Follow us on Wechat

用微信扫码二维码

分享至好友和朋友圈

Volume 5 Issue 2
Mar.  2020
Turn off MathJax
Article Contents
Hartley N. J., Zhang C., Duan X., Huang L. G., Jiang S., Li Y., Yang L., Pelka A., Wang Z., Yang J., Kraus D.. Dynamically pre-compressed hydrocarbons studied by self-impedance mismatch[J]. Matter and Radiation at Extremes, 2020, 5(2): 028401. doi: 10.1063/1.5130726
Citation: Hartley N. J., Zhang C., Duan X., Huang L. G., Jiang S., Li Y., Yang L., Pelka A., Wang Z., Yang J., Kraus D.. Dynamically pre-compressed hydrocarbons studied by self-impedance mismatch[J]. Matter and Radiation at Extremes, 2020, 5(2): 028401. doi: 10.1063/1.5130726

Dynamically pre-compressed hydrocarbons studied by self-impedance mismatch

doi: 10.1063/1.5130726
More Information
  • Corresponding author: a)Author to whom correspondence should be addressed: n.hartley@hzdr.de
  • Received Date: 2019-10-07
  • Accepted Date: 2019-12-26
  • Available Online: 2020-03-01
  • Publish Date: 2020-03-15
  • Using the SG-III prototype laser at China Academy of Engineering Physics, Mianyang, we irradiated polystyrene (CH) samples with a thermal radiation drive, reaching conditions on the principal Hugoniot up to P ≈ 1 TPa (10 Mbar), and away from the Hugoniot up to P ≈ 300 GPa (3 Mbar). The response of each sample was measured with a velocity interferometry diagnostic to determine the material and shock velocity, and hence the conditions reached, and the reflectivity of the sample, from which changes in the conductivity can be inferred. By applying the self-impedance mismatch technique with the measured velocities, the pressure and density of thermodynamic points away from the principal Hugoniot were determined. Our results show an unexpectedly large reflectivity at the highest shock pressures, while the off-Hugoniot points agree with previous work suggesting that shock-compressed CH conductivity is primarily temperature-dependent.
  • loading
  • [1]
    D. Kraus, J. Vorberger, A. Pak, N. J. Hartley, L. B. Fletcher, S. Frydrych, E. Galtier, E. J. Gamboa, D. O. Gericke, S. H. Glenzer, E. Granados, M. J. MacDonald, A. J. MacKinnon, E. E. McBride, I. Nam, P. Neumayer, M. Roth, A. M. Saunders, A. K. Schuster, P. Sun, T. van Driel, T. Döppner, and R. W. Falcone, “Formation of diamonds in laser-compressed hydrocarbons at planetary interior conditions,” Nat. Astron. 1, 606–611 (2017).10.1038/s41550-017-0219-9 doi: 10.1038/s41550-017-0219-9
    [2]
    D. Kraus, N. J. Hartley, S. Frydrych, A. K. Schuster, K. Rohatsch, M. Rödel, T. E. Cowan, S. Brown, E. Cunningham, T. van Driel, L. B. Fletcher, E. Galtier, E. J. Gamboa, A. Laso Garcia, D. O. Gericke, E. Granados, P. A. Heimann, H. J. Lee, M. J. MacDonald, A. J. MacKinnon, E. E. McBride, I. Nam, P. Neumayer, A. Pak, A. Pelka, I. Prencipe, A. Ravasio, R. Redmer, A. M. Saunders, M. Schölmerich, M. Schörner, P. Sun, S. J. Turner, A. Zettl, R. W. Falcone, S. H. Glenzer, T. Döppner, and J. Vorberger, “High-pressure chemistry of hydrocarbons relevant to planetary interiors and inertial confinement fusion,” Phys. Plasmas 25, 056313 (2018).10.1063/1.5017908 doi: 10.1063/1.5017908
    [3]
    I. Prencipe, J. Fuchs, S. Pascarelli, D. Schumacher, R. Stephens, N. B. Alexander, R. Briggs, M. Büscher, M. Cernaianu, A. Choukourov, M. De Marco, A. Erbe, J. Fassbender, G. Fiquet, P. Fitzsimmons, C. Gheorghiu, J. Hund, L. Huang, M. Harmand, N. J. Hartley, A. Irman, T. Kluge, Z. Konopkova, S. Kraft, D. Kraus, V. Leca, D. Margarone, J. Metzkes, K. Nagai, W. Nazarov, P. Lutoslawski, D. Papp, M. Passoni, A. Pelka, J. Perin, J. Schulz, M. Smid, C. Spindloe, S. Steinke, R. Torchio, C. Vass, T. Wiste, R. Zaffino, K. Zeil, T. Tschentscher, U. Schramm, and T. Cowan, “Targets for high repetition rate laser facilities: Needs, challenges and perspectives,” High Power Laser Sci. Eng. 5, e17 (2017).10.1017/hpl.2017.18 doi: 10.1017/hpl.2017.18
