Follow us on Wechat

用微信扫码二维码

分享至好友和朋友圈

Volume 5 Issue 3
May  2020
Turn off MathJax
Article Contents
Zvorykin V. D., Lebo I. G., Shutov A. V., Ustinovskii N. N.. Self-focusing of UV radiation in 1 mm scale plasma in a deep ablative crater produced by 100 ns, 1 GW KrF laser pulse in the context of ICF[J]. Matter and Radiation at Extremes, 2020, 5(3): 035401. doi: 10.1063/1.5142361
Citation: Zvorykin V. D., Lebo I. G., Shutov A. V., Ustinovskii N. N.. Self-focusing of UV radiation in 1 mm scale plasma in a deep ablative crater produced by 100 ns, 1 GW KrF laser pulse in the context of ICF[J]. Matter and Radiation at Extremes, 2020, 5(3): 035401. doi: 10.1063/1.5142361

Self-focusing of UV radiation in 1 mm scale plasma in a deep ablative crater produced by 100 ns, 1 GW KrF laser pulse in the context of ICF

doi: 10.1063/1.5142361
More Information
  • Corresponding author: a)Author to whom correspondence should be addressed: zvorykin@sci.lebedev.ru
  • Received Date: 2019-12-13
  • Accepted Date: 2020-03-20
  • Available Online: 2020-05-01
  • Publish Date: 2020-05-15
  • Experiments at the GARPUN KrF laser facility and 2D simulations using the NUTCY code were performed to study the irradiation of metal and polymethyl methacrylate (PMMA) targets by 100 ns UV pulses at intensities up to 5 × 1012 W cm−2. In both targets, a deep crater of length 1 mm was produced owing to the 2D geometry of the supersonic propagation of the ablation front in condensed matter that was pushed sideways by a conical shock wave. Small-scale filamentation of the laser beam caused by thermal self-focusing of radiation in the crater-confined plasma was evidenced by the presence of a microcrater relief on the bottom of the main crater. In translucent PMMA, with a penetration depth for UV light of several hundred micrometers, a long narrow channel of length 1 mm and diameter 30 μm was observed emerging from the crater vertex. Similar channels with a length-to-diameter aspect ratio of ∼1000 were produced by a repeated-pulse KrF laser in PMMA and fused silica glass at an intensity of ∼109 W cm−2. This channel formation is attributed to the effects of radiation self-focusing in the plasma and Kerr self-focusing in a partially transparent target material after shallow-angle reflection by the crater wall. Experimental modeling of the initial stage of inertial confinement fusion-scale direct-drive KrF laser interaction with subcritical coronal plasmas from spherical and cone-type targets using crater-confined plasmas seems to be feasible with increased laser intensity above 1014 W cm−2.
  • loading
  • [1]
    C. A. Haynam, P. J. Wegner, J. M. Auerbach, M. W. Bowers, S. N. Dixit et al., “National Ignition Facility laser performance status,” Appl. Opt. 46, 3276 (2007).10.1364/ao.46.003276 doi: 10.1364/ao.46.003276
    [2]
    J. Ebrardt and J. M. Chaput, “LMJ on its way to fusion,” J. Phys.: Conf. Ser. 244, 032017 (2010).10.1088/1742-6596/244/3/032017 doi: 10.1088/1742-6596/244/3/032017
    [3]
    X. T. He and W. Y. Zhang, and Chinese ICF Team, “Advances in the national inertial fusion program of China,” EPJ Web Conf. 59, 001009 (2013).10.1051/epjconf/20135901009 doi: 10.1051/epjconf/20135901009
    [4]
