Follow us on Wechat

用微信扫码二维码

分享至好友和朋友圈

Volume 5 Issue 1
Jan.  2020
Turn off MathJax
Article Contents
Yoo Choong-Shik. Chemistry under extreme conditions: Pressure evolution of chemical bonding and structure in dense solids[J]. Matter and Radiation at Extremes, 2020, 5(1): 018202. doi: 10.1063/1.5127897
Citation: Yoo Choong-Shik. Chemistry under extreme conditions: Pressure evolution of chemical bonding and structure in dense solids[J]. Matter and Radiation at Extremes, 2020, 5(1): 018202. doi: 10.1063/1.5127897

Chemistry under extreme conditions: Pressure evolution of chemical bonding and structure in dense solids

doi: 10.1063/1.5127897
  • Received Date: 2019-09-14
  • Accepted Date: 2019-12-08
  • Available Online: 2020-01-15
  • Publish Date: 2020-01-15
  • Recent advances in high-pressure technologies and large-scale experimental and computational facilities have enabled scientists, at an unprecedented rate, to discover and predict novel states and materials under the extreme pressure-temperature conditions found in deep, giant-planet interiors. Based on a well-documented body of work in this field of high-pressure research, we elucidate the fundamental principles that govern the chemistry of dense solids under extreme conditions. These include: (i) the pressure-induced evolution of chemical bonding and structure of molecular solids to extended covalent solids, ionic solids and, ultimately, metallic solids, as pressure increases to the terapascal regime; (ii) novel properties and complex transition mechanisms, arising from the subtle balance between electron hybridization (bonding) and electrostatic interaction (packing) in densely packed solids; and (iii) new dense framework solids with high energy densities, and with tunable properties and stabilities under ambient conditions. Examples are taken primarily from low-Z molecular systems that have scientific implications for giant-planet models, condensed materials physics, and solid-state core-electron chemistry.
  • loading
  • [1]
    D. S. Spiegel, J. J. Fortney, and C. Sotin, “Structure of exoplanets,” Proc. Natl. Acad. Sci. U. S. A. 111, 12622–12627 (2014).10.1073/pnas.1304206111 doi: 10.1073/pnas.1304206111
    [2]
    B. Buffett and D. Archer, “Global inventory of methane clathrate,” Earth Planet. Sci. Lett. 227, 185–199 (2004).10.1016/j.epsl.2004.09.005 doi: 10.1016/j.epsl.2004.09.005
    [3]
    C. S. Yoo and M. F. Nicol, “Chemical and physical transformation of cyanogen at high pressures,” J. Phys. Chem. 90, 6726–6731 (1986).10.1021/j100283a028 doi: 10.1021/j100283a028
    [4]
    K. Aoki, S. Usuba, M. Yoshida, Y. Kakudate, K. Tanaka, and S. Fujiwara, “Raman study of the solid-solid polymerization of acetylene at high pressure,” J. Chem. Phys. 89, 529–534 (1988).10.1063/1.455441 doi: 10.1063/1.455441
    [5]
    X. D. Wen, R. Hoffmann, and N. W. Ashcroft, “Benzene under high pressure: A story of molecular crystals transforming to saturated networks, with a possible intermediate metallic phase,” J. Am. Chem. Soc. 133, 9023–9025 (2011).10.1021/ja201786y doi: 10.1021/ja201786y
    [6]
    F. P. Bundy, H. T. Hall, H. M. Strong, and R. H. Wentorf, “Man-made diamonds,” Nature 176, 51–55 (1955).10.1038/176051a0 doi: 10.1038/176051a0
    [7]
    C. Mailhiot, L. H. Yang, and A. K. McMahan, “Polymeric nitrogen,” Phys. Rev. B 46, 14419–14435 (1992).10.1103/physrevb.46.14419 doi: 10.1103/physrevb.46.14419
    [8]
    M. I. Eremets, A. G. Gavriliuk, I. A. Trojan, D. A. Dzivenko, and R. Boehler, “Single bonded cubic form of nitrogen,” Nat. Mater. 3, 558–563 (2004).10.1038/nmat1146 doi: 10.1038/nmat1146
    [9]
    M. J. Lipp, J. P. Klepeis, B. J. Baer, H. Cynn, W. J. Evans, V. Iota, and C. S. Yoo, “Transformation of molecular nitrogen to nonmolecular phases at megabar pressures by direct laser heating,” Phys. Rev. B 76, 014113 (2007).10.1103/physrevb.76.014113 doi: 10.1103/physrevb.76.014113
    [10]
    V. Iota, C. S. Yoo, and H. Cynn, “Quartzlike carbon dioxide: An optically nonlinear extended solid at high pressures and temperatures,” Science 283, 1510–1512 (1999).10.1126/science.283.5407.1510 doi: 10.1126/science.283.5407.1510
    [11]
    S. Serra, C. Cavazzoni, G. L. Chiarotti, S. Scandolo, and E. Tosatti, “Pressure-induced solid carbonates from molecular CO2 by computer simulation,” Science 284, 788–790 (1999).10.1126/science.284.5415.788 doi: 10.1126/science.284.5415.788
    [12]
    C. S. Yoo, H. Cynn, F. Gygi, G. Galli, V. Iota, M. F. Nicol, S. Carlson, D. Hausermann, and C. Mailhiot, “Crystal structure of carbon dioxide at high pressure: “superhard” polymeric carbon dioxide,” Phys. Rev. Lett. 83, 5527–5530 (1999).10.1103/physrevlett.83.5527 doi: 10.1103/physrevlett.83.5527
    [13]
    F. Datchi, B. Mallick, A. Salamat, and S. Ninet, “Structure of polymeric carbon dioxide CO2-V,” Phys. Rev. Lett. 108, 125701-1–125701-4 (2012).10.1103/physrevlett.108.125701 doi: 10.1103/physrevlett.108.125701
    [14]
    Ph. Pruzan, “Pressure effects on the hydrogen bond in ice up to 80,” GPa 322, 279–286 (1994).10.1016/0022-2860(94)87045-4 doi: 10.1016/0022-2860(94)87045-4
    [15]
    A. F. Goncharov, V. V. Struzhkin, M. S. Somayazulu, R. J. Hemley, and H. K. Mao, “Compression of ice to 210 gigapascales: Infrared evidence for a symmetric hydrogen-bonded phase,” Science 273, 218–220 (1996).10.1126/science.273.5272.218 doi: 10.1126/science.273.5272.218
    [16]
    P. Loubeyre, R. LeToullec, E. Wotanint, M. Hanfland, and D. Hausermann, “Modulated phases and proton centering in ice observed by x-ray diffraction up to 170 GPa,” Nature 397, 503–506 (1999).10.1038/17300 doi: 10.1038/17300
