Follow us on Wechat

用微信扫码二维码

分享至好友和朋友圈

Volume 5 Issue 4
Jul.  2020
Turn off MathJax
Article Contents
Han Ruoyu, Wu Jiawei, Zhou Haibin, Zhang Yongmin, Qiu Aici, Yan Jiaqi, Ding Weidong, Li Chen, Zhang Chenyang, Ouyang Jiting. Experiments on the characteristics of underwater electrical wire explosions for reservoir stimulation[J]. Matter and Radiation at Extremes, 2020, 5(4): 047201. doi: 10.1063/1.5135725
Citation: Han Ruoyu, Wu Jiawei, Zhou Haibin, Zhang Yongmin, Qiu Aici, Yan Jiaqi, Ding Weidong, Li Chen, Zhang Chenyang, Ouyang Jiting. Experiments on the characteristics of underwater electrical wire explosions for reservoir stimulation[J]. Matter and Radiation at Extremes, 2020, 5(4): 047201. doi: 10.1063/1.5135725

Experiments on the characteristics of underwater electrical wire explosions for reservoir stimulation

doi: 10.1063/1.5135725
More Information
  • Corresponding author: a)Author to whom correspondence should be addressed: r.han@bit.edu.cn and han.ruoyu@hotmail.com
  • Received Date: 2019-11-30
  • Accepted Date: 2020-06-16
  • Available Online: 2020-07-01
  • Publish Date: 2020-07-15
  • Underwater shock waves generated by pulsed electrical discharges are an effective, economical, and environmentally friendly means of stimulating reservoirs, and this technology has received much attention and intensive research in the past few years. This paper reviews the main results of recent work on underwater electrical wire explosion (UEWE) for reservoir stimulation. A platform is developed for microsecond single-wire explosions in water, and diagnostics based on a voltage probe, current coil, pressure probe, photodiode, and spectrometer are used to characterize the UEWE process and accompanying shock waves. First, the UEWE characteristics under different discharge types are studied and general principles are clarified. Second, the shock-wave generation mechanism is investigated experimentally by interrupting the electrical energy injection into the wire at different stages of the wire-explosion process. It is found that the vaporization process is vital for the formation of shock waves, whereas the energy deposited after voltage collapse has only a limited effect. Furthermore, the relationships between the electrical-circuit and shock-wave parameters are investigated, and an empirical approach is developed for estimating the shock-wave parameters. Third, how the wire material and water state affect the wire-explosion process is studied. To adjust the shock-wave parameters, a promising method concerning energetic material load is proposed and tested. Finally, the fracturing effect of the pulsed-discharge shock waves is discussed, as briefly are some of the difficulties associated with UEWE-based reservoir stimulation.
  • loading
  • [1]
    V. A. Burtsev, N. V. Kalinin, and A. V. Luchinski, Electrical Explosion of Conductors and Its Application in Electro-Physical Installations (Energoatomizdat, Moscow, 1990).
    [2]
    S. V. Lebedev, A. Frank, and D. D. Ryutov, “Exploring astrophysics-relevant magnetohydrodynamics with pulsed-power laboratory facilities,” Rev. Mod. Phys. 91, 025002 (2019).10.1103/revmodphys.91.025002 doi: 10.1103/revmodphys.91.025002
    [3]
    M. P. Desjarlais, J. D. Kress, and L. A. Collins, “Electrical conductivity for warm, dense aluminum plasmas and liquids,” Phys. Rev. E 66, 025401 (2002).10.1103/physreve.66.025401 doi: 10.1103/physreve.66.025401
    [4]
    Y. A. Kotov, “Electric explosion of wires as a method for preparation of nanopowders,” J. Nanopart. Res. 5, 539–550 (2003).10.1023/b:nano.0000006069.45073.0b doi: 10.1023/b:nano.0000006069.45073.0b
    [5]
    Y. Zhang, A. Qiu, H. Zhou et al., “Research progress in electrical explosion shockwave technology for developing fossil energy,” High Voltage Eng. 42, 1009–1017 (2016) (in Chinese). 10.13336/j.1003-6520.hve.20160405010 doi: 10.13336/j.1003-6520.hve.20160405010
