Follow us on Wechat

用微信扫码二维码

分享至好友和朋友圈

Volume 5 Issue 1
Jan.  2020
Turn off MathJax
Article Contents
Nilsen Joseph, Kritcher Andrea L., Martin Madison E., Tipton Robert E., Whitley Heather D., Swift Damian C., Döppner Tilo, Bachmann Benjamin L., Lazicki Amy E., Kostinski Natalie B., Maddox Brian R., Collins Gilbert W., Glenzer Siegfried H., Falcone Roger W.. Understanding the effects of radiative preheat and self-emission from shock heating on equation of state measurement at 100s of Mbar using spherically converging shock waves in a NIF hohlraum[J]. Matter and Radiation at Extremes, 2020, 5(1): 018401. doi: 10.1063/1.5131748
Citation: Nilsen Joseph, Kritcher Andrea L., Martin Madison E., Tipton Robert E., Whitley Heather D., Swift Damian C., Döppner Tilo, Bachmann Benjamin L., Lazicki Amy E., Kostinski Natalie B., Maddox Brian R., Collins Gilbert W., Glenzer Siegfried H., Falcone Roger W.. Understanding the effects of radiative preheat and self-emission from shock heating on equation of state measurement at 100s of Mbar using spherically converging shock waves in a NIF hohlraum[J]. Matter and Radiation at Extremes, 2020, 5(1): 018401. doi: 10.1063/1.5131748

Understanding the effects of radiative preheat and self-emission from shock heating on equation of state measurement at 100s of Mbar using spherically converging shock waves in a NIF hohlraum

