Follow us on Wechat

用微信扫码二维码

分享至好友和朋友圈

Volume 5 Issue 2
Mar.  2020
Turn off MathJax
Article Contents
Struzhkin Viktor, Li Bing, Ji Cheng, Chen Xiao-Jia, Prakapenka Vitali, Greenberg Eran, Troyan Ivan, Gavriliuk Alexander, Mao Ho-kwang. Superconductivity in La and Y hydrides: Remaining questions to experiment and theory[J]. Matter and Radiation at Extremes, 2020, 5(2): 028201. doi: 10.1063/1.5128736
Citation: Struzhkin Viktor, Li Bing, Ji Cheng, Chen Xiao-Jia, Prakapenka Vitali, Greenberg Eran, Troyan Ivan, Gavriliuk Alexander, Mao Ho-kwang. Superconductivity in La and Y hydrides: Remaining questions to experiment and theory[J]. Matter and Radiation at Extremes, 2020, 5(2): 028201. doi: 10.1063/1.5128736

Superconductivity in La and Y hydrides: Remaining questions to experiment and theory

doi: 10.1063/1.5128736
More Information
  • Corresponding author: a)Author to whom correspondence should be addressed: viktor.struzhkin@hpstar.ac.cn
  • Received Date: 2019-09-29
  • Accepted Date: 2020-01-20
  • Available Online: 2020-03-01
  • Publish Date: 2020-03-15
  • Recent reports of the superconductivity in hydrides of two different families (covalent lattice, as in SH3 and clathrate-type H-cages containing La and Y atoms, as in LaH10 and YH6) have revealed new families of high-Tc materials with Tc’s near room temperature values. These findings confirm earlier expectations that hydrides may have very high Tc’s due to the fact that light H atoms have very high vibrational frequencies, leading to high Tc values within the conventional Bardeen–Cooper–Schrieffer phonon mechanism of superconductivity. However, as is pointed out by Ashcroft, it is important to have the metallic hydrogen “alloyed” with the elements added to it. This concept of a metallic alloy containing a high concentration of metal-like hydrogen atoms has been instrumental in finding new high-Tc superhydrides. These new superhydride “room-temperature” superconductors are stabilized only at very high pressures above 100 GPa, making the experimental search for their superconducting properties very difficult. We will review the current experimental and theoretical results for LaH10−x and YH6−x superhydrides.
  • loading
  • [1]
    N. W. Ashcroft, “Metallic hydrogen: A high-temperature superconductor?,” Phys. Rev. Lett. 21(26), 1748–1749 (1968).10.1103/physrevlett.21.1748 doi: 10.1103/physrevlett.21.1748
    [2]
    V. L. Ginzburg, “Superfluidity and superconductivity in the universe,” J. Stat. Phys. 1, 3–24 (1969).10.1007/bf01007238 doi: 10.1007/bf01007238
    [3]
    V. L. Ginzburg, Key Problems in Physics and Astrophysics (Mir, Moscow, 1978).
    [4]
    E. Wigner and H. B. Huntington, “On the possibility of a metallic modification of hydrogen,” J. Chem. Phys. 3, 764–770 (1935).10.1063/1.1749590 doi: 10.1063/1.1749590
    [5]
    J. M. McMahon and D. M. Ceperley, “Ground-state structures of atomic metallic hydrogen,” Phys. Rev. Lett. 106(16), 165302 (2011).10.1103/physrevlett.106.165302 doi: 10.1103/physrevlett.106.165302
    [6]
    J. M. McMahon and D. M. Ceperley, “High-temperature superconductivity in atomic metallic hydrogen,” Phys. Rev. B 84(14), 144515 (2011).10.1103/physrevb.84.144515 doi: 10.1103/physrevb.84.144515
    [7]
    J. Bardeen, L. N. Cooper, and J. R. Schrieffer, “Theory of superconductivity,” Phys. Rev. 108, 1175–1204 (1957).10.1103/physrev.108.1175 doi: 10.1103/physrev.108.1175
    [8]