    [17]
    N. W. Ashcroft, “Metallic hydrogen: A high-temperature superconductor?,” Phys. Rev. Lett. 21, 1748–1749 (1968).10.1103/physrevlett.21.1748 doi: 10.1103/physrevlett.21.1748
    [18]
    M. I. Eremets and I. A. Troyan, “Conductive dense hydrogen,” Nat. Mater. 10, 927–931 (2011).10.1038/nmat3175 doi: 10.1038/nmat3175
    [19]
    R. P. Dias and I. F. Silvera, “Observation of the Wigner-Huntington transition to metallic hydrogen,” Science 355, 715–718 (2017).10.1126/science.aal1579 doi: 10.1126/science.aal1579
    [20]
    D. Ducan, Y. Liu, F. Tan, D. Li, X. Huang, Z. Zhao, H. Yu, B. Liu, W. Tian, and T. Cui, “Pressure-induced metallization of dense (H2S)2H2 with high Tc superconductivity,” Sci. Rep. 4, 6968-1–6968-6 (2014).10.1038/srep06968 doi: 10.1038/srep06968
    [21]
    A. P. Drozdov, M. I. Eremets, I. A. Troyan, V. Ksenfontov, and S. I. Shylin, “Conventional superconductivity at 203 Kelvin at high pressures in the sulfur hydride system,” Nature 525, 73–76 (2015).10.1038/nature14964 doi: 10.1038/nature14964
    [22]
    C. J. Pickard and R. J. Needs, “Aluminium at terapascal pressures,” Nat. Mater. 9, 624–627 (2010).10.1038/nmat2796 doi: 10.1038/nmat2796
    [23]
    M.-S. Miao and R. Hoffmann, “High pressure electrides: A predictive chemical and physical theory,” Acc. Chem. Res. 47, 1311–1317 (2014).10.1021/ar4002922 doi: 10.1021/ar4002922
    [24]
    M.-S. Miao and R. Hoffmann, “High pressure electrides: The chemical nature of interstitial quasi-atoms,” J. Am. Chem. Soc. 137, 3631–3637 (2015).10.1021/jacs.5b00242 doi: 10.1021/jacs.5b00242
    [25]
    H.-K. Mao and R. J. Hemley, “The high-pressure dimension in earth and planetary science,” Proc. Natl. Acad. Sci. U. S. A. 104, 9114–9115 (2007).10.1073/pnas.0703653104 doi: 10.1073/pnas.0703653104
    [26]
    J. Hemley and N. W. Ashcroft, “The revealing role of pressure in the condensed matter,” Phys. Today 51(8), 26–32 (1998).10.1063/1.882374 doi: 10.1063/1.882374
    [27]
    R. Jeanloz, “Physical chemistry at ultrahigh pressures and temperatures,” Ann. Rev. Phys. Chem. 40, 237–259 (1989).10.1146/annurev.pc.40.100189.001321 doi: 10.1146/annurev.pc.40.100189.001321
    [28]
    C. J. Pickard and R. J. Needs, “High-pressure phases of silane,” Phys. Rev. Lett. 97, 045504-1–045504-4 (2006).10.1103/physrevlett.97.045504 doi: 10.1103/physrevlett.97.045504
    [29]
    L. Zhang, Y. Wang, J. Lv, and Y. Ma, “Materials discovery at high pressures,” Nat. Rev. Mater. 2, 17005 (2017).10.1038/natrevmats.2017.5 doi: 10.1038/natrevmats.2017.5
    [30]
    A. R. Oganov, A. O. Lyakhov, and M. Valle, “How evolutionary crystal structure prediction works-and why,” Acc. Chem. Res. 44, 227–237 (2011).10.1021/ar1001318 doi: 10.1021/ar1001318
    [31]
    Z. Zurek, R. Hoffmann, N. W. Ashcroft, A. R. Oganov, and A. O. Lyakhov, “A little bit of lithium does a lot for hydrogen,” Proc. Natl. Acad. Sci. U. S. A. 196, 17640–17643 (2009).10.1073/pnas.0908262106 doi: 10.1073/pnas.0908262106
    [32]
    C. S. Yoo, “New states of matter and chemistry at extreme pressures: Low-Z extended solid,” MRS Bull. 42, 724–728 (2017).10.1557/mrs.2017.209 doi: 10.1557/mrs.2017.209
    [33]
    C. S. Yoo, “Physical and chemical transformations of highly compressed carbon dioxide at bond energies,” Phys. Chem. Chem. Phys. 15, 7949–7966 (2013).10.1039/c3cp50761k doi: 10.1039/c3cp50761k
    [34]
    Zs. Jenei, E. F. O’Bannon, S. T. Weir, H. Cynn, M. J. Lipp, and W. J. Evans, “Single crystal toroidal diamond anvils for high pressure experiments beyond 5 megabar,” Nat. Commun. 9, 3563-1–3563-6 (2018).10.1038/s41467-018-06071-x doi: 10.1038/s41467-018-06071-x
    [35]
    A. Dewaele, P. Loubeyre, F. Occelli, O. Marie, and M. Mesouar, “Toroidal diamond anvil cell for detailed measurements under extreme static pressures,” Nat. Commun. 9, 2913-1–2913-9 (2018).10.1038/s41467-018-05294-2 doi: 10.1038/s41467-018-05294-2
    [36]
    N. Dubrovinskaia, L. Dubrovinsky, N. A. Solopova, A. Abakumom, S. Turner, M. Hanfland, E. Bykova, M. Bykov, C. Prescher, V. B. Prakapenka, S. Petitgirard, I. Chuvashova, B. Gasharova, Y.-L. Mathis, P. Ershov, I. Snigireva, and A. Sniglrev, “Terapascal static pressure generation with ultrahigh yield strength nanodiamond,” Sci. Adv. 2, e1600341-1–e1600341-12 (2016).10.1126/sciadv.1600341 doi: 10.1126/sciadv.1600341
    [37]
    M. J. Lipp, W. J. Evans, and C. S. Yoo, “Cryogenic loading of large volume presses for high-pressure experimentation and synthesis of novel materials,” Rev. Sci. Instrum. 76, 053903-1–053903-4 (2005).10.1063/1.1900644 doi: 10.1063/1.1900644
    [38]
    J. Xu and H.-K. Mao, “Moissanite: A window for high-pressure experiements,” Science 290, 783–785 (2000).10.1126/science.290.5492.783 doi: 10.1126/science.290.5492.783
    [39]
    Z. Wang, D. He, W. Zhang, W. Li, W. Li, J. Qin, L. Lei, Y. Zou, and X. Yang, “Portable high pressure sapphire anvil cell for gas hydrates research,” Rev. Sci. Instrum. 81, 085102-1–085102-5 (2010).10.1063/1.3469780 doi: 10.1063/1.3469780
    [40]
    S. N. Monteiro, A. L. D. Skury, M. G. de Azevedo, and G. S. Bobrovnitchii, “Cubic boron nitride competing with diamond as a superhard engineering materials—An overview,” J. Mater. Res. Technol. 2, 68–74 (2013).10.1016/j.jmrt.2013.03.004 doi: 10.1016/j.jmrt.2013.03.004
    [41]
    H. Sumiya, “Novel development of high-pressure synthetic diamonds “ultra-hard nano-polycrystalline diamonds”,” SEI Technol. Rev. 74, 15–22 (2012).
