Follow us on Wechat

用微信扫码二维码

分享至好友和朋友圈

Volume 5 Issue 3
May  2020
Turn off MathJax
Article Contents
Wang Feng, Jiang Shaoen, Ding Yongkun, Liu Shenye, Yang Jiamin, Li Sanwei, Huang Tianxuan, Cao Zhurong, Yang Zhenghua, Hu Xin, Miao Wenyong, Zhang Jiyan, Wang Zhebin, Yang Guohong, Yi Rongqing, Tang Qi, Kuang Longyu, Li Zhichao, Yang Dong, Li Yulong, Peng Xiaoshi, Ren Kuan, Zhang Baohan. Recent diagnostic developments at the 100 kJ-level laser facility in China[J]. Matter and Radiation at Extremes, 2020, 5(3): 035201. doi: 10.1063/1.5129726
Citation: Wang Feng, Jiang Shaoen, Ding Yongkun, Liu Shenye, Yang Jiamin, Li Sanwei, Huang Tianxuan, Cao Zhurong, Yang Zhenghua, Hu Xin, Miao Wenyong, Zhang Jiyan, Wang Zhebin, Yang Guohong, Yi Rongqing, Tang Qi, Kuang Longyu, Li Zhichao, Yang Dong, Li Yulong, Peng Xiaoshi, Ren Kuan, Zhang Baohan. Recent diagnostic developments at the 100 kJ-level laser facility in China[J]. Matter and Radiation at Extremes, 2020, 5(3): 035201. doi: 10.1063/1.5129726

