Follow us on Wechat

用微信扫码二维码

分享至好友和朋友圈

Volume 5 Issue 2
Mar.  2020
Turn off MathJax
Article Contents
Martínez-Flores C., Cabrera-Trujillo R.. High pressure effects on the excitation spectra and dipole properties of Li, Be+, and B2+ atoms under confinement[J]. Matter and Radiation at Extremes, 2020, 5(2): 024401. doi: 10.1063/1.5139099
Citation: Martínez-Flores C., Cabrera-Trujillo R.. High pressure effects on the excitation spectra and dipole properties of Li, Be+, and B2+ atoms under confinement[J]. Matter and Radiation at Extremes, 2020, 5(2): 024401. doi: 10.1063/1.5139099

High pressure effects on the excitation spectra and dipole properties of Li, Be+, and B2+ atoms under confinement

doi: 10.1063/1.5139099
More Information
  • Corresponding author: a)Author to whom correspondence should be addressed: trujillo@icf.unam.mx
  • Received Date: 2019-11-20
  • Accepted Date: 2020-01-16
  • Available Online: 2020-03-01
  • Publish Date: 2020-03-15
  • Properties of atoms and molecules undergo significant changes when subjected to spatial confinement. We study the excitation spectra of lithium-like atoms in the initial 1s22s electronic configuration when confined by an impenetrable spherical cavity. We implement Slater’s X-α method in Hartree–Fock theory to obtain the excitation spectrum. We verify that as the cavity size decreases, the total, 2s, 2p, and higher excited energy levels increase. Furthermore, we confirm the existence of crossing points between nsnp states for low values of the confinement radius such that the nsnp dipole transition becomes zero at that critical pressure. The crossing points of the sp states imply that instead of photon absorption, one observes photon emission for cavities with radius smaller than the critical radius. Hence, the dipole oscillator strength associated with the 2s → 2p transition becomes negative, and for higher pressures, the 2s → 3p dipole oscillator strength transition becomes larger than unity. We validate the completeness of the spectrum by calculating the Thomas–Reiche–Kuhn sum rule, as well as the static dipole polarizability and mean excitation energy of lithium-like atoms. We find that the static dipole polarizability decreases and exhibits a sudden change at the critical pressure for the absorption-to-emission transition. The mean excitation energy increases as the pressure rises. However, as a consequence of the critical transition from absorption to emission, the mean excitation energy becomes undetermined for higher pressures, with implications for material damage under extreme conditions. For unconfined systems, our results show good to excellent agreement with data found in the literature.
  • loading
  • [1]
    A. Michels, J. De Boer, and A. Bijl, “Remarks concerning molecural interaction and their influence on the polarisability,” Physica 4(10), 981–994 (1937).10.1016/s0031-8914(37)80196-2 doi: 10.1016/s0031-8914(37)80196-2
    [2]
    Advances in Quantum Chemistry, edited by S. A. Cruz, J. Sabin, and E. Brandas (Elsevier, Amsterdam, 2009), Vol. 57.
    [3]
    Advances in Quantum Chemistry, edited by S. A. Cruz, J. Sabin, and E. Brandas (Elsevier, Amsterdam, 2009), Vol. 58.
    [4]
    Electronic Structure of Quantum Confined Atoms and Molecules, edited by K. D. Sen (Springer International Publishing, Switzerland, 2014).
    [5]
    W. Jaskólski, “Confined many-electron systems,” Phys. Rep. 271(1), 1–66 (1996).10.1016/0370-1573(95)00070-4 doi: 10.1016/0370-1573(95)00070-4
    [6]
    E. Ley-Koo, “Recent progress in confined atoms and molecules: Superintegrability and symmetry breakings,” Rev. Mex. Fis. 64, 326–363 (2018).10.31349/revmexfis.64.326 doi: 10.31349/revmexfis.64.326
    [7]
    G. McGinn, “Atomic and molecular calculations with the pseudopotential method. VII One-valence-electron photoionization cross sections,” J. Chem. Phys. 53(9), 3635–3640 (1970).10.1063/1.1674543 doi: 10.1063/1.1674543
    [8]
