Follow us on Wechat

用微信扫码二维码

分享至好友和朋友圈

Volume 4 Issue 6
Nov.  2019
Turn off MathJax
Article Contents
Zhou Zheng, Fang Yu, Chen Han, Wu Yipeng, Du Yingchao, Zhang Zimin, Zhao Yongtao, Li Ming, Tang Chuanxiang, Huang Wenhui. Visualizing the melting processes in ultrashort intense laser triggered gold mesh with high energy electron radiography[J]. Matter and Radiation at Extremes, 2019, 4(6): 065402. doi: 10.1063/1.5109855
Citation: Zhou Zheng, Fang Yu, Chen Han, Wu Yipeng, Du Yingchao, Zhang Zimin, Zhao Yongtao, Li Ming, Tang Chuanxiang, Huang Wenhui. Visualizing the melting processes in ultrashort intense laser triggered gold mesh with high energy electron radiography[J]. Matter and Radiation at Extremes, 2019, 4(6): 065402. doi: 10.1063/1.5109855

Visualizing the melting processes in ultrashort intense laser triggered gold mesh with high energy electron radiography

doi: 10.1063/1.5109855
  • Received Date: 2019-05-13
  • Accepted Date: 2019-07-19
  • Available Online: 2021-04-13
  • Publish Date: 2019-11-15
  • High-energy electron radiography (HEER) is a promising diagnostic tool for high-energy-density physics, as an alternative to tools such as X/γ-ray shadowgraphy and high-energy proton radiography. Impressive progress has been made in the development and application of HEER in the past few years, and its potential for high-resolution imaging of static opaque objects has been proved. In this study, by taking advantage of the short pulse duration and tunable time structure of high-energy electron probes, time-resolved imaging measurements of high-energy-density gold irradiated by ultrashort intense laser pulses are performed. Phenomena at different time scales from picoseconds to microseconds are observed, thus proving the feasibility of this technique for imaging of static and dynamic objects.
  • loading
  • [1]
    R. P. Drake, High-Energy-Density Physics: Fundamentals, Inertial Fusion, and Experimental Astrophysics (Springer Science & Business Media, 2006).
    [2]
    I. Hofmann, “Review of accelerator driven heavy ion nuclear fusion,” Matter Radiat. Extremes 3, 1–11 (2018).10.1016/j.mre.2017.12.001 doi: 10.1016/j.mre.2017.12.001
    [3]
    E. Campbell, V. Goncharov, T. Sangster, S. Regan, P. Radha, R. Betti, J. Myatt, D. Froula, M. Rosenberg, I. Igumenshchev, W. Seka, A. Solodov, A. Maximov, J. Marozas, T. Collins, D. Turnbull, F. Marshall, A. Shvydky, J. Knauer, R. McCrory, A. Sefkow, M. Hohenberger, P. Michel, T. Chapman, L. Masse, C. Goyon, S. Ross, J. Bates, M. Karasik, J. Oh, J. Weaver, A. Schmitt, K. Obenschain, S. Obenschain, S. Reyes, and B. Van Wonterghem, “Laser-direct-drive program: Promise, challenge, and path forward,” Matter Radiat. Extremes 2, 37–54 (2017).10.1016/j.mre.2017.03.001 doi: 10.1016/j.mre.2017.03.001
    [4]
    W. Gai, J. Qiu, and C. Jing, “Electron imaging system for ultrafast diagnostics of hedlp,” in Target Diagnostics Physics and Engineering for Inertial Confinement Fusion III (International Society for Optics and Photonics, 2014), Vol. 9211, p. 921104.
    [5]
    C. L. Morris, N. King, K. Kwiatkowski, F. Mariam, F. Merrill, and A. Saunders, “Charged particle radiography,” Rep. Prog. Phys. 76, 046301 (2013).10.1088/0034-4885/76/4/046301 doi: 10.1088/0034-4885/76/4/046301
    [6]
    C. Morris, J. W. Hopson, and P. Goldstone, “Proton radiography,” Los Alamos Sci. 30, 32 (2006).
    [7]
    C. Morris, E. Ables, K. Alrick, M. Aufderheide, P. Barnes, Jr., K. Buescher, D. Cagliostro, D. Clark, D. Clark, C. Espinoza et al., “Flash radiography with 24 GeV/c protons,” J. Appl. Phys. 109, 104905 (2011).10.1063/1.3580262 doi: 10.1063/1.3580262
    [8]
    N. King, E. Ables, K. Adams, K. Alrick, J. Amann, S. Balzar, P. Barnes, Jr., M. Crow, S. Cushing, J. Eddleman et al., “An 800-MeV proton radiography facility for dynamic experiments,” Nucl. Instrum. Methods Phys. Res., Sect. A 424, 84–91 (1999).10.1016/s0168-9002(98)01241-8 doi: 10.1016/s0168-9002(98)01241-8
    [9]
    S. Kolesnikov, A. Golubev, V. Demidov, S. Dudin, A. Kantsyrev, V. Mintsev, G. Smirnov, V. Turtikov, A. Utkin, B. Sharkov et al., “Application of charged particle beams of TWAC-ITEP accelerator for diagnostics of high dynamic pressure processes,” High Pressure Res. 30, 83–87 (2010).10.1080/08957951003589462 doi: 10.1080/08957951003589462
    [10]