    T. Gong, L. Hao, Z. Li, D. Yang, S. Li, X. Li et al., “Recent research progress of laser plasma interactions in Shenguang laser facilities,” Matter Radiat. Extreems 4, 055202 (2019).10.1063/1.5092446 doi: 10.1063/1.5092446
    [5]
    S. G. Garanin and O. N. Krokhin, “High-power lasers and laser fusion,” Herald Russ. Acad. Sci. 81, 204 (2011);10.1134/s1019331611030129 doi: 10.1134/s1019331611030129
    [6]
    O. A. Hurricane, D. A. Callahan, D. T. Casey, P. M. Celliers, C. Cerjan et al., “Fuel gain exceeding unity in an inertially confined fusion implosion,” Nature 506, 343 (2014).10.1038/nature13008 doi: 10.1038/nature13008
    [7]
    V. A. Smalyuk, H. F. Robey, T. Döppner, D. T. Casey, D. S. Clark et al., “Experimental results of radiation-driven, layered deuterium-tritium implosions with adiabat-shaped drives at the National Ignition Facility,” Phys. Plasmas 23, 102703 (2016).10.1063/1.4964919 doi: 10.1063/1.4964919
    [8]
    O. A. Hurricane, P. T. Springer, P. K. Patel, D. A. Callahan, K. Baker et al., “Approaching a burning plasma on the NIF,” Phys. Plasmas 26, 052704 (2019).10.1063/1.5087256 doi: 10.1063/1.5087256
    [9]
    C. B. Edwards and C. N. Danson, “Inertial confinement fusion and prospects for power production,” High Power Laser Sci. Eng. 3, e4 (2015).10.1017/hpl.2014.51 doi: 10.1017/hpl.2014.51
    [10]
    J. Maniscalco, “Fusion-fission hybrid concepts for laser induced fusion,” Nucl. Technol. 28, 98 (1976).10.13182/nt76-a31543 doi: 10.13182/nt76-a31543
    [11]
    N. G. Basov, N. I. Belousov, P. A. Grishunin, Y. K. Kalmykov, I. G. Lebo et al., “Hybrid reactor based on laser thermonuclear fusion,” Sov. J. Quantum Electron. 17, 1324 (1987).10.1070/qe1987v017n10abeh010765 doi: 10.1070/qe1987v017n10abeh010765
    [12]
    N. G. Basov, V. I. Subbotin, and L. P. Feoktistov, “Nuclear fusion reactor with a laser neutron source,” Vestnik Ross. Akad. Nauk 63, 878 (1993) (in Russian).
    [13]
    W. R. Meier, R. Abbott, R. Beach, J. Blink, J. Caird, A. Erlandson, J. Farmer, W. Halsey, T. Ladran, J. Latkowski, A. MacIntyre, R. Miles, and E. Storm, “Systems modeling for the laser fusion-fission energy (LIFE) power plant,” Fusion Sci. Technol. 56, 647 (2009).10.13182/fst18-p2.32 doi: 10.13182/fst18-p2.32
    [14]
    I. G. Lebo, E. A. Isaev, and A. I. Lebo, “Two-sided conical laser target for a neutron source of a hybrid nuclear-thermonuclear reactor,” Quantum Electron. 47, 106 (2017).10.1070/qel16277 doi: 10.1070/qel16277
    [15]
    G. V. Dolgoleva and I. G. Lebo, “On the issue of neutron source development for a laser-driven nuclear-thermonuclear reactor,” Quantum Electron. 49, 796 (2019).10.1070/qel16953 doi: 10.1070/qel16953
    [16]
    S. Atzeni, “Laser driven inertial fusion: The physical basis of current and recently proposed ignition experiments,” Plasma Phys. Controlled Fusion 51, 124029 (2009).10.1088/0741-3335/51/12/124029 doi: 10.1088/0741-3335/51/12/124029
    [17]
    R. S. Craxton, K. S. Anderson, T. R. Boehly, V. N. Goncharov, D. R. Harding et al., “Direct-drive inertial confinement fusion: A review,” Phys. Plasmas 22, 110501 (2015).10.1063/1.4934714 doi: 10.1063/1.4934714
    [18]
