Follow us on Wechat

用微信扫码二维码

分享至好友和朋友圈

Volume 5 Issue 1
Jan.  2020
Turn off MathJax
Article Contents
Walker David, Li Jie. Castable solid pressure media for multianvil devices[J]. Matter and Radiation at Extremes, 2020, 5(1): 018402. doi: 10.1063/1.5129534
Citation: Walker David, Li Jie. Castable solid pressure media for multianvil devices[J]. Matter and Radiation at Extremes, 2020, 5(1): 018402. doi: 10.1063/1.5129534

Castable solid pressure media for multianvil devices

doi: 10.1063/1.5129534
  • Received Date: 2019-09-29
  • Accepted Date: 2019-11-28
  • Available Online: 2020-01-15
  • Publish Date: 2020-01-15
  • Castable solids from Aremco (http://www.aremco.com/potting-casting-materials/) are convenient media for pressure transmission in multianvil geometries of complex shape. A zirconia-based castable ceramic, Aremco Ceramacast 646, is introduced and compared to MgO-Al2O3-SiO2-based Aremco Ceramacast 584. Ceramacast 646 has some advantages over the widely used Ceramacast 584; these include ease of consistent fabrication and better thermal insulation. Some disadvantages are poorer efficiency in converting press thrust to sample pressure and slower quenching rates. Potential applications are informed by these differences.
  • loading
  • [1]
    R. C. Liebermann, “Multi-anvil high pressure apparatus: A half-century of development and progress,” High Pressure Res. 31, 493 (2011).10.1080/08957959.2011.618698 doi: 10.1080/08957959.2011.618698
    [2]
    D. Walker, “Lubrication, gasketing and precision in multianvil experiments,” Am. Miner. 76, 1092 (1991).
    [3]
    K. D. Leinenweber, J. C. Tyburczy, T. C. Sharp, E. Soignard, T. Diedrich, W. B. Putuskey, Y. Wang, and J. L. Mosenfelder, “Cell assemblies for reproducible multi-anvil experiments (the COMPRES assemblies),” Am. Mineral. 97, 353 (2012).10.2138/am.2012.3844 doi: 10.2138/am.2012.3844
    [4]
    D. L. Decker, W. A. Bassett, L. Merrill, H. T. Hall, and J. D. Barnett, “High-pressure calibration: A critical review,” J. Phys. Chem. Ref. Data 1, 773 (1972).10.1063/1.3253105 doi: 10.1063/1.3253105
    [5]
    Z. Li and J. Li, “Melting curve of NaCl to 20 GPa from electrical measurements of capacitive current,” Am. Mineral. 100, 1892 (2015).10.2138/am-2015-5248 doi: 10.2138/am-2015-5248
    [6]
    J. Susaki, M. Akaogi, S. Akimoto, and O. Shimomura, “Garnet-perovskite transformation in CaGeO3: In situ X-ray measurements using synchrotron radiation,” Geophys. Res. Lett. 12, 729, https://doi.org/10.1029/JZ067i002p00851 (1985).10.1029/gl012i010p00729 doi: 10.1029/gl012i010p00729
    [7]
    S. Ono, T. Kikegawa, and Y. Higo, “In situ observation of a garnet perovskite transition in CaGeO3,” Phys. Chem. Miner. 38, 735 (2011).10.1007/s00269-011-0446-z doi: 10.1007/s00269-011-0446-z
    [8]
    K. Bose and J. Ganguly, “Quartz-Coesite transition revisited: Reversed experimental determination at 500–1200 °C and retrieved thermochemical properties,” Am. Miner. 80, 231 (1995).10.2138/am-1995-3-404 doi: 10.2138/am-1995-3-404
    [9]
    J. Zhang, B. Li, W. Utsumi, and R. C. Liebermann, “In situ X-ray observation of the Coesite-Stishovite transition: Reversed phase boundary and kinetics,” Phys. Chem. Miner. 23, 1 (1996).10.1007/bf00202987 doi: 10.1007/bf00202987
    [10]
    Y. Fei, J. A. Van Orman, J. Li, W. van Westrenen, C. Sanloup, W. Minarik, K. Hirose, T. Komabayashi, M. Walter, and K. Funakoshi, “Experimentally determined postspinel transformation boundary in Mg2SiO4 as an internal pressure standard and its geophysical implications,” J. Geophys. Res. 109, B02305, https://doi.org/10.1029/2003JB002562 (2004).10.1029/2003JB002562 doi: 10.1029/2003JB002562
    [11]
    T. Katsura and E. Ito, “The system Mg2SiO4–Fe2SiO4 at high pressures and temperatures: Precise determination of stabilities of olivine, modified spinel, and spinel,” J. Geophys. Res. 94, 15663, https://doi.org/10.1029/jb094ib11p15663 (1989).10.1029/jb094ib11p15663 doi: 10.1029/jb094ib11p15663
    [12]
    J. Akella, S. N. Vaidya, and G. C. Kennedy, “Melting of sodium chloride at pressures to 65 kbar,” Phys. Rev. 185, 1135 (1969).10.1103/PhysRev.185.1135 doi: 10.1103/PhysRev.185.1135
    [13]
    C. Clauser and E. Huenges, “Thermal conductivity of rocks and minerals,” in Rock Physics and Phase Relations: A Handbook of Physical Constants, edited by T. Ahrens, (AGU Reference Shelf, 1995), Vol. 3.
    [14]
    F. P. Bundy, “Phase diagram of Bismuth to 130 000 kg/cm2, 500 °C,” Phys. Rev. 110, 314 (1958).10.1103/physrev.110.314 doi: 10.1103/physrev.110.314
    [15]
    G. C. Kennedy and P. N. LaMori, “The pressures of some solid-solid transitions,” J. Geophys. Res. 67, 851, https://doi.org/10.1029/JZ067i002p00851 (1962).10.1029/JZ067i002p00851 doi: 10.1029/JZ067i002p00851
    [16]
    M. Nomura, T. Nishizaka, Y. Hirata, N. Nakagiri, and H. Fujiwara, “Measurement of the resistance of Manganin under liquid pressure to 100 kbar and its applications to the measurement of the transition pressures of Bi and Sn,” Jpn. J. Appl. Phys. 21, 936 (1982).10.1143/jjap.21.936 doi: 10.1143/jjap.21.936
    [17]
    I. C. Getting, “New determination of the bismuth I-II equilibrium pressure: A proposed modification to the practical pressure scale,” Metrologia 35, 119 (1998).10.1088/0026-1394/35/2/7 doi: 10.1088/0026-1394/35/2/7
    [18]
    J. S. Knibbe, S. M. Luginbuhl, R. Stoevelaar, W. van der Plas, D. M. van Harlingen, N. Rai, E. S. Steenstra, R. van de Geer, and W. van Westrenen, “Calibration of a multi-anvil high-pressure apparatus to simulate planetary interior conditions,” EPJ Tech. Instrum. 5, 5 (2018).10.1140/epjti/s40485-018-0047-z doi: 10.1140/epjti/s40485-018-0047-z
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(11)  / Tables(4)

    Article Metrics

    Article views (208) PDF downloads(17) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return