Recent diagnostic developments at the 100 kJ-level laser facility in China

doi: 10.1063/1.5129726
More Information
  • Corresponding author: a)Authors to whom correspondence should be addressed: wangfeng7566@163.com and ding-yk@vip.sina.com; a)Authors to whom correspondence should be addressed: wangfeng7566@163.com and ding-yk@vip.sina.com
  • Received Date: 2019-10-08
  • Accepted Date: 2020-03-30
  • Available Online: 2020-05-01
  • Publish Date: 2020-05-15
  • A 100 kJ-level laser facility has been designed to study inertial confinement fusion physics in China. This facility incorporates various diagnostic techniques, including optical, x-ray imaging, x-ray spectrum, and fusion product diagnostics, as well as general diagnostics assistance systems and central control and data acquisition systems. This paper describes recent developments in diagnostics at the facility.
  • loading
  • [1]
    J. Lindl, O. Landen, J. Edwards, E. Moses, and NIC Team, “Review of the National Ignition Campaign 2009–2012,” Phys. Plasmas 21, 020501 (2014).10.1063/1.4865400 doi: 10.1063/1.4865400
    [2]
    O. A. Hurricane, D. A. Callahan, D. T. Casey, P. M. Celliers, C. Cerjan et al., “Fuel gain exceeding unity in an inertially confined fusion implosion,” Nature 506, 343 (2014).10.1038/nature13008 doi: 10.1038/nature13008
    [3]
    K. Lan, J. Liu, Z. Li, X. Xie, W. Huo et al., “Progress in octahedral spherical hohlraum study,” Matter Radiat. Extremes 1, 8 (2016).10.1016/j.mre.2016.01.003 doi: 10.1016/j.mre.2016.01.003
    [4]
    E. M. Campbell, V. N. Goncharov, T. C. Sangster, S. P. Regan, P. B. Radha et al., “Laser-direct-drive program: Promise, challenge, and path forward,” Matter Radiat. Extremes 2, 37 (2017).10.1016/j.mre.2017.03.001 doi: 10.1016/j.mre.2017.03.001
    [5]
    W. L. Shang, R. Betti, S. X. Hu, K. Woo, L. Hao et al., “Electron shock ignition of inertial fusion targets,” Phys. Rev. Lett. 119, 195001 (2017).10.1103/physrevlett.119.195001 doi: 10.1103/physrevlett.119.195001
    [6]
    W. L. Shang, C. Stoeckl, R. Betti, S. P. Regan, T. C. Sangster et al., “Properties of hot-spot emission in a warm plastic-shell implosion on the OMEGA laser system,” Phys. Rev. E 98, 033210 (2018).10.1103/physreve.98.033210 doi: 10.1103/physreve.98.033210
    [7]
    R. Betti and O. A. Hurricane, “Inertial-confinement fusion with lasers,” Nat. Phys. 12, 435 (2016).10.1038/nphys3736 doi: 10.1038/nphys3736
    [8]
    M. Lafon, R. Betti, K. S. Anderson, T. J. B. Collins, R. Epstein et al., “Direct-drive–ignition designs with mid-Z ablators,” Phys. Plasmas 22, 032703 (2015).10.1063/1.4914835 doi: 10.1063/1.4914835
    [9]
    S. Jiang, F. Wang, Y. Ding, S. Liu, J. Yang et al., “Experimental progress of inertial confinement fusion based at the ShengGuang-III laser facility in China,” Nucl. Fusion 59, 032006 (2019).10.1088/1741-4326/aabdb6 doi: 10.1088/1741-4326/aabdb6
    [10]
    T. Xu, Y. Mei, H. Wei, X. Peng, F. Wang et al., “A full aperture backscattering light diagnostic system installed on the Shenguang-III prototype laser facility,” Plasma Sci. Technol. 16, 567–570 (2014).10.1088/1009-0630/16/6/05 doi: 10.1088/1009-0630/16/6/05
    [11]
    X. S. Peng, F. Wang, D. Yang, T. Xu, H. Y. Wei et al., “Characteristics study of the backscattering light on Shenguang-III prototype,” Acta Opt. Sin. 34, 0314004 (2014).10.3788/aos201434.0314004 doi: 10.3788/aos201434.0314004
    [12]
    L. Zhang, Y. Ding, Z. Lin, H. Li, L. Jing et al., “Demonstration of enhancement of x-ray flux with foam gold compared to solid gold,” Nucl. Fusion 56, 036006 (2016).10.1088/0029-5515/56/3/036006 doi: 10.1088/0029-5515/56/3/036006
    [13]
    S. W. Haan, J. D. Lindl, D. A. Callahan, D. S. Clark, J. D. Salmonson et al., “Point design targets, specifications, and requirements for the 2010 ignition campaign on the national ignition facility,” Phys. Plasmas 18, 051001 (2011).10.1063/1.3592169 doi: 10.1063/1.3592169
    [14]
    N. B. Meezan, M. J. Edwards, O. A. Hurricane, P. K. Patel, D. A. Callahan et al., “Indirect drive ignition at the national ignition facility,” Plasma Phys. Controlled Fusion 59, 014021 (2017).10.1088/0741-3335/59/1/014021 doi: 10.1088/0741-3335/59/1/014021
    [15]