    [4]
    A. Kritcher, D. Clark, S. Haan, S. Yi, A. Kritcher, S. Haan, S. Yi, A. Zylstra, J. Ralph, and C. Weber, “Comparison of the three NIF ablators,” Technical Report No. LLNL-TR-739464, Lawrence Livermore National Laboratory (LLNL), Livermore, CA, 2017.
    [5]
    R. P. Drake, High-Energy-Density Physics (Springer-Verlag, Berlin, 2006).
    [6]
    P. McKenna, D. Neely, R. Bingham, and D. Aroszynski, Laser-Plasma Interactions and Applications (Springer, 2013).
    [7]
    R. F. Smith, J. H. Eggert, A. Jankowski, P. M. Celliers, M. J. Edwards, Y. M. Gupta, J. R. Asay, and G. Collins, “Stiff response of aluminum under ultrafast shockless compression to 110 GPA,” Phys. Rev. Lett. 98, 065701 (2007).10.1103/physrevlett.98.065701 doi: 10.1103/physrevlett.98.065701
    [8]
    M. D. Knudson, M. P. Desjarlais, A. Becker, R. W. Lemke, K. R. Cochrane, M. E. Savage, D. E. Bliss, T. R. Mattson, and R. Redmer, “Direct observation of an abrupt insulator-to-metal transition in dense liquid deuterium,” Science 348, 1455–1460 (2015).10.1126/science.aaa7471 doi: 10.1126/science.aaa7471
    [9]
    D. C. Swift and R. G. Kraus, “Properties of plastic ablators in laser-driven material dynamics experiments,” Phys. Rev. E 77, 066402 (2008).10.1103/physreve.77.066402 doi: 10.1103/physreve.77.066402
    [10]
    [11]
    M. A. Barrios, D. G. Hicks, T. R. Boehly, D. E. Fratanduono, J. H. Eggert, P. M. Celliers, G. W. Collins, and D. D. Meyerhofer, “High-precision measurements of the equation of state of hydrocarbons at 1–10 Mbar using laser-driven shock waves,” Phys. Plasmas 17, 056307 (2010).10.1063/1.3358144 doi: 10.1063/1.3358144
    [12]
    X. Zhang, G. Wang, B. Luo, F. Tan, S. N. Bland, J. Zhao, C. Sun, and C. Liu, “Refractive index and polarizability of polystyrene under shock compression,” J. Mater. Sci. 53(17), 12628–12640 (2018).10.1007/s10853-018-2489-8 doi: 10.1007/s10853-018-2489-8
    [13]
    M. Guarguaglini, J. A. Hernandez, A. Benuzzi-Mounaix, R. Bolis, E. Brambrink, T. Vinci, and A. Ravasio, “Characterising equation of state and optical properties of dynamically pre-compressed materials,” Phys. Plasmas 26, 042704 (2019).10.1063/1.5060732 doi: 10.1063/1.5060732
    [14]
    W. Zheng, X. Wei, Q. Zhu, F. Jing, D. Hu, J. Su, K. Zheng, X. Yuan, H. Zhou, W. Dai, W. Zhou, F. Wang, D. Xu, X. Xie, B. Feng, Z. Peng, L. Guo, Y. Chen, X. Zhang, L. Liu, D. Lin, Z. Dang, Y. Xiang, and X. Deng, “Laser performance of the SG-III laser facility,” High Power Laser Sci. Eng. 4, e21 (2016).10.1017/hpl.2016.20 doi: 10.1017/hpl.2016.20
    [15]
    T. Gong, L. Hao, Z. Li, D. Yang, S. Li, X. Li, L. Guo, S. Zou, Y. Liu, X. Jiang, X. Peng, T. Xu, X. Liu, Y. Li, C. Zheng, H. Cai, Z. Liu, J. Zheng, Z. Wang, Q. Li, P. Li, R. Zhang, Y. Zhang, F. Wang, D. Wang, F. Wang, S. Liu, J. Yang, S. Jiang, B. Zhang, and Y. Ding, “Recent research progress of laser plasma interactions in Shenguang laser facilities,” Matter Radiat. Extremes 4, 055202 (2019).10.1063/1.5092446 doi: 10.1063/1.5092446
    [16]
    Z. Zhang, Y. Zhao, J. Zhang, Z. Hu, L. Jing, B. Qing, G. Xiong, M. Lv, H. Du, Y. Yang, X. Zhan, R. Yu, Y. Mei, and J. Yang, “Radiation flux study of hohlraum used to create uniform and strongly coupled warm dense matter,” Phys. Plasmas 26, 072704 (2019).10.1063/1.5092777 doi: 10.1063/1.5092777
    [17]
    J. J. MacFarlane, I. E. Golovkin, and P. R. Woodruff, “HELIOS-CR—A 1-D radiation-magnetohydrodynamics code with inline atomic kinetics modeling,” J. Quant. Spectrosc. Radiat. Transfer 99, 381–397 (2006).10.1016/j.jqsrt.2005.05.031 doi: 10.1016/j.jqsrt.2005.05.031
