Follow us on Wechat

用微信扫码二维码

分享至好友和朋友圈

Volume 5 Issue 1
Jan.  2020
Turn off MathJax
Article Contents
Li Mei, Liu Tianbiao, Wang Yonggang, Yang Wenge, Lü Xujie. Pressure responses of halide perovskites with various compositions, dimensionalities, and morphologies[J]. Matter and Radiation at Extremes, 2020, 5(1): 018201. doi: 10.1063/1.5133653
Citation: Li Mei, Liu Tianbiao, Wang Yonggang, Yang Wenge, Lü Xujie. Pressure responses of halide perovskites with various compositions, dimensionalities, and morphologies[J]. Matter and Radiation at Extremes, 2020, 5(1): 018201. doi: 10.1063/1.5133653

Pressure responses of halide perovskites with various compositions, dimensionalities, and morphologies

doi: 10.1063/1.5133653
More Information
  • Corresponding author: a)Author to whom correspondence should be addressed: xujie.lu@hpstar.ac.cn
  • Received Date: 2019-10-24
  • Accepted Date: 2019-12-06
  • Available Online: 2020-01-15
  • Publish Date: 2020-01-15
  • Metal halide perovskites (HPVs) have been greatly developed over the last decade, with various compositions, dimensionalities, and morphologies, leading to an emergence of high-performance photovoltaic and optoelectronic applications. Despite the tremendous progress made, challenges remain, which calls for a better understanding of the fundamental mechanisms. Pressure, a thermodynamic variable, provides a powerful tool to tune materials’ structures and properties. In combination with in situ characterization methods, high-pressure research could provide a better fundamental understanding. In this review, we summarize the recent studies of the dramatic, pressure-induced changes that occur in HPVs, particularly the enhanced and emergent properties induced under high pressure and their structure-property relationships. We first introduce the characteristics of HPVs and the basic knowledge of high-pressure techniques, as well as in situ characterization methods. We then discuss the effects of pressure on HPVs with different compositions, dimensionalities, and morphologies, and underline their common features and anomalous behaviors. In the last section, we highlight the main challenges and provide suggestions for possible future research on high-pressure HPVs.
  • loading
  • [1]
    D. Y. Park, H. R. Byun, H. Kim et al., “Enhanced stability of perovskite solar cells using organosilane-treated double polymer passivation layers,” J. Koraen Phys. Soc. 73, 1787–1793 (2018).10.3938/jkps.73.1787 doi: 10.3938/jkps.73.1787
    [2]
    K. Akihiro, T. Kenjiro, S. Yasuo et al., “Organometal halide perovskites as visible-light sensitizers for photovoltaic cells,” J. Am. Chem. Soc. 131, 6050–6051 (2009).10.1021/ja809598r doi: 10.1021/ja809598r
    [3]
    E. Köhnen, M. Jošt, A. B. Morales-Vilches et al., “Highly efficient monolithic perovskite silicon tandem solar cells: Analyzing the influence of current mismatch on device performance,” Sustainable Energy Fuels 3, 1995–2005 (2019).10.1039/c9se00120d doi: 10.1039/c9se00120d
    [4]
    L. Gao, F. Zhang, C. Xiao et al., “Improving charge transport via intermediate-controlled crystal growth in 2D perovskite solar cells,” Adv. Funct. Mater. 29, 1901652 (2019).10.1002/adfm.201901652 doi: 10.1002/adfm.201901652
    [5]
    C. G. Bischak, A. B. Wong, E. Lin et al., “Tunable polaron distortions control the extent of halide demixing in lead halide perovskites,” J. Phys. Chem. Lett. 9, 3998–4005 (2018).10.1021/acs.jpclett.8b01512 doi: 10.1021/acs.jpclett.8b01512
    [6]
    J. Zhu, Q. Di, X. Zhao et al., “Facile method for the controllable synthesis of CsxPbyBrz-based perovskites,” Inorg. Chem. 57, 6206–6209 (2018).10.1021/acs.inorgchem.8b00645 doi: 10.1021/acs.inorgchem.8b00645
    [7]