    [42]
    G. W. Lee, W. J. Evans, and C.-S. Yoo, “Crystallization of water in a dynamic diamond-anvil cell: Evidence for ice VII-like local order in supercompressed water,” Phys. Rev. B 74, 134112-1–134112-6 (2006).10.1103/physrevb.74.134112 doi: 10.1103/physrevb.74.134112
    [43]
    G. W. Lee, W. J. Evans, and C. S. Yoo, “Dynamic pressure-induced dendrite and shock crystal growth of ice VI,” Proc. Natl. Acad. Sci. U. S. A. 104, 9178–9181 (2007).10.1073/pnas.0609390104 doi: 10.1073/pnas.0609390104
    [44]
    W. J. Evans, C. S. Yoo, G. W. Lee, H. Cynn, M. J. Lipp, and K. Visbeck, “Dynamic diamond anvil cell (d-DAC): A novel device for studying the dynamic-pressure properties of materials,” Rev. Sci. Instrum. 78, 073904-1–073904-6 (2007).10.1063/1.2751409 doi: 10.1063/1.2751409
    [45]
    J.-Y. Chen and C. S. Yoo, “Formation and phase transitions of methane hydrates under dynamic loadings: Compression rate dependent kinetics,” J. Chem. Phys. 136, 114513-1–114513-10 (2012).10.1063/1.3695212 doi: 10.1063/1.3695212
    [46]
    J.-Y. Chen, C.-S. Yoo, W. J. Evans, H.-P. Liermann, H. Cynn, M. Kim, and Z. Jenei, “Solidification and fcc- to metastable hcp- phase transition in krypton under variable compression rates,” Phys. Rev. B 90, 144104-1–144104-8 (2014).10.1103/physrevb.90.144104 doi: 10.1103/physrevb.90.144104
    [47]
    J. Y. Chen and C. S. Yoo, “High density amorphous ice at room temperature,” Proc. Natl. Acad. Sci. U. S. A. 108, 7685–7688 (2011).10.1073/pnas.1100752108 doi: 10.1073/pnas.1100752108
    [48]
    D. Tomasino and C. S. Yoo, “Solidification and crystal growth of highly compressed hydrogen and deuterium: Time-resolved study under ramp compression in dynamic-diamond anvil cell,” Appl. Phys. Lett. 103, 061905-1–061905-4 (2013).10.1063/1.4818311 doi: 10.1063/1.4818311
    [49]
    Y.-J. Kim, Y.-H. Lee, S. Lee, H. Nada, and G. W. Lee, “Shock growth of ice crytal near equilibrium melting pressure under dynamic compression,” Proc. Natl. Acad. Sci. U. S. A. 116, 8679–8684 (2019).10.1073/pnas.1818122116 doi: 10.1073/pnas.1818122116
    [50]
    J. K. Wicks, R. F. Smith, D. E. Fratanduono, F. Coppari, R. G. Kraus, M. G. Newman, R. J. Rygg, J. H. Eggert, and T. S. Duffy, “Crystal structure and equation of state of Fe-Si alloys at super-Earth core conditions,” Sci. Adv. 4, eaao5865-1–eaao5865-10 (2018).10.1126/sciadv.aao5864 doi: 10.1126/sciadv.aao5864
    [51]
    R. F. Smith, J. H. Eggert, R. Jeanloz, T. S. Duffy, D. G. Braun, J. R. Patterson, R. E. Rudd, J. Blener, A. E. Lazicji, A. V. Hamza, J. Wang, T. Braun, L. X. Benedict, P. M. Celliers, and G. W. Collins, “Ramp compression of diamond to five terapascals,” Nature 511, 330–333 (2014).10.1038/nature13526 doi: 10.1038/nature13526
    [52]
    P. M. Celliers, M. Millot, S. Brygoo, R. S. McWilliams, D. E. Fratanduono, J. R. Rygg, A. F. Goncharov, P. Loubeyre, J. H. Eggert, J. L. Peterson, N. B. Meezan, S. Le Pape, G. W. Collins, R. Jeanloz, and R. J. Hemley, “Insulator-metal transition in dense fluid deuterium,” Science 361, 677–682 (2018).10.1126/science.aat0970 doi: 10.1126/science.aat0970
    [53]
    A. L. Kritcher, T. Doppner, D. Swift, J. Hawreliak, G. Collins, J. Nilsen, B. Bachmann, E. Dewald, D. Strozzi, S. Felker, O. L. Landen, O. Jones, C. Thomas, J. Hammer, C. Keane, H. J. Lee, S. H. Glenzer, S. Rothman, D. Chapman, D. Kraus, P. Neumayer, and R. W. Falcone, “Probing matter at Gbar pressures at the NIF,” High Energy Density Phys. 10, 27–34 (2014).10.1016/j.hedp.2013.11.002 doi: 10.1016/j.hedp.2013.11.002
    [54]
    S. J. Turneaure, S. M. Sharma, T. J. Volz, J. M. Winey, and Y. M. Gupta, “Transformation of shock-compressed graphite to hexagonal diamond in nanoseconds,” Sci. Adv. 3, eaao3561-1–eaao3561-6 (2017).10.1126/sciadv.aao3561 doi: 10.1126/sciadv.aao3561
    [55]
    M. D. Knudsen, M. P. Desjarlais, A. Becker, R. W. Lemke, K. R. Cochrane, M. E. Savage, D. E. Bliss, T. M. Mattsson, and R. Redmer, “Direct observation of an abrupt insulator to metal transition in dense liquid deuterium,” Science 348, 1455–1460 (2015).10.1126/science.aaa7471 doi: 10.1126/science.aaa7471
    [56]
    S. T. Weir, A. C. Mitchell, and W. J. Nellis, “Metallization of fluid molecular hydrogen at 140 GPa (1.4 Mbar),” Phys. Rev. Lett. 76, 1860–1864 (1996).10.1103/physrevlett.76.1860 doi: 10.1103/physrevlett.76.1860
    [57]
    S. M. Sharma, S. J. Turneaure, J. M. Winey, Y. Li, P. Rigg, A. Schuman, N. Sinclair, T. Toyoda, X. Wang, N. Weir, J. Zhang, and Y. M. Gupta, “Structural transformation and melting in gold shock compressed to 355 GPa,” Phys. Rev. Lett. 123, 045702-1–045702-4 (2019).10.1103/physrevlett.123.045702 doi: 10.1103/physrevlett.123.045702
    [58]
    R. L. Gustavsen, D. M. Dattelbaum, E. B. Watkins, M. A. Firestone, D. W. Podlesak, B. J. Jensen, B. S. Ringstrand, R. C. Huber, J. T. Mang, C. E. Johnson, K. A. Velizhanin, T. M. Wiley, D. W. Hansen, C. M. May, R. L. Hodgin, M. Bagge-Hansen, A. W. van Buuren, L. M. Lauderbach, A. C. Jones, T. J. Graber, N. Sinclair, S. Seifert, and T. Gog, “Time resolved small angle x-ray scattering experiments performed on detonating explosives at the advanced photon source: Calculation of the time and distance between the detonation front and the x-ray beam,” J. Appl. Phys. 121, 105902-1–105902-10 (2017).10.1063/1.4978036 doi: 10.1063/1.4978036