    [6]
    Y. E. Krasik, A. Fedotov, D. Sheftman et al., “Underwater electrical wire explosion,” Plasma Sources Sci. Technol. 19, 034020 (2010).10.1088/0963-0252/19/3/034020 doi: 10.1088/0963-0252/19/3/034020
    [7]
    Y. E. Krasik, A. Grinenko, A. Sayapin et al., “Underwater electrical wire explosion and its applications,” IEEE Trans. Plasma Sci. 36, 423–434 (2008).10.1109/tps.2008.918766 doi: 10.1109/tps.2008.918766
    [8]
    S. A. Pikuz, S. I. Tkachenko, V. M. Romanova et al., “Maximum energy deposition during resistive stage and overvoltage at current driven nanosecond wire explosion,” IEEE Trans. Plasma Sci. 34, 2330–2335 (2006).10.1109/tps.2006.878364 doi: 10.1109/tps.2006.878364
    [9]
    A. Grinenko, V. T. Gurovich, A. Saypin et al., “Strongly coupled copper plasma generated by underwater electrical wire explosion,” Phys. Rev. E 72, 066401 (2005).10.1103/physreve.72.066401 doi: 10.1103/physreve.72.066401
    [10]
    A. Grinenko, Y. E. Krasik, S. Efimov et al., “Nanosecond time scale, high power electrical wire explosion in water,” Phys. Plasmas 13, 042701 (2006).10.1063/1.2188085 doi: 10.1063/1.2188085
    [11]
    S. N. Bland, Y. E. Krasik, D. Yanuka et al., “Generation of highly symmetric, cylindrically convergent shockwaves in water,” Phys. Plasmas 24, 082702 (2017).10.1063/1.4994328 doi: 10.1063/1.4994328
    [12]
    S. F. Golovashchenko, A. J. Gillard, and A. V. Mamutov, “Formability of dual phase steels in electrohydraulic forming,” J. Mater. Process. Technol. 213, 1191–1212 (2013).10.1016/j.jmatprotec.2013.01.026 doi: 10.1016/j.jmatprotec.2013.01.026
    [13]
    M. Barcellos, J. Kügler, K. Grunert et al., “European consumers’ acceptance of beef processing technologies: A focus group study,” Innov. Food Sci. Emerg. Technol. 11, 721–732 (2010).10.1016/j.ifset.2010.05.003 doi: 10.1016/j.ifset.2010.05.003
    [14]
    O. Maurel, T. Reess, M. Matallah et al., “Electrohydraulic shock wave generation as a means to increase intrinsic permeability of mortar,” Cem. Concr. Res. 40, 1631–1638 (2010).10.1016/j.cemconres.2010.07.005 doi: 10.1016/j.cemconres.2010.07.005
    [15]
    W. Chen, O. Maurel, T. Reess et al., “Experimental study on an alternative oil stimulation technique for tight gas reservoirs based on dynamic shock waves generated by pulsed arc electrohydraulic discharges,” J. Petrol. Sci. Eng. 88-89, 67–74 (2012).10.1016/j.petrol.2012.01.009 doi: 10.1016/j.petrol.2012.01.009
    [16]
    A. Virozub, V. T. Gurovich, D. Yanuka et al., “Addressing optimal underwater electrical explosion of a wire,” Phys. Plasmas 23, 092708 (2016).10.1063/1.4963002 doi: 10.1063/1.4963002
    [17]
    R. Han, J. Wu, H. Zhou et al., “Parameter regulation of underwater shock waves based on exploding-wire-ignited energetic materials,” J. Appl. Phys. 125, 153302 (2019).10.1063/1.5094921 doi: 10.1063/1.5094921
    [18]
    H. Zhou, Y. Zhang, H. Li et al., “Generation of electrohydraulic shock waves by plasma-ignited energetic materials: III. Shock wave characteristics with three discharge loads,” IEEE Trans. Plasma Sci. 43, 4017–4023 (2015).10.1109/tps.2015.2477357 doi: 10.1109/tps.2015.2477357
    [19]
    R. Han, H. Zhou, Q. Liu et al., “Generation of electrohydraulic shock waves by plasma-ignited energetic materials: I. Fundamental mechanisms and processes,” IEEE Trans. Plasma Sci. 43, 3999–4008 (2015).10.1109/tps.2015.2468064 doi: 10.1109/tps.2015.2468064
    [20]
    A. Grinenko, A. Sayapin, V. T. Gurovich et al., “Underwater electrical explosion of a Cu wire,” J. Appl. Phys. 97, 023303 (2005).10.1063/1.1835562 doi: 10.1063/1.1835562
    [21]
    A. Fedotov-Gefen, S. Efimov, L. Gilburd et al., “Generation of a 400 GPa pressure in water using converging strong shock waves,” Phys. Plasmas 18, 062701 (2011).10.1063/1.3599425 doi: 10.1063/1.3599425
    [22]
