| Citation: | Gregoryanz Eugene, Ji Cheng, Dalladay-Simpson Philip, Li Bing, Howie Ross T., Mao Ho-Kwang. Everything you always wanted to know about metallic hydrogen but were afraid to ask[J]. Matter and Radiation at Extremes, 2020, 5(3): 038101. doi: 10.1063/5.0002104 | 
	                | [1] | 
					 V. L. Ginzburg, “What problems of physics and astrophysics seem now to be especially important and interesting (thirty years later, already on the verge of XXI century),” Phys. - Usp. 42, 353 (1999).10.1070/pu1999v042n04abeh000562 doi:  10.1070/pu1999v042n04abeh000562 
						
					 | 
			
| [2] | 
					 K. B. Davis et al., “Bose-einstein condensation in a gas of sodium atoms,” Phys. Rev. Lett. 75, 3969 (1995).10.1103/physrevlett.75.3969 doi:  10.1103/physrevlett.75.3969 
						
					 | 
			
| [3] | 
					 G. Aad et al., “Observation of a new particle in the search for the Standard Model Higgs boson with the ATLAS detector at the LHC,” Phys. Lett. B 716, 1 (2012).10.1016/j.physletb.2012.08.020 doi:  10.1016/j.physletb.2012.08.020 
						
					 | 
			
| [4] | 
					 B. P. Abbot et al., “Observation of gravitational waves from a binary black hole merger,” Phys. Rev. Lett. 116, 061102 (2016).10.1103/PhysRevLett.116.061102 doi:  10.1103/PhysRevLett.116.061102 
						
					 | 
			
| [5] | 
					 M. Somayazulu et al., “Evidence for superconductivity above 260 K in lanthanum superhydride at megabar pressures,” Phys. Rev. Lett. 122, 027001 (2019).10.1103/physrevlett.122.027001 doi:  10.1103/physrevlett.122.027001 
						
					 | 
			
| [6] | 
					 T. Guillot, “The interiors of giant planets: Models and outstanding questions,” Ann. Rev. Earth Planet. Sci. 33, 493 (2005).10.1146/annurev.earth.32.101802.120325 doi:  10.1146/annurev.earth.32.101802.120325 
						
					 | 
			
| [7] | 
					 V. L. Ginzburg, “Nobel Lecture: On superconductivity and superfluidity (What I have and have not managed to do) as well as on the “physical minimum” at the beginning of the XXI century,” Rev. Mod. Phys. 76, 981 (2004).10.1103/revmodphys.76.981 doi:  10.1103/revmodphys.76.981 
						
					 | 
			
| [8] | 
					 E. Wigner and H. B. Huntington, “On the possibility of a metallic modification of hydrogen,” J. Chem. Phys. 3, 764 (1935).10.1063/1.1749590 doi:  10.1063/1.1749590 
						
					 | 
			
| [9] | 
					 P. Dalladay-Simpson et al., “Evidence for a new phase of dense hydrogen above 325 gigapascals,” Nature 529, 63 (2016).10.1038/nature16164 doi:  10.1038/nature16164 
						
					 | 
			
| [10] | 
					 R. T. Howie et al., “Mixed molecular and atomic phase of dense hydrogen,” Phys. Rev. Lett. 108, 125501 (2012).10.1103/physrevlett.108.125501 doi:  10.1103/physrevlett.108.125501 
						
					 | 
			
| [11] | 
					 R. T. Howie et al., “Proton tunneling in phase IV of hydrogen and deuterium,” Phys. Rev. B 86, 214104 (2012).10.1103/physrevb.86.214104 doi:  10.1103/physrevb.86.214104 
						
					 | 
			
| [12] | 
					 R. T. Howie et al., “Raman spectroscopy of hot hydrogen above 200 GPa,” Nat. Mat. 14, 495 (2015).10.1038/nmat4213 doi:  10.1038/nmat4213 
						
					 | 
			
| [13] | 
					 X.-D. Liu et al., “High-pressure behavior of hydrogen and deuterium at low temperatures,” Phys. Rev. Lett. 122, 199602 (2019).10.1103/physrevlett.122.199602 doi:  10.1103/physrevlett.122.199602 
						
					 | 
			
| [14] | 
					 M. D. Knudson et al., “Direct observation of an abrupt insulator-to-metal transition in dense liquid deuterium,” Science 348, 1455 (2015).10.1126/science.aaa7471 doi:  10.1126/science.aaa7471 
						
					 | 
			
| [15] | 
					 P. M. Celliers et al., “Insulator-metal transition in dense fluid deuterium,” Science 361, 677 (2018).10.1126/science.aat0970 doi:  10.1126/science.aat0970 
						
					 | 
			
| [16] | 
					 E. Babaev et al., “Observability of a projected new state of matter: A metallic superfluid,” Phys. Rev. Lett. 95, 105301 (2005).10.1103/physrevlett.95.105301 doi:  10.1103/physrevlett.95.105301 
						
					 | 
			
| [17] | 
					 J. van Kranendonk, Solid Hydrogen (Plenum Press, 1983). 
						
