969
    [3]
    G. Aad et al., “Observation of a new particle in the search for the Standard Model Higgs boson with the ATLAS detector at the LHC,” Phys. Lett. B 716, 1 (2012).10.1016/j.physletb.2012.08.020 doi: 10.1016/j.physletb.2012.08.020
    [4]
    B. P. Abbot et al., “Observation of gravitational waves from a binary black hole merger,” Phys. Rev. Lett. 116, 061102 (2016).10.1103/PhysRevLett.116.061102 doi: 10.1103/PhysRevLett.116.061102
    [5]
    M. Somayazulu et al., “Evidence for superconductivity above 260 K in lanthanum superhydride at megabar pressures,” Phys. Rev. Lett. 122, 027001 (2019).10.1103/physrevlett.122.027001 doi: 10.1103/physrevlett.122.027001
    [6]
    T. Guillot, “The interiors of giant planets: Models and outstanding questions,” Ann. Rev. Earth Planet. Sci. 33, 493 (2005).10.1146/annurev.earth.32.101802.120325 doi: 10.1146/annurev.earth.32.101802.120325
    [7]
    V. L. Ginzburg, “Nobel Lecture: On superconductivity and superfluidity (What I have and have not managed to do) as well as on the “physical minimum” at the beginning of the XXI century,” Rev. Mod. Phys. 76, 981 (2004).10.1103/revmodphys.76.981 doi: 10.1103/revmodphys.76.981
    [8]
    E. Wigner and H. B. Huntington, “On the possibility of a metallic modification of hydrogen,” J. Chem. Phys. 3, 764 (1935).10.1063/1.1749590 doi: 10.1063/1.1749590
    [9]
    P. Dalladay-Simpson et al., “Evidence for a new phase of dense hydrogen above 325 gigapascals,” Nature 529, 63 (2016).10.1038/nature16164 doi: 10.1038/nature16164
    [10]
    R. T. Howie et al., “Mixed molecular and atomic phase of dense hydrogen,” Phys. Rev. Lett. 108, 125501 (2012).10.1103/physrevlett.108.125501 doi: 10.1103/physrevlett.108.125501
    [11]
    R. T. Howie et al., “Proton tunneling in phase IV of hydrogen and deuterium,” Phys. Rev. B 86, 214104 (2012).10.1103/physrevb.86.214104 doi: 10.1103/physrevb.86.214104
    [12]
    R. T. Howie et al., “Raman spectroscopy of hot hydrogen above 200 GPa,” Nat. Mat. 14, 495 (2015).10.1038/nmat4213 doi: 10.1038/nmat4213
    [13]
    X.-D. Liu et al., “High-pressure behavior of hydrogen and deuterium at low temperatures,” Phys. Rev. Lett. 122, 199602 (2019).10.1103/physrevlett.122.199602 doi: 10.1103/physrevlett.122.199602
    [14]
    M. D. Knudson et al., “Direct observation of an abrupt insulator-to-metal transition in dense liquid deuterium,” Science 348, 1455 (2015).10.1126/science.aaa7471 doi: 10.1126/science.aaa7471
    [15]
    P. M. Celliers et al., “Insulator-metal transition in dense fluid deuterium,” Science 361, 677 (2018).10.1126/science.aat0970 doi: 10.1126/science.aat0970
    [16]
    E. Babaev et al., “Observability of a projected new state of matter: A metallic superfluid,” Phys. Rev. Lett. 95, 105301 (2005).10.1103/physrevlett.95.105301 doi: 10.1103/physrevlett.95.105301
    [17]
    J. van Kranendonk, Solid Hydrogen (Plenum Press, 1983).
    [18]