    J. N. Bardsley, “Pseudopotential calculations of alkali interactions,” Chem. Phys. Lett. 7(5), 517–520 (1970).10.1016/0009-2614(70)80162-2 doi: 10.1016/0009-2614(70)80162-2
    [9]
    P. G. Burke and W. D. Robb, “The r-matrix theory of atomic processes,” Adv. At. Mol. Phys. 11, 143–214 (1976).10.1016/s0065-2199(08)60030-5 doi: 10.1016/s0065-2199(08)60030-5
    [10]
    G. Peach, H. E. Saraph, and M. J. Seaton, “Atomic data for opacity calculations. IX. The lithium isoelectronic sequence,” J. Phys. B: At., Mol. Opt. Phys. 21(22), 3669 (1988).10.1088/0953-4075/21/22/006 doi: 10.1088/0953-4075/21/22/006
    [11]
    P. Schwerdtfeger, “The pseudopotential approximation in electronic structure theory,” ChemPhysChem 12(17), 3143–3155 (2011).10.1002/cphc.201100387 doi: 10.1002/cphc.201100387
    [12]
    C. Y. Lin and Y. K. Ho, “Photoionization of atoms encapsulated by cages using the power-exponential potential,” J. Phys. B: At., Mol. Opt. Phys. 45(14), 145001 (2012).10.1088/0953-4075/45/14/145001 doi: 10.1088/0953-4075/45/14/145001
    [13]
    A. Sarsa, E. Buendía, and F. J. Gálvez, “Study of confined many electron atoms by means of the POEP method,” J. Phys. B: At., Mol. Opt. Phys. 47(18), 185002 (2014).10.1088/0953-4075/47/18/185002 doi: 10.1088/0953-4075/47/18/185002
    [14]
    J. W. Cooper, “Photoionization from outer atomic subshells. A model study,” Phys. Rev. 128, 681–693 (1962).10.1103/physrev.128.681 doi: 10.1103/physrev.128.681
    [15]
    E. V. Ludeña, “SCF Hartree-Fock calculations of ground state wavefunctions of compressed atoms,” J. Chem. Phys. 69(4), 1770–1775 (1978).10.1063/1.436710 doi: 10.1063/1.436710
    [16]
    J. C. Slater, “A simplification of the Hartree-Fock method,” Phys. Rev. 81, 385–390 (1951).10.1103/physrev.81.385 doi: 10.1103/physrev.81.385
    [17]
    A. Zangwill, “A half century of density functional theory,” Phys. Today 68(7), 34–39 (2015).10.1063/pt.3.2846 doi: 10.1063/pt.3.2846
    [18]
    A. Szabo and N. S. Ostlund, Modern Quantum Chemistry: Introduction to Advanced Electronic Structure Theory, 1st ed. (Dover Publications Inc., New York, 1996).
    [19]
    M. S. Pindzola, “Excitation and charge transfer in proton-lithium collisions at 5–15 kev,” Phys. Rev. A 60, 3764–3768 (1999).10.1103/physreva.60.3764 doi: 10.1103/physreva.60.3764
    [20]
    M. Miyasita, K. Higuchi, and M. Higuchi, “An alternative scheme for calculating the unrestricted Hartree–Fock equation: Application to the boron and neon atoms,” Physica B 407(14), 2758–2762 (2012).10.1016/j.physb.2012.04.022 doi: 10.1016/j.physb.2012.04.022
    [21]
    R. Cabrera-Trujillo and S. A. Cruz, “Confinement approach to pressure effects on the dipole and the generalized oscillator strength of atomic hydrogen,” Phys. Rev. A 87, 012502 (2013).10.1103/physreva.87.012502 doi: 10.1103/physreva.87.012502
    [22]
    S. Koonin and D. C. Meredith, Computational Physics: Fortran Version (Westview Press, 1998).
    [23]
    M. Inokuti, “Inelastic collisions of fast charged particles with atoms and molecules—The Bethe theory revisited,” Rev. Mod. Phys. 43, 297–347 (1971).10.1103/revmodphys.43.297 doi: 10.1103/revmodphys.43.297
    [24]
    H. Friedrich, Theoretical Atomic Physics, 3rd ed. (Springer-Verlag, Berlin Heidelberg, 2006).
    [25]
    H. A. Bethe and R. Jackiw, Intermediate Quantum Mechanics, 3rd ed. (Westview Press, Boulder, Colo, EE.UU., 1997).
    [26]
    H. Bethe, “Zur theorie des durchgangs schneller korpuskularstrahlen durch materie,” Ann. Phys. 397(3), 325–400 (1930).10.1002/andp.19303970303 doi: 10.1002/andp.19303970303
    [27]
    J. Oddershede and J. R. Sabin, “Orbital and whole-atom proton stopping power and shell corrections for atoms with z < 36,” At. Data Nucl. Data Tables 31(2), 275–297 (1984).10.1016/0092-640x(84)90024-x doi: 10.1016/0092-640x(84)90024-x
    [28]
    C. Froese-Fischer, “A general multi-configuration Hartree-Fock program,” Comput. Phys. Commun. 14(1-2), 145–153 (1978).10.1016/0010-4655(78)90057-7 doi: 10.1016/0010-4655(78)90057-7