    D. S. Montgomery, “Two decades of progress in understanding and control of laser plasma instabilities in indirect drive inertial fusion,” Phys. Plasmas 23, 055601 (2016).10.1063/1.4946016 doi: 10.1063/1.4946016
    [19]
    V. T. Tikhonchuk, “Physics of laser plasma interaction and particle transport in the context of inertial confinement fusion,” Nucl. Fusion 59, 032001 (2019).10.1088/1741-4326/aab21a doi: 10.1088/1741-4326/aab21a
    [20]
    R. H. Lehmberg, J. L. Giuliani, and A. J. Schmitt, “Pulse shaping and energy storage capabilities of angularly multiplexed KrF laser fusion drivers,” J. Appl. Phys. 106, 023103 (2009).10.1063/1.3174444 doi: 10.1063/1.3174444
    [21]
    A. J. Schmitt, J. W. Bates, S. P. Obenschain, S. T. Zalesak et al., “Direct drive fusion energy shock ignition designs for sub-MJ lasers,” Fusion Sci. Technol. 56, 377 (2009).10.13182/fst09-a8930 doi: 10.13182/fst09-a8930
    [22]
    S. P. Obenschain, S. E. Bodner, D. Colombant, K. Gerber, R. H. Lehmberg et al., “The Nike KrF laser facility: Performance and initial target experiments,” Phys. Plasmas 3, 2098 (1996).10.1063/1.871661 doi: 10.1063/1.871661
    [23]
    S. Obenschain, R. Lehmberg, D. Kehne, F. Hegeler, M. Wolford et al., “High-energy krypton fluoride lasers for inertial fusion,” Appl. Opt. 54, F103 (2015).10.1364/ao.54.00f103 doi: 10.1364/ao.54.00f103
    [24]
    D. M. Kehne, M. Karasik, Y. Aglitsky, Z. Smyth, S. Terrell et al., “Implementation of focal zooming on the Nike KrF laser,” Rev. Sci. Instrum. 84, 013509 (2013).10.1063/1.4789313 doi: 10.1063/1.4789313
    [25]
    S. E. Bodner, A. J. Schmitt, and J. D. Sethian, “Laser requirements for a laser fusion energy power plant,” High Power Laser Sci. Eng. 1, 2 (2013).10.1017/hpl.2013.1 doi: 10.1017/hpl.2013.1
    [26]
    R. P. Drake, P. E. Young, E. A. Williams, K. Estabrook, W. L. Kruer et al., “Laser-intensity scaling experiments in long-scalelength, laser-produced plasmas,” Phys. Fluids 31, 1795 (1988).10.1063/1.866669 doi: 10.1063/1.866669
    [27]
    B. Yaakoby, P.-Y. Chang, A. Solodov, C. Stoeckl, D. H. Edgell et al., “Fast-electron generation in long-scale-length plasmas,” Phys. Plasmas 19, 012704 (2012).10.1063/1.3676153 doi: 10.1063/1.3676153
    [28]
    V. D. Zvorykin and I. G. Lebo, “Laser and target experiments on KrF GARPUN laser installation at FIAN,” Laser Part. Beams 17, 69 (1999).10.1017/s0263034699171064 doi: 10.1017/s0263034699171064
    [29]
    V. D. Zvorykin, V. G. Bakaev, I. G. Lebo, and G. V. Sychugov, “Hydrodynamics of plasma and shock waves generated by the high-power GARPUN KrF laser,” Laser Part. Beams 22, 51 (2004).10.1017/s0263034604221103 doi: 10.1017/s0263034604221103
    [30]
    N. G. Basov, V. G. Bakaev, E. A. Grigor’yants, E. O. Danilov, V. D. Zvorykin et al., “Wide-aperture electron-beam-pumped excimer KrF laser with an output power of 1 GW,” Sov. J. Quantum Electron. 21, 816 (1991).10.1070/qe1991v021n08abeh003959 doi: 10.1070/qe1991v021n08abeh003959
    [31]
    N. G. Basov, A. D. Vadkovskii, V. D. Zvorykin, G. E. Metreveli, and A. F. Suchkov, “Injection control of the parameters of radiation emitted by a high-power KrF laser pumped by an electron beam,” Quantum Electron. 24, 13 (1994).10.1070/qe1994v024n01abeh002709 doi: 10.1070/qe1994v024n01abeh002709