    L. P. Orlenko, Explosion Physics (Science Press, Beijing, 2011), translated by C. Sun.
    [23]
    R. Han, J. Wu, A. Qiu et al., “A platform for exploding wires in different media,” Rev. Sci. Instrum. 88, 103504 (2017).10.1063/1.4996027 doi: 10.1063/1.4996027
    [24]
    R. Han, J. Wu, H. Zhou et al., “Characteristics of exploding metal wires in water with three discharge types,” J. Appl. Phys. 122, 033302 (2017).10.1063/1.4994009 doi: 10.1063/1.4994009
    [25]
    H. Zhou, Y. Zhang, R. Han et al., “Signal analysis and waveform reconstruction of shock waves generated by underwater electrical wire explosions with piezoelectric pressure probes,” Sensors 16, 573 (2016).10.3390/s16040573 doi: 10.3390/s16040573
    [26]
    W. G. Chace and H. K. Moore, Exploding Wires (Plenum Press, 1959), Vol. 1.
    [27]
    S. I. Tkachenko, D. V. Barishpoltsev, G. V. Ivanenkov et al., “Analysis of the discharge channel structure upon nanosecond electrical explosion of wires,” Phys. Plasmas 14, 123502 (2007).10.1063/1.2817961 doi: 10.1063/1.2817961
    [28]
    S. I. Tkachenko, A. R. Mingaleev, V. M. Romanova et al., “Distribution of matter in the current-carrying plasma and dense core of the discharge channel formed upon electrical wire explosion,” Plasma Phys. Rep. 35, 734–753 (2009).10.1134/s1063780x09090037 doi: 10.1134/s1063780x09090037
    [29]
    S. I. Tkachenko, V. M. Romanova, T. A. Shelkovenko et al., “Laser imaging of secondary breakdown upon nanosecond electrical explosion of wire,” IEEE Trans. Plasma Sci. 36, 1292–1293 (2008).10.1109/tps.2004.924586 doi: 10.1109/tps.2004.924586
    [30]
    H. Shi, G. Yin, Y. Fan et al., “Multilayer weak shocks generated by restrike during underwater electrical explosion of Cu wires,” Appl. Phys. Lett. 115, 084101 (2019).10.1063/1.5117313 doi: 10.1063/1.5117313
    [31]
    K.-J. Chung, K. Lee, Y. S. Hwang et al., “Numerical model for electrical explosion of copper wires in water,” J. Appl. Phys. 120, 203301 (2016).10.1063/1.4968396 doi: 10.1063/1.4968396
    [32]
    X. Wang, “Research at Tsinghua University on electrical explosions of wires,” Matter Radiat. Extremes 4, 017201 (2019).10.1063/1.5081450 doi: 10.1063/1.5081450
    [33]
    A. Rososhek, S. Efimov, S. V. Tewari et al., “Phase transitions of copper, aluminum, and tungsten wires during underwater electrical explosions,” Phys. Plasmas 25, 102709 (2018).10.1063/1.5049904 doi: 10.1063/1.5049904
    [34]
    G. S. Sarkisov, P. V. Sasorov, K. W. Struve et al., “State of the metal core in nanosecond exploding wires and related phenomena,” J. Appl. Phys. 96, 1674–1686 (2004).10.1063/1.1767976 doi: 10.1063/1.1767976
    [35]
    A. Fedotov, D. Sheftman, V. T. Gurovich et al., “Spectroscopic research of underwater electrical wire explosion,” Phys. Plasmas 15, 082704 (2008).10.1063/1.2973176 doi: 10.1063/1.2973176
    [36]
    W. G. Chace and M. A. Levine, “Classification of wire explosions,” J. Appl. Phys. 31, 1298 (1960).10.1063/1.1735823 doi: 10.1063/1.1735823
    [37]
    R. L. Doney, G. B. Vunni, and J. H. Niederhaus, “Experiments and simulations of exploding aluminum wires: Validation of ALEGRA-MHD,” Technical Report No. ARL-TR-5299, Army Research Laboratory, Aberdeen Proving Ground, MD, USA, 2010.