doi: 10.1063/1.5131748
  • Received Date: 2019-10-15
  • Accepted Date: 2019-11-20
  • Available Online: 2020-01-15
  • Publish Date: 2020-01-15
  • Over the last six years many experiments have been done at the National Ignition Facility to measure the Hugoniot of materials, such as CH plastic at extreme pressures, up to 800 Mbar. The “Gbar” design employs a strong spherically converging shock launched through a solid ball of material using a hohlraum radiation drive. The shock front conditions are characterized using x-ray radiography. In this paper we examine the role of radiation in heating the unshocked material in front of the shock to understand the impact it has on equation of state measurements and how it drives the measured data off the theoretical Hugoniot curve. In particular, the two main sources of radiation heating are the preheating of the unshocked material by the high-energy kilo-electron-volt x-rays in the hohlraum and the heating of the material in front of the shock, as the shocked material becomes hot enough to radiate significantly. Using our model, we estimate that preheating can reach 4 eV in unshocked material, and that radiation heating can begin to drive data off the Hugoniot significantly, as pressures reach above 400 Mb.
  • loading
  • [1]
    L. Stixrude, Phys. Rev. Lett. 108, 055505 (2012).10.1103/physrevlett.108.055505 doi: 10.1103/physrevlett.108.055505
    [2]
    S. Seager et al., Astrophys. J. 669, 1279 (2007).10.1086/521346 doi: 10.1086/521346
    [3]
    V. E. Fortov, Extreme States of Matter on Earth and in the Cosmos (Springer-Verlag, Heidelberg, 2011), p. 224.
    [4]
    A. L. Kritcher, T. Döppner, D. Swift, J. Hawreliak, G. Collins, J. Nilsen, B. Bachmann, E. Dewald, D. Strozzi, S. Felker, O. L. Landen, O. Jones, C. Thomas, J. Hammer, C. Keane, H. J. Lee, S. H. Glenzer, S. Rothman, D. Chapman, D. Kraus, P. Neumayer, and R. W. Falcone, “Probing matter at Gbar pressures at the NIF,” High Energy Density Phys. 10, 27–34 (2014).10.1016/j.hedp.2013.11.002 doi: 10.1016/j.hedp.2013.11.002
    [5]
    T. Döppner, D. C. Swift, A. L. Kritcher, B. Bachmann, G. W. Collins, D. A. Chapman, J. Hawreliak, D. Kraus, J. Nilsen, S. Rothman, L. X. Benedict, E. Dewald, D. E. Fratanduono, J. A. Gaffney, S. H. Glenzer, S. Hamel, O. L. Landen, H. J. Lee, S. LePape, T. Ma, M. J. MacDonald, A. MacPhee, D. Milathianaki, M. Millot, P. Neumayer, P. A. Sterne, R. Tommasini, and R. W. Falcone, “Absolute equation-of-state measurements for polystyrene from 25 to 60 Mbar using a spherically converging shock wave,” Phys. Rev. Lett. 121, 025001 (2018).10.1103/physrevlett.121.025001 doi: 10.1103/physrevlett.121.025001
    [6]
    D. C. Swift, A. L. Kritcher, J. A. Hawreliak, A. Lazicki, A. MacPhee, B. Bachmann, T. Döppner, J. Nilsen, G. W. Collins, S. Glenzer, S. D. Rothman, D. Kraus, and R. W. Falcone, “Absolute Hugoniot measurements from a spherically-convergent shock using x-ray radiography,” Rev. Sci. Instrum. 89, 053505 (2018).10.1063/1.5032142 doi: 10.1063/1.5032142
    [7]
    High drive Gbar experiments are in the process of being analyzed and are not yet published
    [8]
    R. Cauble, L. B. Da Silva, T. S. Perry, D. R. Bach, K. S. Budil, P. Celliers, G. W. Collins, A. Ng, T. W. Barbee, Jr., B. A. Hammel, N. C. Holmes, J. D. Kilkenny, R. J. Wallace, G. Chiu, and N. C. Woolsey, “Absolute measurements of the equation of state of low-Z materials in the multi-Mbar regime using laser-driven shocks,” Phys. Plasmas 4, 1857–1861 (1997).10.1063/1.872362 doi: 10.1063/1.872362
    [9]
    M. Koenig, F. Philippe, A. Benuzzi-Mounaix, D. Batani, M. Tomasino, E. Henry, and T. Hall, “Optical properties of highly compressed polystyrene using laser-driven shockwaves,” Phys. Plasmas 10, 3026–3029 (2003).10.1063/1.1581283 doi: 10.1063/1.1581283
    [10]
    N. Ozaki et al., “Shock Hugoniot and temperature data for polystyrene obtained with quartz standard,” Phys. Plasmas 16, 062702 (2009).10.1063/1.3152287 doi: 10.1063/1.3152287
    [11]
    M. A. Barrios, D. G. Hicks, T. R. Boehly, D. E. Fratanduono, J. H. Eggert, P. M. Celliers, G. W. Collins, and D. D. Meyerhofer, “High-precision measurements of the equation of state of hydrocarbons at 1–10 Mbar using laser-driven shock waves,” Phys. Plasmas 17, 056307 (2010).10.1063/1.3358144 doi: 10.1063/1.3358144
    [12]
    C. Wang, X.-T. He, and P. Zhang, “Thermophysical properties for shock compressed polystyrene,” Phys. Plasmas 18, 082707 (2011).10.1063/1.3625273 doi: 10.1063/1.3625273
    [13]
    S. Hamel et al., “Equation of state of CH1.36: First-principles molecular dynamics simulations and shock-and-release wave speed measurements,” Phys. Rev. B 86, 094113 (2012).10.1103/physrevb.86.094113 doi: 10.1103/physrevb.86.094113
    [14]
    S. X. Hu, T. R. Boehly, and L. A. Collins, “Properties of warm dense polystyrene plasmas along the principal Hugoniot,” Phys. Rev. E 89, 063104 (2014).10.1103/physreve.89.063104 doi: 10.1103/physreve.89.063104
    [15]
    S. X. Hu, L. A. Collins, V. N. Goncharov, J. D. Kress, R. L. McCrory, and S. Skupsky, “First-principles equation of state of polystyrene and its effect on inertial confinement fusion implosions,” Phys. Rev. E 92, 043104 (2015).10.1103/physreve.92.043104 doi: 10.1103/physreve.92.043104
    [16]
    P. Colin-Lalu, V. Recoules, G. Salin, T. Plisson, E. Brambrink, T. Vinci, R. Bolis, and G. Huser, “Dissociation along the principal Hugoniot of the laser megajoule ablator material,” Phys. Rev. E 94, 023204 (2016).10.1103/physreve.94.023204 doi: 10.1103/physreve.94.023204
    [17]
    S. Zhang, B. Militzer, L. X. Benedict, F. Soubiran, P. A. Sterne, and K. P. Driver, “Path integral Monte Carlo simulations of dense carbon-hydrogen plasmas,” J. Chem. Phys. 148, 102318 (2018).10.1063/1.5001208 doi: 10.1063/1.5001208
    [18]
    M. Rosen et al., High Energy Density Phys. 7, 180–190 (2011).10.1016/j.hedp.2011.03.008 doi: 10.1016/j.hedp.2011.03.008
    [19]
    G. B. Zimmerman and W. L. Kruer, Comments Plasma Phys. Controlled Fusion 2, 51–61 (1975).
    [20]
    [21]
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(13)  / Tables(2)

    Article Metrics

    Article views (163) PDF downloads(10) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return