Citation: | Nilsen Joseph, Kritcher Andrea L., Martin Madison E., Tipton Robert E., Whitley Heather D., Swift Damian C., Döppner Tilo, Bachmann Benjamin L., Lazicki Amy E., Kostinski Natalie B., Maddox Brian R., Collins Gilbert W., Glenzer Siegfried H., Falcone Roger W.. Understanding the effects of radiative preheat and self-emission from shock heating on equation of state measurement at 100s of Mbar using spherically converging shock waves in a NIF hohlraum[J]. Matter and Radiation at Extremes, 2020, 5(1): 018401. doi: 10.1063/1.5131748 |
[1] |
L. Stixrude, Phys. Rev. Lett. 108, 055505 (2012).10.1103/physrevlett.108.055505 doi: 10.1103/physrevlett.108.055505
|
[2] |
S. Seager et al., Astrophys. J. 669, 1279 (2007).10.1086/521346 doi: 10.1086/521346
|
[3] |
V. E. Fortov, Extreme States of Matter on Earth and in the Cosmos (Springer-Verlag, Heidelberg, 2011), p. 224.
|
[4] |
A. L. Kritcher, T. Döppner, D. Swift, J. Hawreliak, G. Collins, J. Nilsen, B. Bachmann, E. Dewald, D. Strozzi, S. Felker, O. L. Landen, O. Jones, C. Thomas, J. Hammer, C. Keane, H. J. Lee, S. H. Glenzer, S. Rothman, D. Chapman, D. Kraus, P. Neumayer, and R. W. Falcone, “Probing matter at Gbar pressures at the NIF,” High Energy Density Phys. 10, 27–34 (2014).10.1016/j.hedp.2013.11.002 doi: 10.1016/j.hedp.2013.11.002
|
[5] |
T. Döppner, D. C. Swift, A. L. Kritcher, B. Bachmann, G. W. Collins, D. A. Chapman, J. Hawreliak, D. Kraus, J. Nilsen, S. Rothman, L. X. Benedict, E. Dewald, D. E. Fratanduono, J. A. Gaffney, S. H. Glenzer, S. Hamel, O. L. Landen, H. J. Lee, S. LePape, T. Ma, M. J. MacDonald, A. MacPhee, D. Milathianaki, M. Millot, P. Neumayer, P. A. Sterne, R. Tommasini, and R. W. Falcone, “Absolute equation-of-state measurements for polystyrene from 25 to 60 Mbar using a spherically converging shock wave,” Phys. Rev. Lett. 121, 025001 (2018).10.1103/physrevlett.121.025001 doi: 10.1103/physrevlett.121.025001
|
[6] |
D. C. Swift, A. L. Kritcher, J. A. Hawreliak, A. Lazicki, A. MacPhee, B. Bachmann, T. Döppner, J. Nilsen, G. W. Collins, S. Glenzer, S. D. Rothman, D. Kraus, and R. W. Falcone, “Absolute Hugoniot measurements from a spherically-convergent shock using x-ray radiography,” Rev. Sci. Instrum. 89, 053505 (2018).10.1063/1.5032142 doi: 10.1063/1.5032142
|
[7] |
High drive Gbar experiments are in the process of being analyzed and are not yet published
|
[8] |
R. Cauble, L. B. Da Silva, T. S. Perry, D. R. Bach, K. S. Budil, P. Celliers, G. W. Collins, A. Ng, T. W. Barbee, Jr., B. A. Hammel, N. C. Holmes, J. D. Kilkenny, R. J. Wallace, G. Chiu, and N. C. Woolsey, “Absolute measurements of the equation of state of low-Z materials in the multi-Mbar regime using laser-driven shocks,” Phys. Plasmas 4, 1857–1861 (1997).10.1063/1.872362 doi: 10.1063/1.872362
|
[9] |
M. Koenig, F. Philippe, A. Benuzzi-Mounaix, D. Batani, M. Tomasino, E. Henry, and T. Hall, “Optical properties of highly compressed polystyrene using laser-driven shockwaves,” Phys. Plasmas 10, 3026–3029 (2003).10.1063/1.1581283 doi: 10.1063/1.1581283
|
[10] |
N. Ozaki et al., “Shock Hugoniot and temperature data for polystyrene obtained with quartz standard,” Phys. Plasmas 16, 062702 (2009).10.1063/1.3152287 doi: 10.1063/1.3152287
|
[11] |
M. A. Barrios, D. G. Hicks, T. R. Boehly, D. E. Fratanduono, J. H. Eggert, P. M. Celliers, G. W. Collins, and D. D. Meyerhofer, “High-precision measurements of the equation of state of hydrocarbons at 1–10 Mbar using laser-driven shock waves,” Phys. Plasmas 17, 056307 (2010).10.1063/1.3358144 doi: 10.1063/1.3358144
|
[12] |
C. Wang, X.-T. He, and P. Zhang, “Thermophysical properties for shock compressed polystyrene,” Phys. Plasmas 18, 082707 (2011).10.1063/1.3625273 doi: 10.1063/1.3625273
|
[13] |
S. Hamel et al., “Equation of state of CH1.36: First-principles molecular dynamics simulations and shock-and-release wave speed measurements,” Phys. Rev. B 86, 094113 (2012).10.1103/physrevb.86.094113 doi: 10.1103/physrevb.86.094113
|
[14] |
S. X. Hu, T. R. Boehly, and L. A. Collins, “Properties of warm dense polystyrene plasmas along the principal Hugoniot,” Phys. Rev. E 89, 063104 (2014).10.1103/physreve.89.063104 doi: 10.1103/physreve.89.063104
|
[15] |
S. X. Hu, L. A. Collins, V. N. Goncharov, J. D. Kress, R. L. McCrory, and S. Skupsky, “First-principles equation of state of polystyrene and its effect on inertial confinement fusion implosions,” Phys. Rev. E 92, 043104 (2015).10.1103/physreve.92.043104 doi: 10.1103/physreve.92.043104
|
[16] |
P. Colin-Lalu, V. Recoules, G. Salin, T. Plisson, E. Brambrink, T. Vinci, R. Bolis, and G. Huser, “Dissociation along the principal Hugoniot of the laser megajoule ablator material,” Phys. Rev. E 94, 023204 (2016).10.1103/physreve.94.023204 doi: 10.1103/physreve.94.023204
|
[17] |
S. Zhang, B. Militzer, L. X. Benedict, F. Soubiran, P. A. Sterne, and K. P. Driver, “Path integral Monte Carlo simulations of dense carbon-hydrogen plasmas,” J. Chem. Phys. 148, 102318 (2018).10.1063/1.5001208 doi: 10.1063/1.5001208
|
[18] |
M. Rosen et al., High Energy Density Phys. 7, 180–190 (2011).10.1016/j.hedp.2011.03.008 doi: 10.1016/j.hedp.2011.03.008
|
[19] |
G. B. Zimmerman and W. L. Kruer, Comments Plasma Phys. Controlled Fusion 2, 51–61 (1975).
|
[20] | |
[21] |