    [32]
    V. D. Zvorykin, N. V. Didenko, A. A. Ionin, I. V. Kholin, A. V. Konyashchenko et al., “GARPUN-MTW: A hybrid Ti:Sapphire/KrF laser facility for simultaneous amplification of subpicosecond/nanosecond pulses relevant to fast-ignition ICF concept,” Laser Part. Beams 25, 435 (2007).10.1017/s0263034607000559 doi: 10.1017/s0263034607000559
    [33]
    V. D. Zvorykin, A. O. Levchenko, and N. N. Ustinovskii, “Amplification of subpicosecond UV pulses in the multistage GARPUN-MTW Ti: Sapphire ‒ KrF laser system,” Quantum Electron. 40, 381 (2009).10.1070/qe2010v040n05abeh014241 doi: 10.1070/qe2010v040n05abeh014241
    [34]
    V. D. Zvorykin, A. A. Ionin, A. O. Levchenko, G. A. Mesyats, L. V. Seleznev et al., “Ti: Sapphire/KrF hybrid laser system generating trains of subterawatt subpicosecond UV pulses,” Quantum Electron. 44, 431 (2014).10.1070/qe2014v044n05abeh015442 doi: 10.1070/qe2014v044n05abeh015442
    [35]
    V. D. Zvorykin, A. A. Ionin, A. O. Levchenko, G. A. Mesyats, L. V. Seleznev et al., “Production of extended plasma channels in atmospheric air by amplitude-modulated UV radiation of GARPUN-MTW Ti: Sapphire – KrF laser. Part 1. Regenerative amplification of subpicosecond pulses in a wide-aperture electron beam pumped KrF amplifier,” Quantum Electron. 43, 332 (2013).10.1070/qe2013v043n04abeh015140 doi: 10.1070/qe2013v043n04abeh015140
    [36]
    S. V. Arlantsev, E. A. Grigor’yants, A. D. Vadkovskii, V. D. Zvorykin, and G. E. Metreveli, “Pumping of the GARPUN wide-aperture excimer laser by counterpropagating electron beams,” Quantum Electron. 24, 223 (1994).10.1070/qe1994v024n03abeh000070 doi: 10.1070/qe1994v024n03abeh000070
    [37]
    V. D. Zvorykin, S. A. Goncharov, A. A. Ionin, D. V. Mokrousova, S. V. Ryabchuk et al., “Experimental capabilities of the GARPUN MTW Ti: Sapphire – KrF laser facility for investigating the interaction of subpicosecond UV pulses with targets,” Quantum Electron. 47, 319 (2017).10.1070/qel16290 doi: 10.1070/qel16290
    [38]
    R. Srinivasan, B. Braren, R. W. Dreyfus, L. Hadel, and D. E. Seeger, “Mechanism of the ultraviolet laser ablation of polymethyl methacrylate at 193 and 248 nm: Laser-induced fluorescence analysis, chemical analysis, and doping studies,” J. Opt. Soc. Am. B 3, 785 (1986).10.1364/josab.3.000785 doi: 10.1364/josab.3.000785
    [39]
    H. R. Philipp, H. S. Cole, Y. S. Liu, and T. A. Sitnik, “Optical absorption of some polymers in the region 240–170 nm,” Appl. Phys. Lett. 48, 192 (1986).10.1063/1.96940 doi: 10.1063/1.96940
    [40]
    G. M. Davis and M. C. Gower, “Time resolved transmission studies of poly(methyl methacrylate) films during ultraviolet laser ablative photodecomposition,” J. Appl. Phys. 61, 2090 (1987).10.1063/1.338015 doi: 10.1063/1.338015
    [41]
    H. M. Shanshool, M. Yahaya, W. M. M. Yunus, and I. Y. Abdullakh, “Using z-scan technique to measure the nonlinear optical properties of PMMA/ZNO nanocomposites,” J` Teknol. 78, 33 (2016).10.11113/jt.v78.7461 doi: 10.11113/jt.v78.7461
    [42]
    H. N. Najeeb, A. A. Balakit, G. A. Wahab, and A. K. Kodeary, “Study of the optical properties of poly (methyl methacrylate) (PMMA) doped with a new diarylethen compaund,” Acad. Res. Int. 5, 48 (2014).