    R. P. Dias and I. F. Silvera, “Observation of the Wigner-Huntington transition to metallic hydrogen,” Science 355, 715 (2017).10.1126/science.aal1579 doi: 10.1126/science.aal1579
    [9]
    A. F. Goncharov and V. V. Struzhkin, “Comment on observation of the Wigner-Huntington transition to metallic hydrogen,” Science 357, eaam9736 (2017).10.1126/science.aam9736 doi: 10.1126/science.aam9736
    [10]
    X. D. Liu et al., “Comment on “Observation of the Wigner-Huntington transition to metallic hydrogen,” Science 357, eaan2286 (2017).10.1126/science.aan2286 doi: 10.1126/science.aan2286
    [11]
    [12]
    [13]
    B. Stritzker and H. Wühl, “Superconductivity in metal-hydrogen systems,” in Hydrogen in Metals II, edited by G. Alefeld and J. Völkl (Springer, Berlin, Heidelberg, 1978), pp. 243–272.
    [14]
    J. J. Gilman, “Lithium dihydrogen fluoride—An approach to metallic hydrogen,” Phys. Rev. Lett. 26, 546–548 (1971).10.1103/physrevlett.26.546 doi: 10.1103/physrevlett.26.546
    [15]
    N. W. Ashcroft, “Hydrogen dominant metallic alloys: High temperature superconductors?,” Phys. Rev. Lett. 92, 187002 (2004).10.1103/physrevlett.92.187002 doi: 10.1103/physrevlett.92.187002
    [16]
    [17]
    J. Feng et al., “Structures and potential superconductivity in SiH4 at high pressure: En route to “metallic hydrogen”,” Phys. Rev. Lett. 96(1), 017006 (2006).10.1103/physrevlett.96.017006 doi: 10.1103/physrevlett.96.017006
    [18]
    Y. Li et al., “The metallization and superconductivity of dense hydrogen sulfide,” J. Chem. Phys. 140(17), 174712 (2014).10.1063/1.4874158 doi: 10.1063/1.4874158
    [19]
    A. P. Drozdov et al., “Conventional superconductivity at 203 kelvin at high pressures in the sulfur hydride system,” Nature 525(7567), 73–76 (2015).10.1038/nature14964 doi: 10.1038/nature14964
    [20]
    D. Duan et al., “Pressure-induced metallization of dense (H2S)2H2 with high-Tc superconductivity,” Sci. Rep. 4, 6968 (2014).10.1038/srep06968 doi: 10.1038/srep06968
    [21]
    F. Peng et al., “Hydrogen clathrate structures in rare earth hydrides at high pressures: Possible route to room-temperature superconductivity,” Phys. Rev. Lett. 119(10), 107001 (2017).10.1103/physrevlett.119.107001 doi: 10.1103/physrevlett.119.107001
    [22]
    H. Liu et al., “Potential high-Tc superconducting lanthanum and yttrium hydrides at high pressure,” Proc. Natl. Acad. Sci. U. S. A. 114(27), 6990–6995 (2017).10.1073/pnas.1704505114 doi: 10.1073/pnas.1704505114
    [23]
    Y. Sun et al., “Route to a superconducting phase above room temperature in electron-doped hydride compounds under high pressure,” Phys. Rev. Lett. 123, 097001 (2019).10.1103/physrevlett.123.097001 doi: 10.1103/physrevlett.123.097001
    [24]
    Z. M. Geballe, H. Liu, A. K. Mishra, M. Ahart, M. Somayazulu, Y. Meng, M. Baldini, and R. J. Hemley, “Synthesis and stability of lanthanum superhydrides,” Angew. Chem., Int. Ed. 57, 688–692 (2018).10.1002/anie.201709970 doi: 10.1002/anie.201709970
    [25]
    M. Somayazulu et al., “Evidence for superconductivity above 260 K in lanthanum superhydride at megabar pressures,” Phys. Rev. Lett. 122(2), 027001 (2019).10.1103/physrevlett.122.027001 doi: 10.1103/physrevlett.122.027001
    [26]
    A. P. Drozdov et al., “Superconductivity at 250 K in lanthanum hydride under high pressures,” Nature 569(7757), 528–531 (2019).10.1038/s41586-019-1201-8 doi: 10.1038/s41586-019-1201-8
    [27]
    L. Zhang et al., “Materials discovery at high pressures,” Nat. Rev. Mater. 2(4), 17005 (2017).10.1038/natrevmats.2017.13 doi: 10.1038/natrevmats.2017.13
    [28]