    [59]
    C. E. Wahrenberg, D. McGonegle, C. Bolme, A. Higginbotham, A. Lazicki, H. J. Lee, B. Nagler, H. S. Park, B. A. Remington, R. E. Rudd, M. Sliwa, M. Suggit, D. Swift, F. Tavella, L. Zepeda-Ruis, and J. S. Wark, “In-situ x-ray diffraction measurement of shock-wave-driven twinning and lattice dynamics,” Nature 550, 496–499 (2017).10.1038/nature24061 doi: 10.1038/nature24061
    [60]
    D. Kraus, J. Vorberger, A. Pak, N. J. Hartley, L. B. Fletcher, S. Frydrych, E. Galtier, E. J. Gamboa, D. O. Gericke, S. H. Glenzer, E. Granados, M. J. MacDonald, A. J. Mackinnon, E. E. McBride, I. Nam, P. Neumayer, M. Roth, A. M. Saunders, A. K. Schuster, P. Sun, T. van Driel, T. Doppner, and R. W. Falcone, “Formation of diamonds in laser-compressed hydrocarbons at planetary interior conditions,” Nat. Astron. 1, 606–611 (2017).10.1038/s41550-017-0219-9 doi: 10.1038/s41550-017-0219-9
    [61]
    D. J. Erskine and W. J. Nellis, “Shock-induced martensitic transformation of highly oriented graphite to diamond,” J. Appl. Phys. 71, 4882–4886 (1992).10.1063/1.350633 doi: 10.1063/1.350633
    [62]
    D. H. Dolan and Y. M. Gupta, “Nanosecond freezing of water under multiple shock wave compression: Optical transmission and imaging measurements,” J. Chem. Phys. 8, 9050–9057 (2004).10.1063/1.1805499 doi: 10.1063/1.1805499
    [63]
    O. Tschauner, S.-N. Luo, P. D. Asimow, and T. J. Ahrens, “Recovery of stishovite-structure at ambient conditions out of shock-generated amorphous silica,” Am. Mineral. 91, 1857–1862 (2006).10.2138/am.2006.2015 doi: 10.2138/am.2006.2015
    [64]
    A. J. Davidson, R. P. Dias, D. M. Dattelbaum, and C.-S. Yoo, ““Stubborn” triamiotrinitobenzene: Unusually high chemical stability of a molecular solid to 150 GPa,” J. Chem. Phys. 135, 174507-1–174507-5 (2011).10.1063/1.3658385 doi: 10.1063/1.3658385
    [65]
    C.-S. Yoo, J. J. Furrer, G. E. Duvall, S. F. Agnew, and B. I. Swanson, “Effects of dilution on the ultraviolet and visible absorptivity of CS2 under static and shock compression,” J. Phys. Chem. 91, 6577–6578 (1987).10.1021/j100311a004 doi: 10.1021/j100311a004
    [66]
    C. S. Yoo and Y. M. Gupta, “Time-resolved absorption changes of thin CS2 samples under shock compression: Electronic and chemical implications,” J. Phys. Chem. 94, 2857–2865 (1990).10.1021/j100370a025 doi: 10.1021/j100370a025
    [67]
    J. J. Dick and J. P. Ritchie, “Molecular mechanics modeling of shear and the crystal orientation dependence of the elastic precursor shock strength in pentaerythritol tetranitrate,” J. Appl. Phys. 76, 2726 (1994).10.1063/1.357576 doi: 10.1063/1.357576
    [68]
    J. Aidun, M. S. T. Bukowinski, and M. Ross, “Equation of state and metallization of CsI,” Phys. Rev. B 29, 2611–2621 (1984).10.1103/physrevb.29.2611 doi: 10.1103/physrevb.29.2611
    [69]
    H. K. Mao, Y. Wu, R. J. Hemley, L. C. Chen, J. F. Shu, and L. W. Finger, “X-ray diffraction to 302 gigapascals: High pressure crystal structure of cesium iodide,” Science 246, 649–651 (1989).10.1126/science.246.4930.649 doi: 10.1126/science.246.4930.649
    [70]
    K. A. Goettel, J. H. Eggert, and I. F. Silvera, “Optical evidence for the metallization of xenon at 132(5) GPa,” Phys. Rev. Lett. 62, 665–668 (1989).10.1103/physrevlett.62.665 doi: 10.1103/physrevlett.62.665
    [71]
    R. Reichlin, K. E. Brister, A. K. McMahan, M. Ross, S. Martin, Y. K. Vohra, and A. L. Ruoff, “Evidence for the insulator-metal transition in xenon from optical, x-ray, and band-structure studies to 170 GPa,” Phys. Rev. Lett. 62, 669–672 (1989).10.1103/physrevlett.62.669 doi: 10.1103/physrevlett.62.669
    [72]
    H. K. Mao, Y. Wu, R. J. Hemley, L. C. Chen, J. F. Shu, L. W. Finger, and D. E. Cox, “High-pressure phase transition and equation of state of CsI,” Phys. Rev. Lett. 64, 1749–1752 (1990).10.1103/physrevlett.64.1749 doi: 10.1103/physrevlett.64.1749
    [73]
    M. I. Eremets, K. Shimizu, T. C. Kobayashi, and K. Amaya, “Metallic CsI at pressures of up to 220 gigapascals,” Science 281, 1333–1335 (1998).10.1126/science.281.5381.1333 doi: 10.1126/science.281.5381.1333
    [74]
    Y. Xu, J. S. Tse, A. R. Oganov, T. Cui, H. Wang, Y. Ma, and G. Zou, “Superconducting high-pressure phase of cesium iodide,” Phys. Rev. B 79, 144110-1–144110-5 (2009).10.1103/physrevb.79.144110 doi: 10.1103/physrevb.79.144110
    [75]
    T. Yagi, W. Utsumi, M.-A. Yamakata, T. Kikegawa, and O. Shimomura, “High-pressure in-situ x-ray diffraction study of the phase transformation from graphite to hexagonal diamond at room temperature,” Phys. Rev. B 46, 6031–6039 (1992).10.1103/physrevb.46.6031 doi: 10.1103/physrevb.46.6031
    [76]
    A. F. Goncharov, I. N. Makarenko, and S. M. Stishov, “Graphite at pressure up to 55 GPa: Optical properties and Raman scattering-amorphous carbon?,” Sov. Phys. JETP 69, 380–381 (1989).