    R. H. Friend, D. Di, S. Lilliu et al., “Perovskite LEDs,” Sci. Video Protocols 1, 1–5 (2019).10.32386/scivpro.000005 doi: 10.32386/scivpro.000005
    [8]
    S. Yang, Z. Lin, J. Wang et al., “High color rendering index white-light emission from UV-driven LEDs based on single luminescent materials: Two-dimensional perovskites (C6H5C2H4NH3)2PbBrxCl4-x,” ACS Appl. Mater. Interfaces 10, 15980–15987 (2018).10.1021/acsami.8b00048 doi: 10.1021/acsami.8b00048
    [9]
    C. Zuo, H. J. Bolink, H. Han et al., “Advances in perovskite solar cells,” Adv. Sci. 3, 1500324 (2016).10.1002/advs.201500324 doi: 10.1002/advs.201500324
    [10]
    F. Giustino and H. J. Snaith, “Toward lead-free perovskite solar cells,” ACS Energy Lett. 1, 1233–1240 (2016).10.1021/acsenergylett.6b00499 doi: 10.1021/acsenergylett.6b00499
    [11]
    Z. Ma, Z. Liu, S. Lu et al., “Pressure-induced emission of cesium lead halide perovskite nanocrystals,” Nat. Commun. 9, 4506 (2018).10.1038/s41467-018-06840-8 doi: 10.1038/s41467-018-06840-8
    [12]
    P. Ščajev, R. Aleksiejūnas, S. Miasojedovas et al., “Two regimes of carrier diffusion in vapor-deposited lead-halide perovskites,” J. Phys. Chem. C 121, 21600–21609 (2017).10.1021/acs.jpcc.7b04179 doi: 10.1021/acs.jpcc.7b04179
    [13]
    J. Liu and O. V. Prezhdo, “Chlorine doping reduces electron-hole recombination in lead iodide perovskites: Time-domain ab initio analysis,” J. Phys. Chem. Lett. 6, 4463–4469 (2015).10.1021/acs.jpclett.5b02355 doi: 10.1021/acs.jpclett.5b02355
    [14]
    S. Sun, F. H. Isikgor, Z. Deng et al., “Factors influencing the mechanical properties of formamidinium lead halides and related hybrid perovskites,” ChemSusChem 10, 3740–3745 (2017).10.1002/cssc.201700991 doi: 10.1002/cssc.201700991
    [15]
    Y. Zhao and K. Zhu, “Organic-inorganic hybrid lead halide perovskites for optoelectronic and electronic applications,” Chem. Soc. Rev. 45, 655–689 (2016).10.1039/c4cs00458b doi: 10.1039/c4cs00458b
    [16]
    X. Wang, Y. Ling, Y.-C. Chiu et al., “Dynamic electronic junctions in organic–inorganic hybrid perovskites,” Nano Lett. 17, 4831–4839 (2017).10.1021/acs.nanolett.7b01665 doi: 10.1021/acs.nanolett.7b01665
    [17]
    J. Breternitz and S. Schorr, “What defines a perovskite?,” Adv. Energy Mater. 8, 1802366 (2018).10.1002/aenm.201802366 doi: 10.1002/aenm.201802366
    [18]
    G. Walters and E. H. Sargent, “Electro-optic response in germanium halide perovskites,” J. Phys. Chem. Lett. 9, 1018–1027 (2018).10.1021/acs.jpclett.7b03353 doi: 10.1021/acs.jpclett.7b03353
    [19]
    G. Niu, X. Guo, and L. Wang, “Review of recent progress in chemical stability of perovskite solar cells,” J. Mater. Chem. A 3, 8970–8980 (2015).10.1039/c4ta04994b doi: 10.1039/c4ta04994b
    [20]
    D. Ding, H. Li, J. Li et al., “Effect of mechanical forces on thermal stability reinforcement for lead based perovskite materials,” J. Mater. Chem. A 7, 540–548 (2019).10.1039/c8ta08868c doi: 10.1039/c8ta08868c
    [21]
    Z. Fan, K. Sun, and J. Wang, “Perovskites for photovoltaics: A combined review of organic-inorganic halide perovskites and ferroelectric oxide perovskites,” J. Mater. Chem. A 3, 18809–18828 (2015).10.1039/c5ta04235f doi: 10.1039/c5ta04235f
    [22]
    Y. Cao, G. Qi, C. Liu et al., “Pressure-tailored band gap engineering and structure evolution of cubic cesium lead iodide perovskite nanocrystals,” J. Phys. Chem. C 122, 9332–9338 (2018).10.1021/acs.jpcc.8b01673 doi: 10.1021/acs.jpcc.8b01673
    [23]
    H. Murasugi, S. Kumagai, H. Iguchi et al., “Organic-inorganic hybrid gold halide perovskites: Structural diversity through cation size,” Chem. Eur. J. 25, 9885–9891 (2019).10.1002/chem.201901288 doi: 10.1002/chem.201901288
    [24]