    Y. M. Antipov, A. Afonin, A. Vasilevskii, I. Gusev, V. Demyanchuk, O. Zyat’kov, N. Ignashin, Y. G. Karshev, A. Larionov, A. Maksimov et al., “A radiographic facility for the 70-GeV proton accelerator of the institute for high energy physics,” Instrum. Exp. Tech. 53, 319–326 (2010).10.1134/s0020441210030012 doi: 10.1134/s0020441210030012
    [11]
    F. Merrill, A. Golubev, F. Mariam, V. Turtikov, D. Varentsov, and H. Collaboration, “Proton microscopy at fair,” AIP Conf. Proc. 1195, 667–670 (2009).10.1063/1.3295228 doi: 10.1063/1.3295228
    [12]
    F. Merrill, F. Harmon, A. Hunt, F. Mariam, K. Morley, C. Morris, A. Saunders, and C. Schwartz, “Electron radiography,” Nucl. Instrum. Methods Phys. Res., Sect. B 261, 382–386 (2007).10.1016/j.nimb.2007.04.127 doi: 10.1016/j.nimb.2007.04.127
    [13]
    Z. Zhou, Y. Du, S. Cao, Z. Zhang, W. Huang, H. Chen, R. Cheng, Z. Chi, M. Liu, X. Su et al., “Experiments on bright-field and dark-field high-energy electron imaging with thick target material,” Phys. Rev. Accel. Beams 21, 074701 (2018).10.1103/physrevaccelbeams.21.074701 doi: 10.1103/physrevaccelbeams.21.074701
    [14]
    F. Merrill, J. Goett, J. Gibbs, S. Imhoff, F. Mariam, C. Morris, L. Neukirch, J. Perry, D. Poulson, R. Simpson et al., “Demonstration of transmission high energy electron microscopy,” Appl. Phys. Lett. 112, 144103 (2018).10.1063/1.5011198 doi: 10.1063/1.5011198
    [15]
    Y. Du, L. Yan, J. Hua, Q. Du, Z. Zhang, R. Li, H. Qian, W. Huang, H. Chen, and C. Tang, “Generation of first hard X-ray pulse at Tsinghua Thomson scattering X-ray source,” Rev. Sci. Instrum. 84, 053301 (2013).10.1063/1.4803671 doi: 10.1063/1.4803671
    [16]
    M. Schollmeier, S. Becker, M. Geißel, K. Flippo, A. Blažević, S. Gaillard, D. Gautier, F. Grüner, K. Harres, M. Kimmel et al., “Controlled transport and focusing of laser-accelerated protons with miniature magnetic devices,” Phys. Rev. Lett. 101, 055004 (2008).10.1103/physrevlett.101.055004 doi: 10.1103/physrevlett.101.055004
    [17]
    J. Lim, P. Frigola, G. Travish, J. Rosenzweig, S. Anderson, W. Brown, J. Jacob, C. Robbins, and A. Tremaine, “Adjustable, short focal length permanent-magnet quadrupole based electron beam final focus system,” Phys. Rev. Spec. Top.-Accel. Beams 8, 072401 (2005).10.1103/physrevstab.8.072401 doi: 10.1103/physrevstab.8.072401
    [18]
    R. Li and P. Musumeci, “Single-shot MeV transmission electron microscopy with picosecond temporal resolution,” Phys. Rev. Appl. 2, 024003 (2014).10.1103/physrevapplied.2.024003 doi: 10.1103/physrevapplied.2.024003
    [19]
    D. Cesar, J. Maxson, P. Musumeci, Y. Sun, J. Harrison, P. Frigola, F. O’Shea, H. To, D. Alesini, and R. Li, “Demonstration of single-shot picosecond time-resolved MeV electron imaging using a compact permanent magnet quadrupole based lens,” Phys. Rev. Lett. 117, 024801 (2016).10.1103/physrevlett.117.024801 doi: 10.1103/physrevlett.117.024801
    [20]
    K. Makino and M. Berz, “Cosy infinity version 9,” Nucl. Instrum. Methods Phys. Res., Sect. A 558, 346–350 (2006).10.1016/j.nima.2005.11.109 doi: 10.1016/j.nima.2005.11.109
    [21]
    [22]
    C. Scoby, R. Li, E. Threlkeld, H. To, and P. Musumeci, “Single-shot 35 fs temporal resolution electron shadowgraphy,” Appl. Phys. Lett. 102, 023506 (2013).10.1063/1.4776686 doi: 10.1063/1.4776686
    [23]
    Z. Peng-Fei, F. Fei-Chao, L. Sheng-Guang, X. Dao, Z. Jie, and C. Jian-Ming, “Time-resolved visualization of laser-induced heating of gold with MeV ultrafast electron diffraction,” Chin. Phys. Lett. 31, 116101 (2014).10.1088/0256-307x/31/11/116101 doi: 10.1088/0256-307x/31/11/116101
    [24]
    L. Chen, R. Li, J. Chen, P. Zhu, F. Liu, J. Cao, Z. Sheng, and J. Zhang, “Mapping transient electric fields with picosecond electron bunches,” Proc. Natl. Acad. Sci. U. S. A. 112, 14479–14483 (2015).10.1073/pnas.1518353112 doi: 10.1073/pnas.1518353112
    [25]
    P. Zhu, Z. Zhang, L. Chen, J. Zheng, R. Li, W. Wang, J. Li, X. Wang, J. Cao, D. Qian et al., “Four-dimensional imaging of the initial stage of fast evolving plasmas,” Appl. Phys. Lett. 97, 211501 (2010).10.1063/1.3521387 doi: 10.1063/1.3521387
    [26]
    N. Zhang, X. Zhu, J. Yang, X. Wang, and M. Wang, “Time-resolved shadowgraphs of material ejection in intense femtosecond laser ablation of aluminum,” Phys. Rev. Lett. 99, 167602 (2007).10.1103/physrevlett.99.167602 doi: 10.1103/physrevlett.99.167602
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(6)  / Tables(1)

    Article Metrics

    Article views (186) PDF downloads(5) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return