    [77]
    C.-S. Yoo, A. Sengupta, and M. Kim, “Carbon dioxide carbonates in the Earth’s mantle: Implications to the deep carbon cycle,” Angew. Chem., Int. Ed. 50, 11415–11418 (2011).10.1002/ange.201104689 doi: 10.1002/ange.201104689
    [78]
    C. S. Yoo and M. F. Nicol, “Kinetics of a pressure-induced polymerization reaction of cyanogen,” J. Phys. Chem. 90, 6732–6736 (1986).10.1021/j100283a029 doi: 10.1021/j100283a029
    [79]
    K. Aoki, B. J. Baer, H. Cynn, and M. F. Nicol, “High pressure Raman study of one-dimensional crystals of the very polar molecular hydrogen cyanide,” Phys. Rev. B 42, 4298–4303 (1990).10.1103/physrevb.42.4298 doi: 10.1103/physrevb.42.4298
    [80]
    A. Shinozaki, K. Mimura, and T. Nishida, “Decomposition and oligomerization of 2,3-naphthyridine under high-pressure and high-temperature conditions,” Sci. Rep. 9, 7335-1–7335-9 (2019).10.1038/s41598-019-43868-2 doi: 10.1038/s41598-019-43868-2
    [81]
    W. Crochala, R. Hoffmann, J. Feng, and N. W. Ashcroft, “The chemical imagination at work in very tight places,” Angew. Chem., Int. Ed. 46, 3620–3642 (2007).10.1002/anie.200602485 doi: 10.1002/anie.200602485
    [82]
    F. A. Cotton and G. Wilkinson, Advanced Inorganic Chemistry, 5th ed. (Wiley, New York, 1988).
    [83]
    W. Utsumi and T. Yagi, “Light-transparent phase formed by room-temperature compression of graphite,” Science 252, 1542–1544 (1991).10.1126/science.252.5012.1542 doi: 10.1126/science.252.5012.1542
    [84]
    W. L. Mao, H.-K. Mao, P. J. Eng, T. P. Trainor, M. Newwille, C.-C. Kao, D. L. Heinz, J. Shu, Y. Meng, and R. J. Hemley, “Bonding changes in compressed superhard graphite,” Science 302, 425–427 (2003).10.1126/science.1089713 doi: 10.1126/science.1089713
    [85]
    Z. Zeng, L. Yang, Q. Zeng, H. Lou, H. Sheng, J. Wen, D. J. Miller, Y. Meng, W. Yang, W. L. Mao, and H.-K. Mao, “Synthesis of quenchable amorphous diamond,” Nat. Commun. 18, 322-1–322-7 (2017).10.1038/s41467-017-00395-w doi: 10.1038/s41467-017-00395-w
    [86]
    M. I. Eremets, A. G. Gavriliuk, N. R. Serebryanaya, I. A. Trojan, D. A. Dzivenko, R. Boehler, H. K. Mao, and R. J. Hemley, “Structural transformation of molecular nitrogen to a single-bonded atomic state at high pressures,” J. Chem. Phys. 121, 11296–11300 (2004).10.1063/1.1814074 doi: 10.1063/1.1814074
    [87]
    F. P. Bundy, “Direct conversion of graphite to diamond in static pressure apparatus,” J. Chem. Phys. 38, 631–643 (1963).10.1063/1.1733716 doi: 10.1063/1.1733716
    [88]
    W. E. Streib, T. H. Jordan, and W. N. Lipscomb, “Singe-crystal x-ray diffraction study of β nitrogen,” J. Chem. Phys. 37, 2962–2965 (1962).10.1063/1.1733125 doi: 10.1063/1.1733125
    [89]
    X. Yong, H. Liu, M. Wi, Y. Yao, J. S. Tse, R. Dias, and C. S. Yoo, “Crystal structures and dynamical properties of dense CO2,” Proc. Natl. Acad. Sci. U. S. A. 113, 11110–11115 (2016).10.1073/pnas.1601254113 doi: 10.1073/pnas.1601254113
    [90]
    A. Sengupta, M. Kim, and C. S. Yoo, “Polymerization of carbon dioxide: A chemistry view of molecular-to-nonmolecular phase transitions,” J. Phys. Chem. C 116, 2061–2067 (2012).10.1021/jp204373t doi: 10.1021/jp204373t
    [91]
    R. P. Dias, C. S. Yoo, V. V. Struzhkin, M. Kim, T. Muramatsu, T. Matsuoka, Y. Ohishi, and S. Sinogelkin, “Superconductivity in highly disordered dense carbon disulfide,” Proc. Natl. Acad. Sci. U. S. A. 110, 11720–11724 (2013).10.1073/pnas.1305129110 doi: 10.1073/pnas.1305129110
    [92]
    R. P. Dias, C. S. Yoo, M. Kim, and J. S. Tse, “Insulator-metal transition of highly compressed carbon disulfide,” Phys. Rev. B 84, 144104-1–144104-6 (2011).10.1103/physrevb.84.144104 doi: 10.1103/physrevb.84.144104
    [93]
    M. J. Lipp, W. J. Evans, B. J. Baer, and C. S. Yoo, “High-energy-density extended CO solid,” Nat. Mater. 4, 211–215 (2005).10.1038/nmat1321 doi: 10.1038/nmat1321
    [94]
    M. L. Cohen, “Calculation of bulk moduli of diamond and zinc-blende solids,” Phys. Rev. B 32, 7988–7991 (1985).10.1103/physrevb.32.7988 doi: 10.1103/physrevb.32.7988
    [95]
    A. Y. Liu and M. L. Cohen, “Prediction of new low compressibility solids,” Science 245, 841–842 (1989).10.1126/science.245.4920.841 doi: 10.1126/science.245.4920.841
    [96]
    W. L. McMillan, “Transition temperature of strong-coupled superconductors,” Phys. Rev. 167, 331–344 (1968).10.1103/physrev.167.331 doi: 10.1103/physrev.167.331
    [97]
    D. T. Cromer, R. L. Mills, D. Schiferl, and L. A. Schwalbe, “The structure of N2 at 49 kbar and 299 K,” Acta Crystallogr. B 37, 8–11 (1981).10.1107/s0567740881002070 doi: 10.1107/s0567740881002070
    [98]
    D. Schiferl, S. Buchsbaum, and R. L. Mills, “Phase transitions in nitrogen observed by Raman spectroscopy from 0.4 to 27.4 GPa at 15 K,” J. Phys. Chem. 89, 2324–2330 (1985).10.1021/j100257a036 doi: 10.1021/j100257a036
    [99]
    E. Gregoryanz, A. F. Goncharov, R. J. Hemley, H.-K. Mao, M. Somayazulu, and G. Shen, “Raman, infrared, and x-ray evidence for new phases of nitrogen at high pressures and temperatures,” Phys. Rev. B 66, 224108-1–224108-5 (2002).10.1103/physrevb.66.224108 doi: 10.1103/physrevb.66.224108