    G. Volonakis, M. R. Filip, A. A. Haghighirad et al., “Lead-free halide double perovskites via heterovalent substitution of noble metals,” J. Phys. Chem. Lett. 7, 1254–1259 (2016).10.1021/acs.jpclett.6b00376 doi: 10.1021/acs.jpclett.6b00376
    [25]
    I. García-Benito, C. Quarti, V. I. E. Queloz et al., “Fashioning fluorous organic spacers for tunable and stable layered hybrid perovskites,” Chem. Mater. 30, 8211–8220 (2018).10.1021/acs.chemmater.8b03377 doi: 10.1021/acs.chemmater.8b03377
    [26]
    H. Lin, C. Zhou, Y. Tian et al., “Low-dimensional organometal halide perovskites,” ACS Energy Lett. 3, 54–62 (2017).10.1021/acsenergylett.7b00926 doi: 10.1021/acsenergylett.7b00926
    [27]
    A. Jaffe, Y. Lin, and H. I. Karunadasa, “Halide perovskites under pressure: Accessing new properties through lattice compression,” ACS Energy Lett. 2, 1549–1555 (2017).10.1021/acsenergylett.7b00284 doi: 10.1021/acsenergylett.7b00284
    [28]
    W. Yin, J. Yang, J. Kang et al., “Halide perovskite materials for solar cells: A theoretical review,” J. Mater. Chem. A 3, 8926–8942 (2015).10.1039/c4ta05033a doi: 10.1039/c4ta05033a
    [29]
    M. Tan, S. Wang, F. Rao et al., “Pressures tuning the band gap of organic–inorganic trihalide perovskites (MAPbBr3): A first-principles study,” J. Electron. Mater. 47, 7204–7211 (2018).10.1007/s11664-018-6653-3 doi: 10.1007/s11664-018-6653-3
    [30]
    H. Zhu, M. T. Trinh, J. Wang et al., “Organic cations might not be essential to the remarkable properties of band edge carriers in lead halide perovskites,” Adv. Mater. 29, 1603072 (2017).10.1002/adma.201603072 doi: 10.1002/adma.201603072
    [31]
    J. Gong, M. Yang, X. Ma et al., “Electron–rotor interaction in organic–inorganic lead iodide perovskites discovered by isotope effects,” J. Phys. Chem. Lett. 7, 2879–2887 (2016).10.1021/acs.jpclett.6b01199 doi: 10.1021/acs.jpclett.6b01199
    [32]
    X. Lu, W. Yang, Q. Jia et al., “Pressure-induced dramatic changes in organic-inorganic halide perovskites,” Chem. Sci. 8, 6764–6776 (2017).10.1039/c7sc01845b doi: 10.1039/c7sc01845b
    [33]
    X. Wu, M. T. Trinh, D. Niesner et al., “Trap states in lead iodide perovskites,” J. Am. Chem. Soc. 137, 2089–2096 (2015).10.1021/ja512833n doi: 10.1021/ja512833n
    [34]
    I. C. Smith, M. D. Smith, A. Jaffe et al., “Between the sheets: Postsynthetic transformations in hybrid perovskites,” Chem. Mater. 29, 1868–1884 (2017).10.1021/acs.chemmater.6b05395 doi: 10.1021/acs.chemmater.6b05395
    [35]
    K. Matsuishi, T. Suzuki, S. Onari et al., “Excitonic states of alkylammonium lead-iodide layered perovskite semiconductors under hydrostatic pressure to 25 GPa,” Phys. Status Solidi B 223, 177–182 (2001).10.1002/1521-3951(200101)223:1<177::aid-pssb177>3.0.co;2-j doi: 10.1002/1521-3951(200101)223:1<177::aid-pssb177>3.0.co;2-j
    [36]
    I. Chung, J.-H. Song, J. Im et al., “CsSnI3: Semiconductor or metal? High electrical conductivity and strong near-infrared photoluminescence from a single material. High hole mobility and phase-transitions,” J. Am. Chem. Soc. 134, 8579–8587 (2012).10.1021/ja301539s doi: 10.1021/ja301539s
    [37]
    X. Lu, Y. Wang, C. C. Stoumpos et al., “Enhanced structural stability and photo responsiveness of CH3NH3SnI3 perovskite via pressure-induced amorphization and recrystallization,” Adv. Mater. 28, 8663–8668 (2016).10.1002/adma.201600771 doi: 10.1002/adma.201600771
    [38]
    Y. Ying, X. Luo, and H. Huang, “Pressure-induced topological nontrivial phase and tunable optical properties in all-inorganic halide perovskites,” J. Phys. Chem. C 122, 17718–17725 (2018).10.1021/acs.jpcc.8b06712 doi: 10.1021/acs.jpcc.8b06712
    [39]
    C. Zhou, H. Lin, Q. He et al., “Low dimensional metal halide perovskites and hybrids,” Mater. Sci. Eng. 137, 38–65 (2019).10.1016/j.mser.2018.12.001 doi: 10.1016/j.mser.2018.12.001
    [40]