					 | 
			
| [18] | 
					 E. Housecroft and A. G. Sharpe, Inorganic Chemistry (Prentice-Hall, 2007). 
						
					 | 
			
| [19] | 
					 K. Inoue, H. Kanzaki, and S. Suga, “Fundamental absorption spectra of solid hydrogen,” Solid St. Commun 30, 627 (1979).10.1016/0038-1098(79)90110-8 doi:  10.1016/0038-1098(79)90110-8 
						
					 | 
			
| [20] | 
					 H. K. Mao and P. M. Bell, “Observations of hydrogen at room temperature (25 C) and high pressure (to 500 kilobars),” Science 203, 1004 (1979).10.1126/science.203.4384.1004 doi:  10.1126/science.203.4384.1004 
						
					 | 
			
| [21] | 
					 P. Dalladay-Simpson et al., “Band gap closure, incommensurability and molecular dissociation of dense chlorine,” Nat. Commun. 10, 1134 (2019).10.1038/s41467-019-10187-z doi:  10.1038/s41467-019-10187-z 
						
					 | 
			
| [22] | 
					 M. I. Eremets et al., “Semimetallic molecular hydrogen at pressure above 350 GPa,” Nat. Phys. 15, 1246 (2019).10.1038/s41567-019-0646-x doi:  10.1038/s41567-019-0646-x 
						
					 | 
			
| [23] | 
					 I. F. Silvera and R. J. Wijngaarden, “New low-temperature phase of molecular deuterium at ultrahigh pressure,” Phys. Rev. Lett. 47, 39 (1981).10.1103/physrevlett.47.39 doi:  10.1103/physrevlett.47.39 
						
					 | 
			
| [24] | 
					 I. Goncharenko and P. Loubeyre, “Neutron and X-ray diffraction study of the broken symmetry phase transition in solid deuterium,” Nature 435, 1206 (2005).10.1038/nature03699 doi:  10.1038/nature03699 
						
					 | 
			
| [25] | 
					 R. J. Hemley and H. K. Mao, “Phase transition in solid molecular hydrogen at ultrahigh pressures,” Phys. Rev. Lett. 61, 857 (1988).10.1103/physrevlett.61.857 doi:  10.1103/physrevlett.61.857 
						
					 | 
			
| [26] | 
					 Y. Akahama et al., “Evidence from x-ray diffraction of orientational ordering in phase III of solid hydrogen at pressures up to 183 GPa,” Phys. Rev. B 82, 060101(R) (2010).10.1103/physrevb.82.060101 doi:  10.1103/physrevb.82.060101 
						
					 | 
			
| [27] | 
					 C. Ji et al., “Ultrahigh-pressure isostructural electronic transitions in hydrogen,” Nature 573, 558 (2019).10.1038/s41586-019-1565-9 doi:  10.1038/s41586-019-1565-9 
						
					 | 
			
| [28] | 
					 M. Hanfland et al., “Novel infrared vibron absorption in solid hydrogen at megabar pressures,” Phys. Rev. Lett. 70, 3760 (1993).10.1103/physrevlett.70.3760 doi:  10.1103/physrevlett.70.3760 
						
					 | 
			
| [29] | 
					 H.-k. Mao and R. J. Hemley, “Ultrahigh-pressure transitions in solid hydrogen,” Rev. Mod. Phys. 66, 671 (1994).10.1103/revmodphys.66.671 doi:  10.1103/revmodphys.66.671 
						
					 | 
			
| [30] | 
					 P. Loubeyre et al., “Optical studies of solid hydrogen to 320 GPa and evidence for black hydrogen,” Nature 416, 613 (2002).10.1038/416613a doi:  10.1038/416613a 
						
					 | 
			
| [31] | 
					 Y. Akahama et al., “Raman scattering and x-ray diffraction experiments for phase III of solid hydrogen,” J. Phys.: Conf. Ser. 215, 012056 (2010).10.1088/1742-6596/215/1/012056 doi:  10.1088/1742-6596/215/1/012056 
						
					 | 
			
| [32] | 
					 B. J. Baer et al., “Coherent anti-Stokes Raman spectroscopy of highly compressed solid deuterium at 300 K: Evidence for a new phase and implications for the band gap,” Phys. Rev. Lett. 98, 235503 (2007).10.1103/physrevlett.98.235503 doi:  10.1103/physrevlett.98.235503 
						
					 | 
			
| [33] | 
					 M. I. Eremets and I. A. Troyan, “Conductive dense hydrogen,” Nat. Mat. 10, 927 (2011).10.1038/nmat3175 doi:  10.1038/nmat3175 
						
					 | 
			
| [34] | 
					 C. J. Pickard and R. J. Needs, “Structure of phase III of solid hydrogen,” Nat. Phys. 3, 473 (2007).10.1038/nphys625 doi:  10.1038/nphys625 
						
					 | 
			
| [35] | 
					 A. A. Abrikosov, “The equation of state of hydrogen at high pressures,” Astron. Z. 31, 112 (1954). 
						