    S. P. Obenschain, J. Grun, B. H. Ripin, and E. A. McLean, “Uniformity of laser-driven, ablatively accelerated targets,” Phys. Rev. Lett. 46, 1402 (1981).10.1103/physrevlett.46.1402 doi: 10.1103/physrevlett.46.1402
    [16]
    E. A. McLean, S. H. Gold, J. A. Stamper, R. R. Whitlock, H. R. Griem et al., “Preheat studies for foils accelerated by ablation due to laser irradiation,” Phys. Rev. Lett. 45, 1246 (1980).10.1103/physrevlett.45.1246 doi: 10.1103/physrevlett.45.1246
    [17]
    R. Fabbro, B. Faral, F. Cottet, and J. P. Romain, “Simple measurement of the velocity of planar laser accelerated targets with stepped double-foil technique,” Opt. Commun. 49, 352 (1984).10.1016/0030-4018(84)90248-7 doi: 10.1016/0030-4018(84)90248-7
    [18]
    E. L. Dewald, C. Thomas, S. Hunter, L. Divol, N. Meezan et al., “Hot electron measurements in ignition relevant Hohlraums on the National Ignition Facility,” Rev. Sci. Instrum. 81, 10D938 (2010).10.1063/1.3478683 doi: 10.1063/1.3478683
    [19]
    M. Hohenberger, F. Albert, N. E. Palmer, J. J. Lee, T. Döppner et al., “Time-resolved measurements of the hot-electron population in ignition-scale experiments on the National Ignition Facility (invited),” Rev. Sci. Instrum. 85, 11D501 (2014).10.1063/1.4890537 doi: 10.1063/1.4890537
    [20]
    J. D. Kilkenny, P. M. Bell, D. K. Bradley, D. L. Bleuel, J. A. Caggiano et al., “The National Ignition Facility diagnostic set at the completion of the National Ignition Campaign, September 2012,” Fusion Sci. Technol. 69, 420 (2016).10.13182/fst15-173 doi: 10.13182/fst15-173
    [21]
    J. R. Kimbrough, P. M. Bell, D. K. Bradley, J. P. Holder, D. K. Kalantar et al., “Standard design for National Ignition Facility x-ray streak and framing cameras,” Rev. Sci. Instrum. 81, 10E530 (2010).10.1063/1.3496990 doi: 10.1063/1.3496990
    [22]
    L. R. Benedetti, P. M. Bell, D. K. Bradley, C. G. Brown, S. M. Glenn et al., “Crosstalk in x-ray framing cameras: Effect on voltage, gain, and timing (invited),” Rev. Sci. Instrum. 83, 10E135 (2012).10.1063/1.4740524 doi: 10.1063/1.4740524
    [23]
    N. Izumi, C. Hagmann, G. Stone, D. Hey, S. Glenn et al., “Experimental study of neutron induced background noise on gated x-ray framing cameras,” Rev. Sci. Instrum. 81, 10E515 (2010).10.1063/1.3478636 doi: 10.1063/1.3478636
    [24]
    E. Foerster, K. Gaebel, and I. Uschmann, “x-ray microscopy of laser-produced plasmas with the use of bent crystals,” Laser Part. Beams 9, 135 (1991).10.1017/s026303460000238x doi: 10.1017/s026303460000238x
    [25]
    J. A. Koch, O. L. Landen, T. W. Barbee, P. Celliers, L. B. Da Silva et al., “High-energy x-ray microscopy techniques for laser-fusion plasma research at the National Ignition Facility,” Appl. Opt. 37, 1784 (1998).10.1364/ao.37.001784 doi: 10.1364/ao.37.001784
    [26]
    D. Ress, R. A. Lerche, R. J. Ellis, S. M. Lane, and K. A. Nugent, “Neutron imaging of laser fusion targets,” Science 241, 956 (1988).10.1126/science.241.4868.956 doi: 10.1126/science.241.4868.956
    [27]
    B. Yu, M. Su, T. X. Huang, B. L. Chen, W. Jiang et al., “Design of diagnostic system for neutron penumbral imaging based on Shenguang-III facility,” High Power Laser Part. Beams 25, 2604 (2013) (in Chinese).10.3788/hplpb20132510.2604 doi: 10.3788/hplpb20132510.2604
    [28]
    V. Y. Glebov, T. C. Sangster, C. Stoeckl, J. P. Knauer, W. Theobald et al., “The National Ignition Facility neutron time-of-flight system and its initial performance (invited),” Rev. Sci. Instrum. 81, 10D325 (2010).10.1063/1.3492351 doi: 10.1063/1.3492351
    [29]
    H. G. Rinderknecht, M. G. Johnson, A. B. Zylstra, N. Sinenian, M. J. Rosenberg et al., “A novel particle time of flight diagnostic for measurements of shock- and compression-bang times in D3He and DT implosions at the NIF,” Rev. Sci. Instrum. 83, 10D902 (2012).10.1063/1.4731000 doi: 10.1063/1.4731000
    [30]
    Z.-F. Song, Q. Tang, Z.-J. Liu, X.-Y. Zhan, and J.-B. Chen, “An improved method of unfolding neutron TOF spectrum for low ion temperature inertial confinement fusion,” Chin. Phys. C 38, 066201 (2014).10.1088/1674-1137/38/6/066201 doi: 10.1088/1674-1137/38/6/066201
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(22)  / Tables(3)

    Article Metrics

    Article views (279) PDF downloads(19) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return