    L. Zhang, Y. Wang, J. Lv et al., “Materials discovery at high pressures,” Nat. Rev. Mater. 2, 17005 (2017).10.1038/natrevmats.2017.5 doi: 10.1038/natrevmats.2017.5
    [41]
    C. Pei and L. Wang, “Recent progress on high-pressure and high-temperature studies of fullerenes and related materials,” Matter Radiat. Extremes 4, 028201 (2019).10.1063/1.5086310 doi: 10.1063/1.5086310
    [42]
    H.-K. Mao, B. Chen, J. Chen et al., “Recent advances in high-pressure science and technology,” Matter Radiat. Extremes 1, 59–75 (2016).10.1016/j.mre.2016.01.005 doi: 10.1016/j.mre.2016.01.005
    [43]
    G. Xiao, Y. Cao, G. Qi et al., “Pressure effects on structure and optical properties in cesium lead bromide perovskite nanocrystals,” J. Am. Chem. Soc. 139, 10087–10094 (2017).10.1021/jacs.7b05260 doi: 10.1021/jacs.7b05260
    [44]
    A. Nijamudheen and A. V. Akimov, “Criticality of symmetry in rational design of chalcogenide perovskites,” J. Phys. Chem. Lett. 9, 248–257 (2018).10.1021/acs.jpclett.7b02589 doi: 10.1021/acs.jpclett.7b02589
    [45]
    P. Postorino and L. Malavasi, “Chemistry at high pressure: Tuning functional materials properties,” MRS Bull. 42, 718–723 (2017).10.1557/mrs.2017.214 doi: 10.1557/mrs.2017.214
    [46]
    H.-k. Mao and R. J. Hemley, “Ultrahigh-pressure transitions in solid hydrogen,” Rev. Mod. Phys. 66, 671–692 (1994).10.1103/revmodphys.66.671 doi: 10.1103/revmodphys.66.671
    [47]
    M. Szafrański and A. Katrusiak, “Photovoltaic hybrid perovskites under pressure,” J. Phys. Chem. Lett. 8, 2496–2506 (2017).10.1021/acs.jpclett.7b00520 doi: 10.1021/acs.jpclett.7b00520
    [48]
    P. Postorinoa and L. Malavasi, “Pressure-induced effects in organic–inorganic hybrid perovskites,” J. Phys. Chem. Lett. 8, 2613–2622 (2017).10.1021/acs.jpclett.7b00347 doi: 10.1021/acs.jpclett.7b00347
    [49]
    A. P. Drozdov, P. P. Kong, V. S. Minkov et al., “Superconductivity at 250 K in lanthanum hydride under high pressures,” Nature 569, 528–531 (2019).10.1038/s41586-019-1201-8 doi: 10.1038/s41586-019-1201-8
    [50]
    Y. Xia, B. Yang, F. Jin et al., “Hydrogen confined in a single wall carbon nanotube becomes a metallic and superconductive nanowire under high pressure,” Nano Lett. 19, 2537–2542 (2019).10.1021/acs.nanolett.9b00258 doi: 10.1021/acs.nanolett.9b00258
    [51]
    Z. Ma, F. Li, G. Qi et al., “Structural stability and optical properties of two-dimensional perovskite-like CsPb2Br5 microplates in response to pressure,” Nanoscale 11, 820–825 (2019).10.1039/c8nr05684f doi: 10.1039/c8nr05684f
    [52]
    R. Fu, Y. Chen, X. Yong et al., “Pressure-induced structural transition and band gap evolution of double perovskite Cs2AgBiBr6 nanocrystals,” Nanoscale 11, 17004–17009 (2019).10.1039/c9nr07030c doi: 10.1039/c9nr07030c
    [53]
    A. P. Drozdov, M. I. Eremets, I. A. Troyan et al., “Conventional superconductivity at 203 kelvin at high pressures in the sulfur hydride system,” Nature 525, 73–76 (2015).10.1038/nature14964 doi: 10.1038/nature14964
    [54]
    Y. Wang, X. Lu, W. Yang et al., “Pressure-induced phase transformation, reversible amorphization, and anomalous visible light response in organolead bromide perovskite,” J. Am. Chem. Soc. 137, 11144–11149 (2015).10.1021/jacs.5b06346 doi: 10.1021/jacs.5b06346
    [55]
    A. Jaffe, Y. Lin, W. L. Mao et al., “Pressure-induced metallization of the halide perovskite (CH3NH3)PbI3,” J. Am. Chem. Soc. 139, 4330–4333 (2017).10.1021/jacs.7b01162 doi: 10.1021/jacs.7b01162
    [56]
    P. Wang, J. Guan, D. T. K. Galeschuk et al., “Pressure-induced polymorphic, optical, and electronic transitions of formamidinium lead iodide perovskite,” J. Phys. Chem. Lett. 8, 2119 (2017).10.1021/acs.jpclett.7b00665 doi: 10.1021/acs.jpclett.7b00665
    [57]