    E. Housecroft and A. G. Sharpe, Inorganic Chemistry (Prentice-Hall, 2007).
    [19]
    K. Inoue, H. Kanzaki, and S. Suga, “Fundamental absorption spectra of solid hydrogen,” Solid St. Commun 30, 627 (1979).10.1016/0038-1098(79)90110-8 doi: 10.1016/0038-1098(79)90110-8
    [20]
    H. K. Mao and P. M. Bell, “Observations of hydrogen at room temperature (25 C) and high pressure (to 500 kilobars),” Science 203, 1004 (1979).10.1126/science.203.4384.1004 doi: 10.1126/science.203.4384.1004
    [21]
    P. Dalladay-Simpson et al., “Band gap closure, incommensurability and molecular dissociation of dense chlorine,” Nat. Commun. 10, 1134 (2019).10.1038/s41467-019-10187-z doi: 10.1038/s41467-019-10187-z
    [22]
    M. I. Eremets et al., “Semimetallic molecular hydrogen at pressure above 350 GPa,” Nat. Phys. 15, 1246 (2019).10.1038/s41567-019-0646-x doi: 10.1038/s41567-019-0646-x
    [23]
    I. F. Silvera and R. J. Wijngaarden, “New low-temperature phase of molecular deuterium at ultrahigh pressure,” Phys. Rev. Lett. 47, 39 (1981).10.1103/physrevlett.47.39 doi: 10.1103/physrevlett.47.39
    [24]
    I. Goncharenko and P. Loubeyre, “Neutron and X-ray diffraction study of the broken symmetry phase transition in solid deuterium,” Nature 435, 1206 (2005).10.1038/nature03699 doi: 10.1038/nature03699
    [25]
    R. J. Hemley and H. K. Mao, “Phase transition in solid molecular hydrogen at ultrahigh pressures,” Phys. Rev. Lett. 61, 857 (1988).10.1103/physrevlett.61.857 doi: 10.1103/physrevlett.61.857
    [26]
    Y. Akahama et al., “Evidence from x-ray diffraction of orientational ordering in phase III of solid hydrogen at pressures up to 183 GPa,” Phys. Rev. B 82, 060101(R) (2010).10.1103/physrevb.82.060101 doi: 10.1103/physrevb.82.060101
    [27]
    C. Ji et al., “Ultrahigh-pressure isostructural electronic transitions in hydrogen,” Nature 573, 558 (2019).10.1038/s41586-019-1565-9 doi: 10.1038/s41586-019-1565-9
    [28]
    M. Hanfland et al., “Novel infrared vibron absorption in solid hydrogen at megabar pressures,” Phys. Rev. Lett. 70, 3760 (1993).10.1103/physrevlett.70.3760 doi: 10.1103/physrevlett.70.3760
    [29]
    H.-k. Mao and R. J. Hemley, “Ultrahigh-pressure transitions in solid hydrogen,” Rev. Mod. Phys. 66, 671 (1994).10.1103/revmodphys.66.671 doi: 10.1103/revmodphys.66.671
    [30]
    P. Loubeyre et al., “Optical studies of solid hydrogen to 320 GPa and evidence for black hydrogen,” Nature 416, 613 (2002).10.1038/416613a doi: 10.1038/416613a
    [31]
    Y. Akahama et al., “Raman scattering and x-ray diffraction experiments for phase III of solid hydrogen,” J. Phys.: Conf. Ser. 215, 012056 (2010).10.1088/1742-6596/215/1/012056 doi: 10.1088/1742-6596/215/1/012056
    [32]
    B. J. Baer et al., “Coherent anti-Stokes Raman spectroscopy of highly compressed solid deuterium at 300 K: Evidence for a new phase and implications for the band gap,” Phys. Rev. Lett. 98, 235503 (2007).10.1103/physrevlett.98.235503 doi: 10.1103/physrevlett.98.235503
    [33]
    M. I. Eremets and I. A. Troyan, “Conductive dense hydrogen,” Nat. Mat. 10, 927 (2011).10.1038/nmat3175 doi: 10.1038/nmat3175
    [34]
    C. J. Pickard and R. J. Needs, “Structure of phase III of solid hydrogen,” Nat. Phys. 3, 473 (2007).10.1038/nphys625 doi: 10.1038/nphys625
    [35]