    [100]
    E. Gregoryanz, A. F. Goncharov, R. J. Hemley, and H.-K. Mao, “High-pressure amorphous nitrogen,” Phys. Rev. B 64, 052103-1–052103-4 (2001).10.1103/physrevb.64.052103 doi: 10.1103/physrevb.64.052103
    [101]
    C. J. Pickard, R. J. Needs, and R. J., “High-pressure phases of nitrogen,” Phys. Rev. Lett. 102, 125702-1–125702-4 (2009).10.1103/physrevlett.102.125702 doi: 10.1103/physrevlett.102.125702
    [102]
    D. Tomasino, Z. Jenei, W. Evans, and C.-S. Yoo, “Melting and phase transitions of nitrogen under high pressures and temperatures,” J. Chem. Phys. 140, 244510-1–244510-8 (2014).10.1063/1.4885724 doi: 10.1063/1.4885724
    [103]
    D. Tomasino, M. Kim, J. Smith, and C. S. Yoo, “Pressure-induced symmetry-lowering transition in dense nitrogen to layered polymeric nitrogen (LP-N) with colossal Raman intensity,” Phys. Rev. Lett. 113, 205502-1–205502-4 (2014).10.1103/physrevlett.113.205502 doi: 10.1103/physrevlett.113.205502
    [104]
    Y. Ma, A. R. Oganov, Z. Li, Y. Xie, and J. Kotakoski, “Novel high pressure structure of polymeric nitrogen,” Phys. Rev. Lett. 102, 065501-1–065501-4 (2009).10.1103/physrevlett.102.065501 doi: 10.1103/physrevlett.102.065501
    [105]
    Y. Cui, B. Li, H. He, W. Zhou, B. Chen, and G. Qjan, “Metal-organic frameworks as platforms for functional materials,” Acc. Chem. Res. 49, 483–493 (2016).10.1021/acs.accounts.5b00530 doi: 10.1021/acs.accounts.5b00530
    [106]
    D. Laniel, G. Geneste, G. Weck, M. Mezouar, and P. Loubeyre, “Hexagonal layered polymeric nitrogen phase synthesized near 250 GPa,” Phys. Rev. Lett. 122, 066001-1–066001-5 (2019).10.1103/physrevlett.122.066001 doi: 10.1103/physrevlett.122.066001
    [107]
    X. L. Wang, Y. C. Wang, M. S. Miao, X. Zhong, J. Lv, T. Cui, J. F. Li, L. Chen, C. J. Pickard, and Y. M. Ma, “Cagelike diamondoid nitrogen at high pressures,” Phys. Rev. Lett. 109, 175502-1–175502-4 (2012).10.1103/physrevlett.109.175502 doi: 10.1103/physrevlett.109.175502
    [108]
    Y.-J. Ryu, M. Kim, J. Lim, R. Dias, D. Klug, and C.-S. Yoo, “Dense carbon monoxide to 160 GPa: Stepwise polymerization to two-dimensional layered solid,” J. Phys. Chem. C 120, 27548–27554 (2016).10.1021/acs.jpcc.6b09434 doi: 10.1021/acs.jpcc.6b09434
    [109]
    A. I. Katz, D. Schiferl, and R. L. Mills, “New phases and chemical reactions in solid carbon monoxide under pressure,” J. Phys. Chem. 88, 3176–3179 (1984).10.1021/j150659a007 doi: 10.1021/j150659a007
    [110]
    M. Ceppatelli, A. Serdyukov, R. Bini, and H. Jodl, “Pressure induced reactivity of solid CO by FTRI studies,” J. Phys. Chem. B 113, 6652–6660 (2009).10.1021/jp900586a doi: 10.1021/jp900586a
    [111]
    W. J. Evans, M. J. Lipp, C. S. Yoo, H. Cynn, J. L. Herberg, and R. S. Maxwell, “Pressure-induced polymerization of carbon monoxide: Disproportionation and synthesis of an energetic lactonic polymer,” Chem. Mater. 18, 2520–2531 (2006).10.1021/cm0524446 doi: 10.1021/cm0524446
    [112]
    M. Ceppatelli, M. Pagliali, R. Bini, and H. J. Jodl, “High-pressure photoinduced synthesis of polynitrogen in δ and ε-nitrogen crystals substitutionally doped with CO,” J. Phys. Chem. C 119, 130–140 (2015).10.1021/jp510228t doi: 10.1021/jp510228t
    [113]
    J. Sun, D. D. Klug, C. J. Pickard, and R. J. Needs, “Controlling the bonding and bond gaps of solid carbon monoxide with pressure,” Phys. Rev. Lett. 106, 145502-1–145502-4 (2011).10.1103/physrevlett.106.145502 doi: 10.1103/physrevlett.106.145502
    [114]
    S. Bernard, G. L. Chiarotti, S. Scandolo, and A. Tosatti, “Decomposition and polymerization of solid carbon monoxide under pressure,” Phys. Rev. Lett. 81, 2092–2095 (1998).10.1103/physrevlett.81.2092 doi: 10.1103/physrevlett.81.2092
    [115]
    K. Xia, J. Sun, C. J. Pickard, D. D. Klug, and R. J. Needs, Phys. Rev. B 95, 144102-1–144102-4 (2017).10.1103/physrevb.95.144102 doi: 10.1103/physrevb.95.144102
    [116]
    A. Hermann, N. W. Ashcroft, and R. Hoffmann, “High pressure ices,” Proc. Natl. Acad. Sci. U. S. A. 109, 745–750 (2012).10.1073/pnas.1118694109 doi: 10.1073/pnas.1118694109
    [117]
    Y. Wang, H. Liu, J. Lv, L. Zhu, H. Wang, and Y. Ma, “High pressure partially ionic phase of water ice,” Nat. Commun. 2, 563-1–563-5 (2011).10.1038/ncomms1566 doi: 10.1038/ncomms1566
    [118]
    P. Demontis, R. LeSar, and M. L. Klein, “New high-pressure phases of ice,” Phys. Rev. Lett. 60, 2284–2287 (1988).10.1103/physrevlett.60.2284 doi: 10.1103/physrevlett.60.2284
    [119]
    W. A. Bassett, T. Takehashi, H.-K. Mao, and J. S. Weaver, “Pressure-induced phase transformation in NaCl,” J. Appl. Phys. 39, 319–325 (1968).10.1063/1.1655752 doi: 10.1063/1.1655752
    [120]
    T. Sakai, E. Ohtani, N. Hirao, and Y. Ohishi, “Equation of state of the NaCl-B2 phase up to 304 GPa,” J. Appl. Phys. 109, 084912-1–084912-6 (2011).10.1063/1.3573393 doi: 10.1063/1.3573393
    [121]
    X. Chen and Y. Ma, “High-pressure structures and metallization of sodium chloride,” Eur. Phys. Lett. 100, 026005 (2012).10.1209/0295-5075/100/26005 doi: 10.1209/0295-5075/100/26005
    [122]