    T. Yin, Y. Fang, W. K. Chong et al., “High-pressure-induced comminution and recrystallization of CH3NH3PbBr3 nanocrystals as large thin nanoplates,” Adv. Mater. 30, 1705017 (2018).10.1002/adma.201705017 doi: 10.1002/adma.201705017
    [58]
    N. Onoda-Yamamuro, O. Yamamuro, T. Matsuo et al., “P-T phase relations of CH3NH3PbX3 (X = Cl, Br, I) crystals,” J. Phys. Chem. Solids 53, 277–281 (1992).10.1016/0022-3697(92)90056-j doi: 10.1016/0022-3697(92)90056-j
    [59]
    S. Yun, Y. Qin, A. R. Uhl et al., “New-generation integrated devices based on dye-sensitized and perovskite solar cells,” Enegy Environ. Sci. 11, 476–526 (2018).10.1039/c7ee03165c doi: 10.1039/c7ee03165c
    [60]
    D. Koushik, W. J. H. Verhees, Y. Kuang et al., “High-efficiency humidity-stable planar perovskite solar cells based on atomic layer architecture,” Enegy Environ. Sci. 10, 91–100 (2017).10.1039/c6ee02687g doi: 10.1039/c6ee02687g
    [61]
    M. E. Calvo, “Materials chemistry approaches to the control of the optical features of perovskite solar cells,” J. Mater. Chem. A 5, 20561–20578 (2017).10.1039/c7ta05666d doi: 10.1039/c7ta05666d
    [62]
    N.-G. Park, M. Grätzel, T. Miyasaka et al., “Towards stable and commercially available perovskite solar cells,” Nat. Energy 1, 16152 (2016).10.1038/nenergy.2016.152 doi: 10.1038/nenergy.2016.152
    [63]
    S. D. Stranks and H. J. Snaith, “Metal-halide perovskites for photovoltaic and light-emitting devices,” Nat. Nanotechnol. 10, 391–402 (2015).10.1038/nnano.2015.90 doi: 10.1038/nnano.2015.90
    [64]
    M. L. Petrus, J. Schlipf, C. Li et al., “Capturing the sun: A review of the challenges and perspectives of perovskite solar cells,” Adv. Energy Mater. 7, 1700264 (2017).10.1002/aenm.201700264 doi: 10.1002/aenm.201700264
    [65]
    A. R. bin Mohd Yusoff and M. K. Nazeeruddin, “Low-dimensional perovskites: From synthesis to stability in perovskite solar cells,” Adv. Energy Mater. 8, 1702073 (2018).10.1002/aenm.201702073 doi: 10.1002/aenm.201702073
    [66]
    I. P. Swainson, M. G. Tucker, D. J. Wilson et al., “Pressure response of an organic-inorganic perovskite: Methylammonium lead bromide,” Chem. Mater. 19, 2401–2405 (2007).10.1021/cm0621601 doi: 10.1021/cm0621601
    [67]
    T. Baikie, Y. Fang, J. M. Kadro et al., “Synthesis and crystal chemistry of the hybrid perovskite (CH3NH3)PbI3 for solid-state sensitised solar cell applications,” J. Mater. Chem. A 1, 5628–5641 (2013).10.1039/c3ta10518k doi: 10.1039/c3ta10518k
    [68]
    F. Capitani, C. Marini, S. Caramazza et al., “Locking of methylammonium by pressure-enhanced H-bonding in (CH3NH3)PbBr3 hybrid perovskite,” J. Phys. Chem. Lett. 121, 28125–28131 (2017).10.1021/acs.jpcc.7b11461 doi: 10.1021/acs.jpcc.7b11461
    [69]
    M. Ji, H. Wang, Y. Gong et al., “High pressure induced in situ solid-state phase transformation of nonepitaxial grown metal@semiconductor nanocrystals,” J. Phys. Chem. Lett. 9, 6544–6549 (2018).10.1021/acs.jpclett.8b03057 doi: 10.1021/acs.jpclett.8b03057
    [70]
    H. Yan, T. Ou, H. Jiao et al., “Pressure dependence of mixed conduction and photo responsiveness in organolead tribromide perovskites,” J. Phys. Chem. Lett. 8, 2944–2950 (2017).10.1021/acs.jpclett.7b01022 doi: 10.1021/acs.jpclett.7b01022
    [71]
    M. Szafranski and A. Katrusiak, “Mechanism of pressure-induced phase transitions, amorphization, and absorption-edge shift in photovoltaic methylammonium lead iodide,” J. Phys. Chem. Lett. 7, 3458–3466 (2016).10.1021/acs.jpclett.6b01648 doi: 10.1021/acs.jpclett.6b01648
    [72]
    Y. Liang, X. Huang, Y. Huang et al., “New metallic ordered phase of perovskite CsPbI3 under pressure,” Adv. Sci. 6, 1900399 (2019).10.1002/advs.201900399 doi: 10.1002/advs.201900399
    [73]