					 | 
			
| [36] | 
					 R. Kronig, et al., “On the internal constitution of the Earth,” Physica 12, 245 (1946).10.1016/s0031-8914(46)80065-x doi:  10.1016/s0031-8914(46)80065-x 
						
					 | 
			
| [37] | 
					 W. C. DeMarcus, “The constitution of jupiter and saturn,” Astron. J. 63, 2 (1958).10.1086/107672 doi:  10.1086/107672 
						
					 | 
			
| [38] | 
					 N. W. Ashcroft, “Metallic hydrogen: A high-temperature superconductor?,” Phys. Rev. Lett. 21, 1748 (1968).10.1103/physrevlett.21.1748 doi:  10.1103/physrevlett.21.1748 
						
					 | 
			
| [39] | 
					 I. Langmuir and G. M. J. Mackay, “The dissociation of hydrogen into atoms. Part I. Experimental,” J. Am. Chem. Soc. 36, 1708 (1914).10.1021/ja02185a011 doi:  10.1021/ja02185a011 
						
					 | 
			
| [40] | 
					 I. Langmuir, “The dissociation of hydrogen into atoms. Part II. Calculation of the degree of dissociation and the heat of formation,” J. Am. Chem. Soc. 37, 417 (1915).10.1021/ja02168a002 doi:  10.1021/ja02168a002 
						
					 | 
			
| [41] | 
					 S. K. Sharma et al., “Raman measurements of hydrogen in the pressure range 0.2–630 kbar at room temperature,” Phys. Rev. Lett. 44, 886 (1980).10.1103/physrevlett.44.886 doi:  10.1103/physrevlett.44.886 
						
					 | 
			
| [42] | 
					 H.-k. Mao and R. J. Hemley, “Optical studies of hydrogen above 200 Gigapascals: Evidence for metallization by band overlap,” Science 244, 1462 (1989).10.1126/science.244.4911.1462 doi:  10.1126/science.244.4911.1462 
						
					 | 
			
| [43] | 
					 H. E. Lorenzana et al., “Orientational phase transitions in hydrogen at megabar pressures,” Phys. Rev. Lett. 64, 1939 (1990).10.1103/physrevlett.64.1939 doi:  10.1103/physrevlett.64.1939 
						
					 | 
			
| [44] | 
					 R. T. Howie et al., “Hydrogen (deuterium) vibron frequency as a pressure comparison gauge at multi-Mbar pressures,” J. Appl. Phys. 114, 073505 (2013).10.1063/1.4818606 doi:  10.1063/1.4818606 
						
					 | 
			
| [45] | 
					 B. Monserrat et al., “Structure and metallicity of phase V of hydrogen,” Phys. Rev. Lett. 120, 255701 (2018).10.1103/physrevlett.120.255701 doi:  10.1103/physrevlett.120.255701 
						
					 | 
			
| [46] | 
					 R. P. Dias and I. F. Silvera, “Observation of the Wigner-Huntington transition to metallic hydrogen,” Science 355, 6326 (2017).10.1126/science.aal1579 doi:  10.1126/science.aal1579 
						
					 | 
			
| [47] | 
					 X.-D. Liu et al., “Comment on Observation of the Wigner-Huntington transition to metallic hydrogen,” Science 357, eaan2286 (2017).10.1126/science.aan2286 doi:  10.1126/science.aan2286 
						
					 | 
			
| [48] | 
					 A. F. Goncharov and V. V. Struzhkin, “Comment on Observation of the Wigner-Huntington transition to metallic hydrogen,” Science 357, eaam9736 (2017).10.1126/science.aam9736 doi:  10.1126/science.aam9736 
						
					 | 
			
| [49] | |
| [50] | |
| [51] | 
					 H. Y. Geng, “Public debate on metallic hydrogen to boost high pressure research,” Matter Radiat. Extremes 2, 275 (2017).10.1016/j.mre.2017.10.001 doi:  10.1016/j.mre.2017.10.001 
						
					 | 
			
| [52] | 
					 R. P. Dias et al., “Quantum phase transition in solid hydrogen at high pressure,” Phys. Rev. B 100, 184112 (2019).10.1103/physrevb.100.184112 doi:  10.1103/physrevb.100.184112 
						
					 | 
			
| [53] | 
					 R. P. Dias and I. F. Silvera, “Erratum for the research article “Observation of the Wigner-Huntington transition to metallic hydrogen”,” Science 357, eaao5843 (2017).10.1126/science.aao5843 doi:  10.1126/science.aao5843 
						
					 | 
			
| [54] | |
| [55] | 
					 P. Loubeyre, F. Occelli, and P. Dumas, “Synchrotron infrared spectroscopic evidence of the probable transition to metal hydrogen,” Nature 577, 631 (2020).10.1038/s41586-019-1927-3 doi:  10.1038/s41586-019-1927-3 
						
					 |