    A. A. Abrikosov, “The equation of state of hydrogen at high pressures,” Astron. Z. 31, 112 (1954).
    [36]
    R. Kronig, et al., “On the internal constitution of the Earth,” Physica 12, 245 (1946).10.1016/s0031-8914(46)80065-x doi: 10.1016/s0031-8914(46)80065-x
    [37]
    W. C. DeMarcus, “The constitution of jupiter and saturn,” Astron. J. 63, 2 (1958).10.1086/107672 doi: 10.1086/107672
    [38]
    N. W. Ashcroft, “Metallic hydrogen: A high-temperature superconductor?,” Phys. Rev. Lett. 21, 1748 (1968).10.1103/physrevlett.21.1748 doi: 10.1103/physrevlett.21.1748
    [39]
    I. Langmuir and G. M. J. Mackay, “The dissociation of hydrogen into atoms. Part I. Experimental,” J. Am. Chem. Soc. 36, 1708 (1914).10.1021/ja02185a011 doi: 10.1021/ja02185a011
    [40]
    I. Langmuir, “The dissociation of hydrogen into atoms. Part II. Calculation of the degree of dissociation and the heat of formation,” J. Am. Chem. Soc. 37, 417 (1915).10.1021/ja02168a002 doi: 10.1021/ja02168a002
    [41]
    S. K. Sharma et al., “Raman measurements of hydrogen in the pressure range 0.2–630 kbar at room temperature,” Phys. Rev. Lett. 44, 886 (1980).10.1103/physrevlett.44.886 doi: 10.1103/physrevlett.44.886
    [42]
    H.-k. Mao and R. J. Hemley, “Optical studies of hydrogen above 200 Gigapascals: Evidence for metallization by band overlap,” Science 244, 1462 (1989).10.1126/science.244.4911.1462 doi: 10.1126/science.244.4911.1462
    [43]
    H. E. Lorenzana et al., “Orientational phase transitions in hydrogen at megabar pressures,” Phys. Rev. Lett. 64, 1939 (1990).10.1103/physrevlett.64.1939 doi: 10.1103/physrevlett.64.1939
    [44]
    R. T. Howie et al., “Hydrogen (deuterium) vibron frequency as a pressure comparison gauge at multi-Mbar pressures,” J. Appl. Phys. 114, 073505 (2013).10.1063/1.4818606 doi: 10.1063/1.4818606
    [45]
    B. Monserrat et al., “Structure and metallicity of phase V of hydrogen,” Phys. Rev. Lett. 120, 255701 (2018).10.1103/physrevlett.120.255701 doi: 10.1103/physrevlett.120.255701
    [46]
    R. P. Dias and I. F. Silvera, “Observation of the Wigner-Huntington transition to metallic hydrogen,” Science 355, 6326 (2017).10.1126/science.aal1579 doi: 10.1126/science.aal1579
    [47]
    X.-D. Liu et al., “Comment on Observation of the Wigner-Huntington transition to metallic hydrogen,” Science 357, eaan2286 (2017).10.1126/science.aan2286 doi: 10.1126/science.aan2286
    [48]
    A. F. Goncharov and V. V. Struzhkin, “Comment on Observation of the Wigner-Huntington transition to metallic hydrogen,” Science 357, eaam9736 (2017).10.1126/science.aam9736 doi: 10.1126/science.aam9736
    [49]
    [50]
    [51]
    H. Y. Geng, “Public debate on metallic hydrogen to boost high pressure research,” Matter Radiat. Extremes 2, 275 (2017).10.1016/j.mre.2017.10.001 doi: 10.1016/j.mre.2017.10.001
    [52]
    R. P. Dias et al., “Quantum phase transition in solid hydrogen at high pressure,” Phys. Rev. B 100, 184112 (2019).10.1103/physrevb.100.184112 doi: 10.1103/physrevb.100.184112
    [53]
    R. P. Dias and I. F. Silvera, “Erratum for the research article “Observation of the Wigner-Huntington transition to metallic hydrogen”,” Science 357, eaao5843 (2017).10.1126/science.aao5843 doi: 10.1126/science.aao5843
    [54]
    [55]
    P. Loubeyre, F. Occelli, and P. Dumas, “Synchrotron infrared spectroscopic evidence of the probable transition to metal hydrogen,” Nature 577, 631 (2020).10.1038/s41586-019-1927-3 doi: 10.1038/s41586-019-1927-3
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(2)

    Article Metrics

    Article views (211) PDF downloads(10) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return