    C. Gao, R. Li, Y. Li et al., “Direct-indirect transition of pressurized 2D halide perovskite: Role of benzene ring stack ordering,” J. Phys. Chem. Lett. 10, 5687–5693 (2019).10.1021/acs.jpclett.9b02604 doi: 10.1021/acs.jpclett.9b02604
    [74]
    Y. Chen, R. Fu, L. Wang et al., “Emission enhancement and bandgap retention of a two-dimensional mixed cation lead halide perovskite under high pressure,” J. Mater. Chem. A 7, 6357–6362 (2019).10.1039/c8ta11992a doi: 10.1039/c8ta11992a
    [75]
    C. Liu, Z. Li, L. Yang et al., “Optical behaviors of a micro-sized single crystal MAPbI3 plate under high pressure,” J. Phys. Chem. C 123, 30221–30227 (2019).10.1021/acs.jpcc.9b10416 doi: 10.1021/acs.jpcc.9b10416
    [76]
    L. Zhang, L. Wu, K. Wang et al., “Pressure-induced broadband emission of 2D organic-inorganic hybrid perovskite (C6H5C2H4NH3)2PbBr4,” Adv Sci 6, 1801628 (2019).10.1002/advs.201801628 doi: 10.1002/advs.201801628
    [77]
    G. Liu, L. Kong, W. Yang et al., “Pressure engineering of photovoltaic perovskites,” Mater. Today 27, 91–106 (2019).10.1016/j.mattod.2019.02.016 doi: 10.1016/j.mattod.2019.02.016
    [78]
    Y. Fu, H. Zhu, J. Chen et al., “Metal halide perovskite nanostructures for optoelectronic applications and the study of physical properties,” Nat. Rev. Mater. 4, 169–188 (2019).10.1038/s41578-019-0080-9 doi: 10.1038/s41578-019-0080-9
    [79]
    M. C. Gelvez-Rueda, E. M. Hutter, D. H. Cao et al., “Interconversion between free charges and bound excitons in 2D hybrid lead halide perovskites,” J. Phys. Chem. Lett. 121, 26566–26574 (2017).10.1021/acs.jpcc.7b10705 doi: 10.1021/acs.jpcc.7b10705
    [80]
    C. Zhou, H. Lin, S. Lee et al., “Organic–inorganic metal halide hybrids beyond perovskites,” Mater. Res. Lett. 6, 552–569 (2018).10.1080/21663831.2018.1500951 doi: 10.1080/21663831.2018.1500951
    [81]
    T. Yin, B. Liu, J. Yan et al., “Pressure-engineered structural and optical properties of two-dimensional (C4H9NH3)2PbI4 perovskite exfoliated nm-thin flakes,” J. Am. Chem. Soc. 141, 1235–1241 (2018).10.1021/jacs.8b07765 doi: 10.1021/jacs.8b07765
    [82]
    L. Kong, G. Liu, J. Gong et al., “Simultaneous band-gap narrowing and carrier-lifetime prolongation of organic-inorganic trihalide perovskites,” Proc. Natl Acad. Sci. 113, 8910–8915 (2016).10.1073/pnas.1609030113 doi: 10.1073/pnas.1609030113
    [83]
    Q. Li, Y. Wang, W. Pan et al., “High-pressure band-gap engineering in lead-free Cs2AgBiBr6 double perovskite,” Angew. Chem., Int. Ed. 56, 15969–15973 (2017).10.1002/anie.201708684 doi: 10.1002/anie.201708684
    [84]
    L. Zhang, Q. Zeng, and K. Wang, “Pressure-induced structural and optical properties of inorganic halide perovskite CsPbBr3,” J. Phys. Chem. Lett. 8, 3752–3758 (2017).10.1021/acs.jpclett.7b01577 doi: 10.1021/acs.jpclett.7b01577
    [85]
    Y. Shi, Z. Ma, D. Zhao et al., “Pressure-induced emission (PIE) of one-dimensional organic tin bromide perovskites,” J. Am. Chem. Soc. 141, 6504–6508 (2019).10.1021/jacs.9b02568 doi: 10.1021/jacs.9b02568
    [86]
    L. Wang, K. Wang, and B. Zou, “Pressure-induced structural and optical properties of organometal halide perovskite-based formamidinium lead bromide,” J. Phys. Chem. Lett. 7, 2556–2562 (2016).10.1021/acs.jpclett.6b00999 doi: 10.1021/acs.jpclett.6b00999
    [87]
    L. Wang, K. Wang, G. Xiao et al., “Pressure-induced structural evolution and band gap shifts of organometal halide perovskite-based methylammonium lead chloride,” J. Phys. Chem. Lett. 7, 5273–5279 (2016).10.1021/acs.jpclett.6b02420 doi: 10.1021/acs.jpclett.6b02420
    [88]
    X. Ren, X. Yan, A. S. Ahmad et al., “Pressure-induced phase transition and band gap engineering in propylammonium lead bromide perovskite,” J. Phys. Chem. C 123, 15204–15208 (2019).10.1021/acs.jpcc.9b02854 doi: 10.1021/acs.jpcc.9b02854
    [89]