    [18]
    [19]
    J. J. MacFarlane, I. E. Golovkin, P. R. Woodruff, D. R. Welch, B. V. Oliver, T. A. Mehlhorn, and R. B. Campbell, “Simulation of the ionization dynamics of aluminum irradiated by intense short-pulse lasers,” in Inertial Fusion Sciences and Applications 2003, edited by B. A. Hammel, D. D. Meyerhofer, and J. Meyer-ter-Vehn (American Nuclear Society, 2004), p. 457.
    [20]
    Z. Wang, J. Zheng, B. Zhao, C. X. Yu, X. Jiang, W. Li, S. Liu, Y. Ding, and Z. Zheng, “Thomson scattering from laser-produced gold plasmas in radiation conversion layer,” Phys. Plasmas 12, 082703 (2005).10.1063/1.2008262 doi: 10.1063/1.2008262
    [21]
    G. Gao, A. R. Oganov, Y. Ma, H. Wang, P. Li, Y. Li, T. Iitaka, and G. Zou, “Dissociation of methane under high pressure,” J. Chem. Phys. 133, 144508 (2010).10.1063/1.3488102 doi: 10.1063/1.3488102
    [22]
    S. X. Hu, L. A. Collins, T. R. Boehly, Y. H. Ding, P. B. Radha, V. N. Goncharov, V. V. Karasiev, G. W. Collins, S. P. Regan, and E. M. Campbell, “A review on ab initio studies of static, transport, and optical properties of polystyrene under extreme conditions for inertial confinement fusion applications,” Phys. Plasmas 25, 056306 (2018).10.1063/1.5017970 doi: 10.1063/1.5017970
    [23]
    N. Ozaki, T. Sano, M. Ikoma, K. Shigemori, T. Kimura, K. Miyanishi, T. Vinci, F. H. Ree, H. Azechi, T. Endo, Y. Hironaka, Y. Hori, A. Iwamoto, T. Kadono, H. Nagatomo, M. Nakai, T. Norimatsu, T. Okuchi, K. Otani, T. Sakaiya, K. Shimizu, A. Shiroshita, A. Sunahara, H. Takahashi, and R. Kodama, “Shock hugoniot and temperature data for polystyrene obtained with quartz standard,” Phys. Plasmas 16, 062702 (2009).10.1063/1.3152287 doi: 10.1063/1.3152287
    [24]
    M. Koenig, F. Philippe, A. Benuzzi-Mounaix, D. Batani, M. Tomasini, E. Henry, and T. Hall, “Optical properties of highly compressed polystyrene using laser-driven shockwaves,” Phys. Plasmas 10, 3026–3029 (2003).10.1063/1.1581283 doi: 10.1063/1.1581283
    [25]
    S. X. Hu, T. R. Boehly, and L. A. Collins, “Properties of warm dense polystyrene plasmas along the principal Hugoniot,” Phys. Rev. E 89, 063104 (2014).10.1103/physreve.89.063104 doi: 10.1103/physreve.89.063104
    [26]
    J. Li, H. Shu, Y. Sun, H. Zhang, J. Yang, Q. Wu, and J. Hu, “Electronic bandgap of water in the superionic and plasma phases,” Phys. Plasmas 26, 092703 (2019).10.1063/1.5110544 doi: 10.1063/1.5110544
    [27]
    P. M. Celliers, M. Millot, S. Brygoo, R. S. Mcwilliams, D. E. Fratanduono, J. R. Rygg, A. F. Goncharov, P. Loubeyre, J. H. Eggert, J. L. Peterson, N. Meezan, S. Le Pape, G. W. Collins, R. Jeanloz, and R. J. Hemley, “Insulator-metal transition in dense fluid deuterium,” Science 361, 677–682 (2018).10.1126/science.aat0970 doi: 10.1126/science.aat0970
    [28]
    D. K. Bradley, J. H. Eggert, D. G. Hicks, P. M. Celliers, S. J. Moon, R. C. Cauble, and G. W. Collins, “Shock compressing diamond to a conducting fluid,” Phys. Rev. Lett. 93, 195506 (2004).10.1103/physrevlett.93.195506 doi: 10.1103/physrevlett.93.195506
    [29]
    M. Guarguaglini, J. A. Hernandez, T. Okuchi, P. Barroso, A. Benuzzi-Mounaix, M. Bethkenhagen, R. Bolis, E. Brambrink, M. French, Y. Fujimoto, R. Kodama, M. Koenig, F. Lefevre, K. Miyanishi, N. Ozaki, R. Redmer, T. Sano, Y. Umeda, T. Vinci, and A. Ravasio, “Laser-driven shock compression of “synthetic planetary mixtures” of water, ethanol, and ammonia,” Sci. Rep. 9, 10155 (2019).10.1038/s41598-019-46561-6 doi: 10.1038/s41598-019-46561-6
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(8)  / Tables(1)

    Article Metrics

    Article views (87) PDF downloads(7) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return