    [43]
    K. Weishaupt, H. Krbecek, M. Pietralla, H. D. Hoccheimer, and P. Mayr, “Pressure dependence of the elastic constants of poly(methyl methacrylate),” Polymer 36, 3267 (1995).10.1016/0032-3861(95)99424-s doi: 10.1016/0032-3861(95)99424-s
    [44]
    Y. H. Ko, K. J. Kim, and J.-H. Ko, “High-pressure sound velocity of PMMA studied by using Brillouin spectroscopy,” J. Korean Phys. Soc. 63, 2358 (2013).10.3938/jkps.63.2358 doi: 10.3938/jkps.63.2358
    [45]
    J. Ihleman, B. Wolff, and P. Simon, “Nanosecond and femtosecond excimer laser ablation of fused silica,” Appl. Phys. A 54, 363 (1991).10.1007/BF00324203 doi: 10.1007/BF00324203
    [46]
    V. N. Tokarev, J. Lopez, and S. Lazare, “Modelling of high-aspect ratio microdrilling of polymers with UV laser ablation,” Appl. Surf. Sci. 168, 75 (2000).10.1016/s0169-4332(00)00594-8 doi: 10.1016/s0169-4332(00)00594-8
    [47]
    S. Lazare and V. Tokarev, “Recent experimental and theoretical advances in microdrilling of polymers with ultraviolet laser beams,” Proc. SPIE 5662, 221 (2004).10.1117/12.596295 doi: 10.1117/12.596295
    [48]
    I. G. Lebo, V. V. Nikishin, V. B. Rozanov, and V. F. Tishkin, “Efficiency of laser energy input into a hohlraum through a hole,” Plasma Phys. Rep. 26, 405 (2000).10.1134/1.952871 doi: 10.1134/1.952871
    [49]
    I. G. Lebo and V. F. Tishkin, Investigation of Hydrodynamic Instabilities in the Problems of Thermonuclear Fusion (Fizmatlit, Moscow, 2006) (in Russian).
    [50]
    I. G. Lebo and A. I. Simakov, “Modeling the evolution of whirl structures in supersonic gas stream,” Electron. Network J. (Russ. Technol. J.) 6, 45 (2018), https://rtj.mirea.ru.
    [51]
    L. Spitzer, Jr. and R. Härm, “Transport phenomena in a completely ionized gas,” Phys. Rev. 89, 977 (1953).10.1103/physrev.89.977 doi: 10.1103/physrev.89.977
    [52]
    S. I. Braginskii, in Reviews of Plasma Physics, edited by M. A. Leontovich (Consultants Bureau, Gosatomizdat, Moscow; New York, 1963; 1965), Vol. 1.
    [53]
    S. A. Akhmanov, A. P. Sukhorukov, and R. V. Khokhlov, “Self-focusing and diffraction of light in a nonlinear medium,” Sov. Phys. Usp. 10, 609 (1968).10.1070/pu1968v010n05abeh005849 doi: 10.1070/pu1968v010n05abeh005849
    [54]
    I. N. Ross, W. T. Toner, C. J. Hooker, J. R. M. Barr, and I. Coffey, “Nonlinear properties of silica and air for picosecond ultraviolet pulses,” J. Mod. Opt. 37, 555 (1990).10.1080/09500349014550641 doi: 10.1080/09500349014550641
    [55]
    D. Milam, “Review and assessment of measured values of the nonlinear refractive-index coefficient of fused silica,” Appl. Opt. 37, 546 (1998).10.1364/ao.37.000546 doi: 10.1364/ao.37.000546
    [56]
    A. I. Lebo and I. G. Lebo, “Possibility of eddy currents and spontaneous magnetic fields observations in plasma formed through the interaction of high-power laser pulses with porous targets,” Math. Models Comput. Simul. 2, 359 (2010).10.1134/s2070048210030099 doi: 10.1134/s2070048210030099
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(9)

    Article Metrics

    Article views (326) PDF downloads(46) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return