    F. Wang, M. Tan, C. Li et al., “Unusual pressure-induced electronic structure evolution in organometal halide perovskite predicted from first-principles,” Org. Electron. 67, 89–94 (2019).10.1016/j.orgel.2019.01.003 doi: 10.1016/j.orgel.2019.01.003
    [90]
    F. Capitani, C. Marini, S. Caramazza et al., “High-pressure behavior of methylammonium lead iodide (MAPbI3) hybrid perovskite,” J. Appl. Phys. 119, 185901 (2016).10.1063/1.4948577 doi: 10.1063/1.4948577
    [91]
    A. Jaffe, Y. Lin, C. M. Beavers et al., “High-pressure single-crystal structures of 3D lead-halide hybrid perovskites and pressure effects on their electronic and optical properties,” ACS Cent. Sci. 2, 201–209 (2016).10.1021/acscentsci.6b00055 doi: 10.1021/acscentsci.6b00055
    [92]
    S. Sun, Z. Deng, Y. Wu et al., “Variable temperature and high-pressure crystal chemistry of perovskite formamidinium lead iodide: A single crystal X-ray diffraction and computational study,” Chem. Commun. 53, 7537–7540 (2017).10.1039/c7cc00995j doi: 10.1039/c7cc00995j
    [93]
    Y. Lee, D. B. Mitzi, P. W. Barnes et al., “Pressure-induced phase transitions and templating effect in three-dimensional organic-inorganic hybrid perovskites,” Phys. Rev. B 68, 020103 (2003).10.1103/physrevb.68.020103 doi: 10.1103/physrevb.68.020103
    [94]
    L. Wang, T. Ou, K. Wang et al., “Pressure-induced structural evolution, optical and electronic transitions of nontoxic organometal halide perovskite-based methylammonium tin chloride,” Appl. Phys. Lett. 111, 233901 (2017).10.1063/1.5004186 doi: 10.1063/1.5004186
    [95]
    T. Ou, X. Ma, H. Yan et al., “Pressure effects on the inductive loop, mixed conduction, and photoresponsivity in formamidinium lead bromide perovskite,” Appl. Phys. Lett. 113, 262105 (2018).10.1063/1.5063394 doi: 10.1063/1.5063394
    [96]
    G. Yuan, S. Qin, X. Wu et al., “Pressure-induced phase transformation of CsPbI3 by X-ray diffraction and Raman spectroscopy,” Phase Transition 91, 38–47 (2017).10.1080/01411594.2017.1357180 doi: 10.1080/01411594.2017.1357180
    [97]
    L. Zhang, L. Wang, K. Wang et al., “Pressure-induced structural evolution and optical properties of metal-halide perovskite CsPbCl3,” J. Phys. Chem. C 122, 15220–15225 (2018).10.1021/acs.jpcc.8b05397 doi: 10.1021/acs.jpcc.8b05397
    [98]
    Y. Nagaoka, K. Hills-Kimball, R. Tan et al., “Nanocube superlattices of cesium lead bromide perovskites and pressure-induced phase transformations at atomic and mesoscale levels,” Adv. Mater. 29, 1606666 (2017).10.1002/adma.201606666 doi: 10.1002/adma.201606666
    [99]
    J. C. Beimborn, L. M. G. Hall, P. Tongying et al., “Pressure response of photoluminescence in cesium lead iodide perovskite nanocrystals,” J. Phys. Chem. C 122, 11024–11030 (2018).10.1021/acs.jpcc.8b03280 doi: 10.1021/acs.jpcc.8b03280
    [100]
    J. Zhang, S. Ji, Y. Ma et al., “Tunable photoluminescence and an enhanced photoelectric response of Mn2+-doped CsPbCl3 perovskite nanocrystals via pressure-induced structure evolution,” Nanoscale 11, 11660–11670 (2019).10.1039/c9nr03045j doi: 10.1039/c9nr03045j
    [101]
    C. Zhou, H. Lin, H. Shi et al., “A zero-dimensional organic seesaw-shaped tin bromide with highly efficient strongly stokes-shifted deep-red emission,” Angew. Chem., Int. Ed. 57, 1021–1024 (2018).10.1002/anie.201710383 doi: 10.1002/anie.201710383
    [102]
    Q. Li, L. Yin, Z. Chen et al., “High pressure structural and optical properties of two-dimensional hybrid halide perovskite (CH3NH3)3Bi2Br9,” Inorg. Chem. 58, 1621–1626 (2019).10.1021/acs.inorgchem.8b03190 doi: 10.1021/acs.inorgchem.8b03190
    [103]
    C. Ortiz-Cervantes, P. I. Roman-Roman, J. Vazquez-Chavez et al., “Thousand-fold conductivity increase in 2D perovskites by polydiacetylene incorporation and doping,” Angew. Chem., Int. Ed. 57, 13882–13886 (2018).10.1002/anie.201809028 doi: 10.1002/anie.201809028
