Follow us on Wechat

用微信扫码二维码

分享至好友和朋友圈

Volume 5 Issue 2
Mar.  2020
Turn off MathJax
Article Contents
Pereira N. R.. Whence Z-pinches? A personal view[J]. Matter and Radiation at Extremes, 2020, 5(2): 026402. doi: 10.1063/1.5133378
Citation: Pereira N. R.. Whence Z-pinches? A personal view[J]. Matter and Radiation at Extremes, 2020, 5(2): 026402. doi: 10.1063/1.5133378

Whence Z-pinches? A personal view

doi: 10.1063/1.5133378
More Information
  • Corresponding author: a)Author to whom correspondence should be addressed: ninorpereira@gmail.com. URL: http://www.ecopulse.com
  • Received Date: 2019-10-25
  • Accepted Date: 2020-02-16
  • Available Online: 2020-03-01
  • Publish Date: 2020-03-15
  • The first Dense Z-Pinch (DZP) conference, in 1984, marked an attempt to use then-modern pulsed power with a Z-pinch to work toward thermonuclear fusion energy. This 11th DZP conference in China is a good time to look back, to comment on progress since, and to project forward. What follows is a personal perspective: scattered comments from a sympathetic outsider and one-time participant. In these 35 years, Z-pinch theory has evolved from little more than cartoons to fully 3D MHD computer simulations, measurements have gone from mostly time- and spatially integrated diagnostics to monochromatic imaging, highly resolved x-ray spectroscopy, and active laser probing. Large pulsed power generators now drive x-ray-producing Z-pinches that are powerful enough for many applications; thermonuclear fusion may work single-shot in the future.
  • loading
  • [1]
    General background on this topic can be found via a web search on the term “history of fusion”.
    [2]
    T. H. Martin, A. H. Gunther, and M. Christianson, J C Martin on Pulsed Power (Plenum, 1996).
    [3]
    J. L. Giuliani and R. J. Commisso, “A review of the gas-puff Z-pinch as an X-ray and neutron source,” IEEE Trans. Plasma Sci. 43, 2385–2453 (2015).10.1109/tps.2015.2451157 doi: 10.1109/tps.2015.2451157
    [4]
    S. A. Slutz et al., Phys. Plasmas 17, 056303 (2010).10.1063/1.3333505 doi: 10.1063/1.3333505
    [5]
    S. M. Miller et al., “Laser gate experiment for increasing preheat energy coupling efficiency in magnetized liner inertial fusion (MagLIF),” Matter Radiat. Extremes (these proceedings) (2019).
    [6]
    J. Woolstrum et al., “Validation of perseus and convergence ratio effects on Z-pinch implosions,” Matter Radiat. Extremes (these proceedings) (2019).
    [7]
    S. Bland et al., “New insights into the pulsed power driven explosion of underwater wires and wire arrays,” Matter Radiat. Extremes (these proceedings) (2019).
    [8]
    S. Lebedev et al., “Z-pinch driven laboratory astrophysics experiments at imperial college,” Matter Radiat. Extremes (these proceedings) (2019).
    [9]
    S. V. Lebedev, A. Frank, and D. D. Ryutov, “Exploring astrophysics-relevant magnetohydrodynamics with pulsed-power laboratory facilities,” Rev. Mod. Phys. 91, 025002 (2019).10.1103/revmodphys.91.025002 doi: 10.1103/revmodphys.91.025002
    [10]
    [11]
    A. Allerhand, “Who invented the earliest capacitor bank (“battery” of leyden jars)? it's complicated [scanning our past],” Proc. IEEE 106, 496 (2018).10.1109/jproc.2018.2795846 doi: 10.1109/jproc.2018.2795846
    [12]