    E. Zurek and T. Bi, “High-temperature superconductivity in alkaline and rare earth polyhydrides at high pressure: A theoretical perspective,” J. Chem. Phys. 150, 050901 (2019).10.1063/1.5079225 doi: 10.1063/1.5079225
    [29]
    V. V. Struzhkin, “Superconductivity in compressed hydrogen-rich materials: Pressing on hydrogen,” Physica C 514, 77–85 (2015).10.1016/j.physc.2015.02.017 doi: 10.1016/j.physc.2015.02.017
    [30]
    H. Wang et al., “Superconductive sodalite-like clathrate calcium hydride at high pressures,” Proc. Natl. Acad. Sci. U. S. A. 109(17), 6463–6466 (2012).10.1073/pnas.1118168109 doi: 10.1073/pnas.1118168109
    [31]
    [32]
    [33]
    [34]
    [35]
    Y. A. Timofeev et al., “Improved techniques for measurement of superconductivity in diamond anvil cells by magnetic susceptibility,” Rev. Sci. Instrum. 73, 371–377 (2002).10.1063/1.1431257 doi: 10.1063/1.1431257
    [36]
    Y. A. Timofeev, “Detection of superconductivity in high-pressure diamond anvil cell by magnetic susceptibility technique,” Prib. Tekh. Eksper. 5, 186–189 (1992).
    [37]
    V. V. Struzhkin et al., “Superconductivity at 10 to 17 K in compressed sulfur,” Nature 390, 382–384 (1997).10.1038/37074 doi: 10.1038/37074
    [38]
    V. V. Struzhkin et al., “New methods for investigating superconductivity at very high pressures,” in High Pressure Phenomena, edited by R. J. Hemley et al. (IOS Press/Societа Italiana di Fisica, Amsterdam, 2002), pp. 275–296.
    [39]
    [40]
    I. A. Kruglov et al., “Superconductivity of LaH10 and LaH16: New twist of the story,” Phys. Rev. B 101, 024508 (2020); arXiv:1810.01113.10.1103/PhysRevB.101.024508 doi: 10.1103/PhysRevB.101.024508
    [41]
    [42]
    Y. Li et al., “Pressure-stabilized superconductive yttrium hydrides,” Sci. Rep. 5, 9948 (2015).10.1038/srep09948 doi: 10.1038/srep09948
    [43]
    C. Heil et al., “Superconductivity in sodalite-like yttrium hydride clathrates,” Phys. Rev. B 99, 220502 (2019).10.1103/physrevb.99.220502 doi: 10.1103/physrevb.99.220502
    [44]
    D. V. Semenok et al., “Superconductivity at 161 K in thorium hydride ThH10: Synthesis and properties,” Mater. Today (published online 2019); arXiv:1902.10206.10.1016/j.mattod.2019.10.005 doi: 10.1016/j.mattod.2019.10.005
    [45]
    A. G. Kvashnin et al., “High-temperature superconductivity in a Th-H system under pressure conditions,” ACS Appl. Mater. Interfaces 10(50), 43809–43816 (2018).10.1021/acsami.8b17100 doi: 10.1021/acsami.8b17100
    [46]
    [47]
    D. V. Semenok et al., “Actinium hydrides AcH10, AcH12, and AcH16 as high-temperature conventional superconductors,” J. Phys. Chem. Lett. 9(8), 1920–1926 (2018).10.1021/acs.jpclett.8b00615 doi: 10.1021/acs.jpclett.8b00615
    [48]
    [49]
    C. M. Pepin et al., “Synthesis of FeH5: A layered structure with atomic hydrogen slabs,” Science 357, 382–385 (2017).10.1126/science.aan0961 doi: 10.1126/science.aan0961
    [50]
    P. Loubeyre et al., “X-ray diffraction and equation of state of hydrogen at megabar pressures,” Nature 383, 702–704 (1996).10.1038/383702a0 doi: 10.1038/383702a0
    [51]
    N. P. Salke et al., “Synthesis of clathrate cerium superhydride CeH9 below 100 GPa with atomic hydrogen sublattice,” Nat. Commun. 10, 4453 (2019); arXiv:1805.02060.10.1038/s41467-019-12326-y doi: 10.1038/s41467-019-12326-y
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(15)

    Article Metrics

    Article views (252) PDF downloads(24) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return