    W. Grochala, “Atypical compounds of gases, which have been called ‘noble’,” Chem. Soc. Rev. 36, 1632–1696 (2007).10.1039/b702109g doi: 10.1039/b702109g
    [123]
    M. Kim, M. Debessai, and C. S. Yoo, “Two- and three-dimensional extended solids and metallization of compressed XeF2,” Nat. Chem. 2, 784–788 (2010).10.1038/nchem.724 doi: 10.1038/nchem.724
    [124]
    E. Stavorou, Y. Yao, A. F. Goncharov, S. S. Lobanov, J. M. Zaug, H. Liu, E. Greenberg, and V. B. Prakapenka, “Synthesis of xenon and iron-nickel intermetallic compounds at Earth’s core thermodynamic conditions,” Phys. Rev. Lett. 120, 096001-1–096001-4 (2018).10.1103/physrevlett.120.096001 doi: 10.1103/physrevlett.120.096001
    [125]
    S. Jiang, N. Holtgrewe, S. S. Lobanov, F. Su, M. F. Mahmood, R. S. McWilliams, and A. F. Goncharov, “Metallization and molecular dissociation of dense fluid nitrogen,” Nat. Commun. 9, 2624-1–2624-6 (2018).10.1038/s41467-018-05011-z doi: 10.1038/s41467-018-05011-z
    [126]
    B. Boates and S. A. Bonev, “First-order liquid-liquid phase transition in compressed nitrogen,” Phys. Rev. Lett. 102, 015701-1–015701-4 (2009).10.1103/physrevlett.102.015701 doi: 10.1103/physrevlett.102.015701
    [127]
    M. Frost, J. B. Kim, E. E. McBride, J. R. Peterson, J. S. Smith, P. Sun, and S. H. Glenzer, “High-pressure melt curve and phase diagram of lithium,” Phys. Rev. Lett. 123, 065701-1–065701-4 (2019).10.1103/physrevlett.123.065701 doi: 10.1103/physrevlett.123.065701
    [128]
    M. Hanfland, K. Syassen, N. E. Christensen, and D. L. Novikov, “New high-pressure phases of lithium,” Nature 408, 174–178 (2000).10.1038/35041515 doi: 10.1038/35041515
    [129]
    Y. Ma, M. I. Eremets, A. R. Oganov, Y. Xie et al., “Transparent dense sodium,” Nature 458, 182–185e (2009).10.1038/nature07786 doi: 10.1038/nature07786
    [130]
    C. Cavazzoni, G. L. Chiarotti, S. Scandolo, E. Tosatti, M. Bernascono, and M. Parrinello, “Superionic and metallic states of water and ammonia at giant planet conditions,” Science 283, 44–46 (1999).10.1126/science.283.5398.44 doi: 10.1126/science.283.5398.44
    [131]
    M. Millot, F. Coppari, J. R. Rygg, B. A. Correa, S. Hamel, D. C. Swift, and J. H. Eggert, “Nanosecond x-ray diffraction of shock-compressed superionic water ice,” Nature 569, 251–255 (2019).10.1038/s41586-019-1114-6 doi: 10.1038/s41586-019-1114-6
    [132]
    D. A. Young, Phase Diagrams of the Elements (University of California Press, 1991).
    [133]
    C. S. Yoo, V. Iota, H. Cynn, M. F. Nicol, J.-H. Park, T. Le Bihan, and M. Mezouar, “Disproportionation and other transformations of N2O at high pressures and temperatures to lower energy, denser phases,” J. Phys. Chem. B 107, 5922–5025 (2003).10.1021/jp0275589 doi: 10.1021/jp0275589
    [134]
    W. J. Nellis, A. C. Mitchell, F. H. Ree, M. Ross, N. C. Holmes, R. J. Trainor, and D. J. Erskine, “Equation of state of shock-compressed liquids: Carbon dioxide and air,” J. Chem. Phys. 95, 5268–5272 (1991).10.1063/1.461665 doi: 10.1063/1.461665
    [135]
    B. Boates, A. M. Teweldeberhan, and S. A. Bonev, “Stability of dense liquid carbon dioxide,” Proc. Natl. Acad. Sci. U. S. A. 109, 14808–14812 (2012).10.1073/pnas.1120243109 doi: 10.1073/pnas.1120243109
    [136]
    S. Scandolo, “Liquid-liquid phase transition in compressed hydrogen from first-principles simulations,” Proc. Natl. Acad. Sci. U. S. A. 100, 3051–0353 (2003).10.1073/pnas.0038012100 doi: 10.1073/pnas.0038012100
    [137]
    S. A. Bonev, E. Schwegler, T. Ogitsu, and G. Galli, “A quantum fluid of metallic hydrogen suggested by first-principles calculations,” Nature 431, 669–672 (2004).10.1038/nature02968 doi: 10.1038/nature02968
    [138]
    C. Liu, H. Gao, Y. Wang, R. J. Needs, C. J. Pickard, J. Sun, H.-T. Wang, and D. Xing, “Multiple superionic states in helium-water compounds,” Nat. Phys. 15, 1065 (2019).10.1038/s41567-019-0568-7 doi: 10.1038/s41567-019-0568-7
    [139]
    Z. Liu, J. Botana, A. Hermann, S. Valdez, E. Zurek, D. D. Yan, H. Q. Lin, and M. S. Miao, “Reactivity of He with ionic compounds under high pressure,” Nat. Commun. 9, 951-1–951-10 (2018).10.1038/s41467-018-03284-y doi: 10.1038/s41467-018-03284-y
    [140]
    W. Lorenzen, B. Holst, and R. Redmer, “Demixing of hydrogen and helium at megabar pressures,” Phys. Rev. Lett. 102, 115701-1–115701-4 (2009).10.1103/physrevlett.102.115701 doi: 10.1103/physrevlett.102.115701
    [141]
    G. M. Borstad and C. S. Yoo, “H2O and D2 mixtures under pressure: Spectroscopy and proton exchange kinetics,” J. Chem. Phys. 135, 174508-1–174508-11 (2011).10.1063/1.3658485 doi: 10.1063/1.3658485
    [142]
    G. M. Borstad and C.-S. Yoo, “Hydrogen bonding induced proton exchange reactions in dense D2-NH3 and D2-CH4 mixtures,” J. Chem. Phys. 140, 044510-1–044510-15 (2014).10.1063/1.4862823 doi: 10.1063/1.4862823
    [143]
    M. Kim and C.-S. Yoo, “Highly repulsive interaction in novel inclusion D2-N2 compounds at high pressure: Raman and X-ray evidence,” J. Chem. Phys. 134, 044519-1–044519-5 (2011).10.1063/1.3533957 doi: 10.1063/1.3533957
    [144]