    Pulsed power’s potential for military use has a long history. Around 1800 the French Emperor Napoleon came to Teyler’s museum to look this capacitor bank for its military potential. It was built in The Netherlands around 1790, by an English craftsman working abroad; Charlie Martin did something similar but in the US. The relative cost of the largest machines (∼1 $/J) remained roughly similar as well.
    [13]
    M. G. Haines, “A review of the dense Z-pinch,” Plasma Phys. Controlled Fusion 53, 093001 (2011).10.1088/0741-3335/53/9/093001 doi: 10.1088/0741-3335/53/9/093001
    [14]
    N. R. Pereira, “A simple derivation of the Pease-Braginskiǐ current,” Phys. Fluids B 2, 677 (1990).10.1063/1.859303 doi: 10.1063/1.859303
    [15]
    R. E. Terry and N. R. Pereira, “Leakage currents outside an imploding Z-pinch,” Phys. Fluids B 3, 195 (1991).10.1063/1.859937 doi: 10.1063/1.859937
    [16]
    S. Cordaro et al., “High voltage coaxial vacuum gap breakdown for pulsed power liners,” Matter Radiat. Extremes (these proceedings) (2019).
    [17]
    I. Y. Dodin and N. J. Fish, “Correction to the Alfvén-Lawson criterion for relativistic electron beams,” Phys. Plasmas 13, 103104 (2006).10.1063/1.2358970 doi: 10.1063/1.2358970
    [18]
    J. Chittenden et al., “Z-pinch simulations at imperial college,” Matter Radiat. Extremes (these proceedings) (2019).
    [19]
    [20]
    [21]
    H.-K. Chung, M. H. Chen, W. L. Morgan, Yu. Ralchenko, and R. W. Lee, “Generalized population kinetics and spectral model for rapid spectroscopic analysis for all elements,” High Energy Density Phys. 1, 3 (2005).10.1016/j.hedp.2005.07.001 doi: 10.1016/j.hedp.2005.07.001
    [22]
    A. Safronova et al., “Overview of x-ray time-gated spectroscopy and imaging of 1 Ma wire array Z-pinches,” Matter Radiat. Extremes (these proceedings) (2019).
    [23]
    [24]
    N. R. Pereira and K. G. Whitney, “Non-Maxwellian electron-energy distribution due to inelastic collisions in a Z-pinch plasma,” Phys. Rev. A 38, 319 (1988), in retrospect, the derivation is less slick than I had hoped at the time: it uses a cross section that is already averaged for use in the plasma rather than the differential cross section, as is clear from the Λ.10.1103/physreva.38.319 doi: 10.1103/physreva.38.319
    [25]
    C. Ning et al., “Numerical invesigation into the Z-pinch process of rarefied deuterium plasma shell by PIC and MHD simulations,” Matter Radiat. Extremes (these proceedings) (2019).
    [26]
    S. A. Pikuz, T. A. Shelkovenko, and D. A. Hammer, “X-pinch. Part II,” Plasma Phys. Rep. 41, 445–491 (2015).10.1134/s1063780x15060045 doi: 10.1134/s1063780x15060045
    [27]
    L. Yin, B. J. Albright, E. L. Vold, W. D. Nystrom, R. F. Bird, and K. J. Bowers, “Plasma kinetic effects on interfacial mix and burn rates in multispatial dimensions,” Phys. Plasmas 26, 062302 (2019).10.1063/1.5109257 doi: 10.1063/1.5109257
    [28]
    V. V. Ivanov, A. A. Anderson, and D. Papp, “Investigation of wire-array Z-pinches by laser probing diagnostics,” Matter Radiat. Extremes 4, 017401 (2019).10.1063/1.5081453 doi: 10.1063/1.5081453
    [29]
    V. V. Ivanov, J. P. Chittenden, S. D. Altemara, N. Niasse, P. Hakel, R. C. Mancini, D. Papp, and A. A. Anderson, “Study of the internal structure and small-scale instabilities in the dense Z-pinch,” Phys. Rev. Lett. 107, 165002 (2011).10.1103/physrevlett.107.165002 doi: 10.1103/physrevlett.107.165002