    [38]
    V. I. Oreshkin, S. A. Chaikovsky, N. A. Ratakhin et al., “Water bath effect during the electrical underwater wire explosion,” Phys. Plasmas 14, 102703 (2007).10.1063/1.2789990 doi: 10.1063/1.2789990
    [39]
    V. I. Oreshkin, R. B. Baksht, A. Y. Labetsky et al., “Study of metal conductivity near the critical point using a microwire electrical explosion in water,” Tech. Phys. 49, 843–848 (2004).10.1134/1.1778857 doi: 10.1134/1.1778857
    [40]
    D. Yanuka, A. Rososhek, S. Theocharous et al., “X-ray radiography of the overheating instability in underwater electrical explosions of wires,” Phys. Plasmas 26, 050703 (2019).10.1063/1.5089813 doi: 10.1063/1.5089813
    [41]
    D. Yanuka, A. Rososhek, S. Theocharous et al., “Multi frame synchrotron radiography of pulsed power driven underwater single wire explosions,” J. Appl. Phys. 124, 153301 (2018).10.1063/1.5047204 doi: 10.1063/1.5047204
    [42]
    S. P. Theocharous, S. N. Bland, D. Yanuka et al., “Use of synchrotron-based radiography to diagnose pulsed power driven wire explosion experiments,” Rev. Sci. Instrum. 90, 013504 (2019).10.1063/1.5055949 doi: 10.1063/1.5055949
    [43]
    R. Han, H. Zhou, J. Wu et al., “Experimental verification of the vaporization’s contribution to the shock waves generated by underwater electrical wire explosion under microsecond timescale pulsed discharge,” Phys. Plasmas 24, 063511 (2017).10.1063/1.4985301 doi: 10.1063/1.4985301
    [44]
    R. Han, H. Zhou, J. Wu et al., “Relationship between energy deposition and shock wave phenomenon in an underwater electrical wire explosion,” Phys. Plasmas 24, 093506 (2017).10.1063/1.4989790 doi: 10.1063/1.4989790
    [45]
    W. Yao, H. Zhou, R. Han et al., “An empirical approach for parameters estimation of underwater electrical wire explosion,” Phys. Plasmas 26, 093502 (2019).10.1063/1.5111518 doi: 10.1063/1.5111518
    [46]
    [47]
    V. M. Romanova, G. V. Ivanenkov, A. R. Mingaleev et al., “Electric explosion of fine wires: Three groups of materials,” Plasma Phys. Rep. 41, 617–636 (2015).10.1134/s1063780x15080085 doi: 10.1134/s1063780x15080085
    [48]
    R. Han, J. Wu, A. Qiu et al., “Electrical explosions of Al, Ti, Fe, Ni, Cu, Nb, Mo, Ag, Ta, W, W-Re, Pt, and Au wires in water: A comparison study,” J. Appl. Phys. 124, 043302 (2018).10.1063/1.5030760 doi: 10.1063/1.5030760
    [49]
    D. Yanuka, A. Rososhek, and Y. E. Krasik, “Comparison of electrical explosions of Cu and Al wires in water and glycerol,” Phys. Plasmas 24, 053512 (2017).10.1063/1.4983055 doi: 10.1063/1.4983055
    [50]
    W. M. Lee and R. D. Ford, “Pressure measurements correlated with electrical explosion of metals in water,” J. Appl. Phys. 64, 3851–3854 (1988).10.1063/1.341365 doi: 10.1063/1.341365
    [51]
    M. R. Jones and M. Q. Brewster, “Radiant emission from the aluminum-water reaction,” J. Quant. Spectrosc. Radiat. Transfer 46, 109–118 (1991).10.1016/0022-4073(91)90086-6 doi: 10.1016/0022-4073(91)90086-6
    [52]
    T. J. Tucker and R. P. Toth, “EBW1: A computer code for the prediction of the behavior of electrical circuits containing exploding wire elements,” Technical Report No. SAND-75-0041, Sandia National Laboratory, Albuquerque, NM, USA, 1975.