    D. K. Spaulding, G. Weck, P. Loubeyre, F. Daichi, P. Dumas, and M. Hanfland, “Pressure-induced chemistry in a nitrogen-hydrogen host-guest structure,” Nat. Commun. 5, 5739-1–5739-7 (2014).10.1038/ncomms6739 doi: 10.1038/ncomms6739
    [145]
    J. Lim and C.-S. Yoo, “Intercalation of solid hydrogen into graphite under pressure,” Appl. Phys. Lett. 109, 051905-1–051905-5 (2016).10.1063/1.4960733 doi: 10.1063/1.4960733
    [146]
    C. S. Yoo, M. Kim, W. Morgenroth, and P. Liermann, “Transformation and structure of silicatelike CO2-V,” Phys. Rev. B 87, 214103-1–214103-9 (2013).10.1103/physrevb.87.214103 doi: 10.1103/physrevb.87.214103
    [147]
    I. Valentin, C.-S. Yoo, J. Klepeis, J. Zsolt, W. Evans, and H. Cynn, Nat. Mater. 6, 34–37 (2007).10.1038/nmat1800 doi: 10.1038/nmat1800
    [148]
    A. Sengupta and C.-S. Yoo, “Coesite-like CO2: An analog to SiO2,” Phys. Rev. B 82, 012105-1–012105-4 (2010).10.1103/physrevb.82.012105 doi: 10.1103/physrevb.82.012105
    [149]
    Y. J. Ryu, C. S. Yoo, M. Kim, X. Yong, J. Tse, S. K. Lee, and E. J. Kim, “Hydrogen-doped polymeric carbon monoxide at high pressure,” J. Phys. Chem. C 121, 10078–10086 (2017).10.1021/acs.jpcc.7b01506 doi: 10.1021/acs.jpcc.7b01506
    [150]
    C.-S. Yoo, M. Kim, J. Lim, Y. J. Ryu, and I. G. Batyrev, “Copolymerization of CO and N2 to extended CON2 framework solid at high pressures,” J. Phys. Chem. C 122, 13054-13960 (2018).10.1021/acs.jpcc.8b03415 doi: 10.1021/acs.jpcc.8b03415
    [151]
    S. Duwal, Y.-J. Ryu, M. Kim, C.-S. Yoo, S. Bang, K. Kim, and N. H. Hur, “Transformation of hydrazinium azide to molecular N8 at 40 GPa,” J. Chem. Phys. 148, 134310-1–134310-7 (2018).10.1063/1.5021976 doi: 10.1063/1.5021976
    [152]
    K. O. Christe, W. W. Wilson, J. A. Sheechy, and J. A. Boatz, “N5+: A novel homoleptic polynitrogen ion as a high energy density material,” Angew. Chem., Int. Ed. 38, 2004–2009 (2004).10.1002/(SICI)1521-3773(19990712)38:13/14<2004::AID-ANIE2004>3.0.CO;2-7 doi: 10.1002/(SICI)1521-3773(19990712)38:13/14<2004::AID-ANIE2004>3.0.CO;2-7
    [153]
    J. C. Crowhurst, J. M. Zaug, H. R. Radousky, B. A. Steele, A. C. Landrville, and I. A. Oleynik, “Ammonium azide under high pressure: A combined theoretical and experimental study,” J. Phys. Chem. A 118, 8695–8700 (2014).10.1021/jp502619n doi: 10.1021/jp502619n
    [154]
    H. Gao and J. M. Shreeve, “Azole-based energetic salts,” Chem. Rev. 111, 7377–7436 (2011).10.1021/cr200039c doi: 10.1021/cr200039c
    [155]
    Z. Raza, C. J. Pickard, C. Pinilla, and A. Marco Saitta, “High energy density mixed polymeric phase from carbon monoxide and nitrogen,” Phys. Rev. Lett. 111, 235501-1–235501-5 (2013).10.1103/physrevlett.111.235501 doi: 10.1103/physrevlett.111.235501
    [156]
    C. Zhu, Q. Li, Y. Zhou, M. S. Zhang, S. Zhang, and Q. Li, “Exploring high-pressure structure of N2CO,” J. Phys. Chem. C 118, 27252–27257 (2014).10.1021/jp509446t doi: 10.1021/jp509446t
    [157]
    B. A. Steele and I. I. Oleynik, “Ternary inorganic compounds containing carbon, nitrogen, and oxygen at high pressures,” Inorg. Chem. 56, 13321–13328 (2017).10.1021/acs.inorgchem.7b02102 doi: 10.1021/acs.inorgchem.7b02102
    [158]
    J. A. Ciezak-Jenkins, B. A. Steele, G. M. Borstad, and I. I. Oleynik, “Structural and spectroscopic studies of nitrogen-carbon monoxide mixtures: Photochemical response and observation of a novel phase,” J. Chem. Phys. 146, 184309-1–184309-9 (2017).10.1063/1.4983040 doi: 10.1063/1.4983040
    [159]
    Y. J. Ryu, M. Kim, and C.-S. Yoo, “Phase diagram and transformations of iron pentacarbonyl to nm layered hematite and carbon-oxygen polymer under pressure,” Sci. Rep. 5, 15139-1–15139-8 (2015).10.1038/srep15139 doi: 10.1038/srep15139
    [160]
    G. K. Rozenberg, L. S. Dubrovinsky, M. P. Pasternak, O. Naaman, T. Le Bihan, and R. Ahuja, “High-pressure structural studies of hematite Fe2O3,” Phys. Rev. B 65, 064112-1–064112-8 (2002).10.1103/physrevb.65.064112 doi: 10.1103/physrevb.65.064112
    [161]
    B. Tang, Q. An, and W. A. Goddard III, “Improved ductility of boron carbide by microalloying with boron suboxide,” J. Phys. Chem. C 119, 24649–24656 (2015).10.1021/acs.jpcc.5b08086 doi: 10.1021/acs.jpcc.5b08086
    [162]
    F. R. Kersey, D. M. Loveless, and S. L. Craig, “A hybrid polymer gel with controlled rates of cross-link rupture and self-repair,” J. R. Soc. Interface 4, 373–380 (2007).10.1098/rsif.2006.0187 doi: 10.1098/rsif.2006.0187
    [163]
    A. P. Cote, A. I. Benin, N. W. Ockwig, M. O’Keefe, A. J. Matzger, and O. M. Yaghi, “Porous, crystalline, covalent organic frameworks,” Science 310, 1166–1170 (2005).10.1126/science.1120411 doi: 10.1126/science.1120411
    [164]
    D. J. Tranchemontague, J. L. Mendoza-Cortes, M. O’Keeffe, and O. M. Yaghi, “Secondary building units, nets and bonding in the chemistry of metal-organic frameworks,” Chem. Soc. Rev. 38, 1257–1283 (2009).10.1039/b817735j doi: 10.1039/b817735j
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(11)

    Article Metrics

    Article views (145) PDF downloads(7) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return