    [30]
    B. Jones, C. A. Jennings, J. E. Bailey, G. A. Rochau, Y. Maron, C. A. Coverdale, E. P. Yu, S. B. Hansen, D. J. Ampleford, P. W. Lake, G. Dunham, M. E. Cuneo, C. Deeney, D. V. Fisher, V. I. Fisher, V. Bernshtam, A. Starobinets, and L. Weingarten, “Doppler measurement of implosion velocity in fast Z-pinch x-ray sources,” Phys. Rev. E 84(5), 056408 (2011).10.1103/physreve.84.056408 doi: 10.1103/physreve.84.056408
    [31]
    T. W. Sanford, G. O. Allshouse, B. M. Marder, T. J. Nash, R. C. Mock, R. B. Spielman, J. F. Seamen, J. S. McGurn, D. Jobe, T. L. Gilliland, M. Vargas, K. W. Struve, W. A. Stygar, M. R. Douglas, M. K. Matzen, J. H. Hammer, J. S. de Groot, J. L. Eddleman, D. L. Peterson, D. Mosher, K. G. Whitney, J. W. Thornhill, P. E. Pulsifer, J. P. Apruzese, and Y. Maron, “Improved symmetry greatly increases X-ray power from wire-array Z-pinches,” Phys. Rev. Lett. 77(25), 5063–5066 (1996).10.1103/physrevlett.77.5063 doi: 10.1103/physrevlett.77.5063
    [32]
    [33]
    [34]
    D. Klir et al., “Deuterium gas-puff Z-pinch experiments on mega-ampere pulsed-power generators,” Matter Radiat. Extremes (these proceedings) (2019).
    [35]
    W. Zou et al., “Progress and outlook of pulsed power driver on the road to fusion,” Matter Radiat. Extremes (these proceedings) (2019).
    [36]
    T. Clayson et al., “M3: A new pulsed power machine dedicated to inertial confinement fusion experiments,” Matter Radiat. Extremes (these proceedings) (2019).
    [37]
    [38]
    H. C. Andersen, The Emperor’s New Clothes (1837) available at https://andersen.sdu.dk/vaerk/hersholt/TheEmperorsNewClothes_e.html.
    [39]
    [40]
    N. R. Pereira and J. Davis, “X-rays from Z-pinches on relativistic electron-beam generators,” J. Appl. Phys. 64, R1 (1988).10.1063/1.341808 doi: 10.1063/1.341808
    [41]
    K. N. Koshelev and N. R. Pereira, “Plasma points and radiative collapse in vacuum sparks,” J. Appl. Phys. 69, R21 (1991).10.1063/1.347551 doi: 10.1063/1.347551
    [42]
    A. Bernard et al., “Scientific status of plasma focus research,” J. Moscow Phys. Soc. 8, 93 (1998).
    [43]
    M. A. Liberman et al., Physics of High-Density Z-Pinch Plasmas (Springer, 1999).
    [44]
    D. D. Ryutov, M. S. Derzon, and M. K. Matzen, “The physics of fast Z pinches,” Rev. Mod. Phys. 72, 167 (2000).10.1103/revmodphys.72.167 doi: 10.1103/revmodphys.72.167
    [45]
    M. G. Haines et al., “The past, present, and future of Z pinches,” Phys. Plasmas 7, 1672 (2000).10.1063/1.874047 doi: 10.1063/1.874047
    [46]
    M. Cuneo et al., “Magnetically driven implosions for ICF at SNL,” IEEE Trans. Plasma Sci. 40, 3222 (2012).
    [47]
    D. D. Ryutov, “Characterizing the plasmas of dense Z-pinches,” IEEE Trans. Plasma Sci. 43, 2363 (2015).10.1109/tps.2015.2453265 doi: 10.1109/tps.2015.2453265
    [48]
    S. A. Pikuz “X-Pinch. III,” Fiz. Plazmy 42, 234 (2016).
    [49]
    N. Ding et al., “Theoretical and numerical research of wire array Z-pinch and dynamic hohlraum at IAPCM,” Matter Radiat. Extremes 1, 135 (2016).10.1016/j.mre.2016.06.001 doi: 10.1016/j.mre.2016.06.001
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(10)  / Tables(1)

    Article Metrics

    Article views (150) PDF downloads(9) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return