    [53]
    S. V. Lebedev and A. I. Savvatimskiĭ, “Metals during rapid heating by dense currents,” Sov. Phys. Usp. 27, 749 (1984).10.1070/pu1984v027n10abeh004128 doi: 10.1070/pu1984v027n10abeh004128
    [54]
    P. Tolias and EUROfusion MST1 Team, “Analytical expressions for thermophysical properties of solid and liquid tungsten relevant for fusion applications,” Nucl. Mater. Energy 13, 42–57 (2017).10.1016/j.nme.2017.08.002 doi: 10.1016/j.nme.2017.08.002
    [55]
    A. E. Vlastós, “Restrike mechanisms of exploding wire discharges,” J. Appl. Phys. 39, 3081–3087 (1968).10.1063/1.1656736 doi: 10.1063/1.1656736
    [56]
    S. I. Tkachenko, S. A. Pikuz, V. M. Romanova et al., “Overvoltage pulse development upon electrical explosion of thin wires,” J. Phys. D: Appl. Phys. 40, 1742–1750 (2007).10.1088/0022-3727/40/6/022 doi: 10.1088/0022-3727/40/6/022
    [57]
    G. S. Sarkisov, S. E. Rosenthal, K. W. Struve et al., “Joule energy deposition in exploding wire experiments,” AIP Conf. Proc. 651, 213 (2002).10.1063/1.1531317 doi: 10.1063/1.1531317
    [58]
    R. Han, J. Wu, H. Zhou et al., “Effects of water states on the process of underwater electrical wire explosion under microsecond timescale pulsed discharge,” Eur. Phys. J. Plus 135, 50 (2020).10.1140/epjp/s13360-019-00048-5 doi: 10.1140/epjp/s13360-019-00048-5
    [59]
    A. Rososhek, S. Efimov, V. Gurovich et al., “Evolution of a shock wave generated by underwater electrical explosion of a single wire,” Phys. Plasmas 26, 042302 (2019).10.1063/1.5092321 doi: 10.1063/1.5092321
    [60]
    L. C. Zhang, X. L. Zhu, Y. F. Huang et al., “Development of a simple model for predicting the spark-induced bubble behavior under different ambient pressures,” J. Appl. Phys. 120, 043302 (2016).10.1063/1.4959082 doi: 10.1063/1.4959082
    [61]
    S. Efimov, V. T. Gurovich, G. Bazalitski et al., “Addressing the efficiency of the energy transfer to the water flow by underwater electrical wire explosion,” J. Appl. Phys. 106, 073308 (2009).10.1063/1.3243233 doi: 10.1063/1.3243233
    [62]
    Y. Liu, Y. Ren, S. Liu et al., “Comparison and analysis of shockwave characteristics between underwater pulsed discharge and metal wire explosion,” Phys. Plasmas 27, 033503 (2020).10.1063/5.0005830 doi: 10.1063/5.0005830
    [63]
    Q. Liu, W. Ding, R. Han et al., “Fracturing effect of electrohydraulic shock waves generated by plasma-ignited energetic materials explosion,” IEEE Trans. Plasma Sci. 45, 423–431 (2017).10.1109/tps.2017.2659761 doi: 10.1109/tps.2017.2659761
    [64]
    H. Zhou, R. Han, Q. Liu et al., “Generation of electrohydraulic shock waves by plasma-ignited energetic materials: II. Influence of wire configuration and stored energy,” IEEE Trans. Plasma Sci. 43, 4009–4016 (2015).10.1109/tps.2015.2469593 doi: 10.1109/tps.2015.2469593
    [65]
    Y. E. Krasik, S. Efimov, D. Sheftman et al., “Underwater electrical explosion of wires and wire arrays and generation of converging shock waves,” IEEE Trans. Plasma Sci. 44, 412–431 (2016).10.1109/tps.2015.2513757 doi: 10.1109/tps.2015.2513757
    [66]
    D. Qian, Z. G. Liu, L. X. Li et al., “Enhancement of shock wave generated by underwater electrical wire-array explosion at a fixed energy and mass of wire-array,” IEEE Trans. Plasma Sci. 10.1109/TPS.2019.2963424 (published online). doi: 10.1109/TPS.2019.2963424
    [67]
    Y. Zhang, A. Qiu, and Y. Qin, “Principle and engineering practices on coal reservoir permeability improved with electric pulse controllable shock waves,” Coal Sci. Technol. 45, 79–85 (2017) (in Chinese). 10.13199/j.cnki.cst.2017.09.013 doi: 10.13199/j.cnki.cst.2017.09.013
    [68]
    Y. Zhang, Z. Meng, Y. Qin et al., “Innovative engineering practice of soft coal seam permeability enhancement by controllable shock wave for mine gas extraction: A case of Zhongjing mine, Shuicheng, Guizhou Province, China,” J. China Coal Society 44, 2388–2400 (2019) (in Chinese). 10.13225/j.cnki.jccs.KJ19.0508 doi: 10.13225/j.cnki.jccs.KJ19.0508
    [69]
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(31)  / Tables(2)

    Article Metrics

    Article views (167) PDF downloads(8) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return