    [29]
    A. D. Sañu-Ginarte, E. M. Guillén-Romero, L. Ferrer-Galindo, L. A. Ferrer-Moreno, R. Betancourt-Riera, and R. Riera, “New approach to obtain the analytical expression of the energy functional in free or confined atoms,” Results Phys. 13, 102261 (2019).10.1016/j.rinp.2019.102261 doi: 10.1016/j.rinp.2019.102261
    [30]
    A. W. Weiss, “The calculation of atomic oscillator strengths: The lithium atom revisited,” Can. J. Chem. 70(2), 456–463 (1992).10.1139/v92-066 doi: 10.1139/v92-066
    [31]
    P. Schwerdtfeger and J. K. Nagle, “2018 Table of static dipole polarizabilities of the neutral elements in the periodic table,” Mol. Phys. 117(9-12), 1200–1225 (2019).10.1080/00268976.2018.1535143 doi: 10.1080/00268976.2018.1535143
    [32]
    L.-Y. Tang, Z.-C. Yan, T.-Y. Shi, and J. Mitroy, “Dynamic dipole polarizabilities of the Li atom and the Be+ ion,” Phys. Rev. A 81, 042521 (2010).10.1103/physreva.81.042521 doi: 10.1103/physreva.81.042521
    [33]
    A. W. Weiss, “Wave functions and oscillator strengths for the lithium isoelectronic sequence,” Astrophys. J. 138, 1262 (1963).10.1086/147722 doi: 10.1086/147722
    [34]
    J. P. Connerade, V. K. Dolmatov, and P. A. Lakshmi, “The filling of shells in compressed atoms,” J. Phys. B: At., Mol. Opt. Phys. 33(2), 251 (2000).10.1088/0953-4075/33/2/310 doi: 10.1088/0953-4075/33/2/310
    [35]
    J. P. Connerade and R. Semaoune, “Atomic compressibility and reversible insertion of atoms into solids,” J. Phys. B: At., Mol. Opt. Phys. 33(17), 3467–3484 (2000).10.1088/0953-4075/33/17/323 doi: 10.1088/0953-4075/33/17/323
    [36]
    M. Rahm, R. Cammi, N. W. Ashcroft, and R. Hoffmann, “Squeezing all elements in the periodic table: Electron configuration and electronegativity of the atoms under compression,” J. Am. Chem. Soc. 141(26), 10253–10271 (2019).10.1021/jacs.9b02634 doi: 10.1021/jacs.9b02634
    [37]
    C. Le Sech and A. Banerjee, “A variational approach to the dirichlet boundary condition: Application to confined H−, He and Li,” J. Phys. B: At., Mol. Opt. Phys. 44(10), 105003 (2011).10.1088/0953-4075/44/10/105003 doi: 10.1088/0953-4075/44/10/105003
    [38]
    A. Sarsa and C. Le Sech, “Variational Monte Carlo method with Dirichlet boundary conditions: Application to the study of confined systems by impenetrable surfaces with different symmetries,” J. Chem. Theory Comput. 7(9), 2786–2794 (2011).10.1021/ct200284q doi: 10.1021/ct200284q
    [39]
    J. P. Connerade, P. Kengkan, P. Anantha Lakshmi, and R. Semaoune, “Scaling laws for atomic compressibility,” J. Phys. B: At., Mol. Opt. Phys. 33(22), L847–L854 (2000).10.1088/0953-4075/33/22/101 doi: 10.1088/0953-4075/33/22/101
    [40]
    N. A. Atari, “Piezoluminescence phenomenon,” Phys. Lett. A 90(1), 93–96 (1982).10.1016/0375-9601(82)90060-3 doi: 10.1016/0375-9601(82)90060-3
    [41]
    S. Kamakura, N. Sakamoto, H. Ogawa, H. Tsuchida, and M. Inokuti, “Mean excitation energies for the stopping power of atoms and molecules evaluated from oscillator-strength spectra,” J. Appl. Phys. 100(6), 064905 (2006).10.1063/1.2345478 doi: 10.1063/1.2345478
    [42]
    J. L. Dehmer, M. Inokuti, and R. P. Saxon, “Systematics of moments of dipole oscillator-strength distributions for atoms of the first and second row,” Phys. Rev. A 12, 102–121 (1975).10.1103/physreva.12.102 doi: 10.1103/physreva.12.102
    [43]
    D. Y. Smith, M. Inokuti, W. Karstens, and E. Shiles, “Mean excitation energy for the stopping power of light elements,” Nucl. Instrum. Methods Phys. Res., Sect. B 250(1), 1–5 (2006), Part of special issue on Radiation Effects in Insulators.10.1016/j.nimb.2006.04.077 doi: 10.1016/j.nimb.2006.04.077
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(8)  / Tables(3)

    Article Metrics

    Article views (252) PDF downloads(7) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return