    [104]
    D. H. Cao, C. C. Stoumpos, O. K. Farha et al., “2D homologous perovskites as light-absorbing materials for solar cell applications,” J. Am. Chem. Soc. 137, 7843–7850 (2015).10.1021/jacs.5b03796 doi: 10.1021/jacs.5b03796
    [105]
    Y. Chen, Y. Sun, J. Peng et al., “Composition engineering in two-dimensional Pb-Sn-Alloyed perovskites for efficient and stable solar cells,” ACS Appl. Mater. Interfaces 10, 21343–21348 (2018).10.1021/acsami.8b06256 doi: 10.1021/acsami.8b06256
    [106]
    M. I. Saidaminov, O. F. Mohammed, and O. M. Bakr, “Low-dimensional-networked metal halide perovskites: The next big thing,” ACS Energy Lett. 2, 889–896 (2017).10.1021/acsenergylett.6b00705 doi: 10.1021/acsenergylett.6b00705
    [107]
    C. Zhou, H. Lin, Y. Tian et al., “Luminescent zero-dimensional organic metal halide hybrids with near-unity quantum efficiency,” Chem. Sci. 9, 586–593 (2018).10.1039/c7sc04539e doi: 10.1039/c7sc04539e
    [108]
    D. B. Mitzi, S. Wang, C. A. Feild et al., “Conducting layered organic-inorganic halides containing -oriented perovskite sheets,” Science 267, 1473–1476 (1995).10.1126/science.267.5203.1473 doi: 10.1126/science.267.5203.1473
    [109]
    E. R. Dohner, E. T. Hoke, and H. I. Karunadasa, “Self-assembly of broadband white-light emitters,” J. Am. Chem. Soc. 136, 1718–1721 (2014).10.1021/ja411045r doi: 10.1021/ja411045r
    [110]
    Z. Yuan, C. Zhou, Y. Tian et al., “One-dimensional organic lead halide perovskites with efficient bluish white-light emission,” Nat. Commun. 8, 14051 (2017).10.1038/ncomms14051 doi: 10.1038/ncomms14051
    [111]
    S. Liu, S. Sun, C. K. Gan et al., “Manipulating efficient light emission in two-dimensional perovskite crystals by pressure-induced anisotropic deformation,” Sci. Adv. 5, eaav9445 (2019).10.1126/sciadv.aav9445 doi: 10.1126/sciadv.aav9445
    [112]
    G. Liu, L. Kong, P. Guo et al., “Two regimes of bandgap red shift and partial ambient retention in pressure-treated two-dimensional perovskites,” ACS Energy Lett. 2, 2518–2524 (2017).10.1021/acsenergylett.7b00807 doi: 10.1021/acsenergylett.7b00807
    [113]
    Y. Yuan, X. F. Liu, X. Ma et al., “Large band gap narrowing and prolonged carrier lifetime of (C4H9NH3)2PbI4 under high pressure,” Adv. Sci. 6, 1900240 (2019).10.1002/advs.201900240 doi: 10.1002/advs.201900240
    [114]
    D. Umeyama, Y. Lin, and H. I. Karunadasa, “Red-to-black piezochromism in a compressible Pb–I–SCN layered perovskite,” Chem. Mater. 28, 3241–3244 (2016).10.1021/acs.chemmater.6b01147 doi: 10.1021/acs.chemmater.6b01147
    [115]
    L. A. T. Nguyen, D. N. Minh, Y. Yuan et al., “Pressure-induced fluorescence enhancement of FAαPbBr2+α composite perovskites,” Nanoscale 11, 5868–5873 (2019).10.1039/c8nr09780a doi: 10.1039/c8nr09780a
    [116]
    S. Kumar, J. Jagielski, S. Yakunin et al., “Efficient blue electroluminescence using quantum-confined two-dimensional perovskites,” ACS Nano 10, 9720–9729 (2016).10.1021/acsnano.6b05775 doi: 10.1021/acsnano.6b05775
    [117]
    G. Bounos, M. Karnachoriti, A. G. Kontos et al., “Defect perovskites under pressure: Structural evolution of Cs2SnX6 (X = Cl, Br, I),” J. Phys. Chem. C 122, 24004–24013 (2018).10.1021/acs.jpcc.8b08449 doi: 10.1021/acs.jpcc.8b08449
    [118]
    L. Wu, Z. Dong, L. Zhang et al., “High-pressure band-gap engineering and metallization in the perovskite derivative Cs3Sb2I9,” ChemSusChem 12, 3971–3976 (2019).10.1002/cssc.201901388 doi: 10.1002/cssc.201901388
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(10)  / Tables(1)

    Article Metrics

    Article views (582) PDF downloads(17) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return