Follow us on Wechat

用微信扫码二维码

分享至好友和朋友圈

Volume 4 Issue 6
Nov.  2019
Turn off MathJax
Article Contents
Ma ZhiGuo, Lan HaoYang, Liu WeiYuan, Wu ShaoDong, Xu Yi, Zhu ZhiChao, Luo Wen. Photonuclear production of medical isotopes 62,64Cu using intense laser-plasma electron source[J]. Matter and Radiation at Extremes, 2019, 4(6): 064401. doi: 10.1063/1.5100925
Citation: Ma ZhiGuo, Lan HaoYang, Liu WeiYuan, Wu ShaoDong, Xu Yi, Zhu ZhiChao, Luo Wen. Photonuclear production of medical isotopes 62,64Cu using intense laser-plasma electron source[J]. Matter and Radiation at Extremes, 2019, 4(6): 064401. doi: 10.1063/1.5100925

Photonuclear production of medical isotopes 62,64Cu using intense laser-plasma electron source

doi: 10.1063/1.5100925
More Information
  • Corresponding author: a)Author to whom correspondence should be addressed: wenluo-ok@163.com
  • Received Date: 2019-04-22
  • Accepted Date: 2019-08-11
  • Available Online: 2019-10-31
  • Publish Date: 2019-11-15
  • 62,64Cu are radioisotopes of medical interest that can be used for positron emission tomography (PET) imaging. Moreover, 64Cu has β decay characteristics that allow for targeted radiotherapy of cancer. In the present work, a novel approach to experimentally demonstrate the production of 62,64Cu isotopes from photonuclear reactions is proposed in which large-current laser-based electron (e) beams are generated from the interaction between sub-petawatt laser pulses and near-critical-density plasmas. According to simulations, at a laser intensity of 3.4 × 1021 W/cm2, a dense e beam with a total charge of 100 nC can be produced, and this in turn produces bremsstrahlung radiation of the order of 1010 photons per laser shot, in the region of the giant dipole resonance. The bremsstrahlung radiation is guided to a natural Cu target, triggering photonuclear reactions to produce the medical isotopes 62,64Cu. An optimal target geometry is employed to maximize the photoneutron yield, and 62,64Cu with appropriate activities of 0.18 GBq and 0.06 GBq are obtained for irradiation times equal to their respective half-lives multiplied by three. The detection of the characteristic energy for the nuclear transitions of 62, 64Cu is also studied. The results of our calculations support the prospect of producing PET isotopes with gigabecquerel-level activity (equivalent to the required patient dose) using upcoming high-intensity laser facilities.
  • loading
  • [1]
    D. Habs and U. Köster, “Production of medical radioisotopes with high specific activity in photonuclear reactions with γ-beams of high intensity and large brilliance,” Appl. Phys. B 103(2), 501–519 (2011).10.1007/s00340-010-4278-1 doi: 10.1007/s00340-010-4278-1
    [2]
    M. Bobeica, D. Niculae et al., “Radioisotope production for medical applications at ELI-NP,” Rom. Rep. Phys. 68(Suppl), 847–883 (2016).
    [3]
    W. Luo, “Production of medical radioisotope Cu-64 by photoneutron reaction using ELI-NP γ-ray beam,” Nucl. Sci. Technol. 27(4), 96 (2016).10.1007/s41365-016-0094-6 doi: 10.1007/s41365-016-0094-6
    [4]
    P. J. Blower et al., “Copper radionuclides and radiopharmaceuticals in nuclear medicine,” Nucl. Med. Biol. 23(8), 957–980 (1996).10.1016/s0969-8051(96)00130-8 doi: 10.1016/s0969-8051(96)00130-8
    [5]
    K. R. Zinn, T. R. Chaudhuri et al., “Production of no-carrier-added 64Cu from zinc metal irradiated under boron shielding,” Cancer 73(S3), 774–778 (1994).10.1002/1097-0142(19940201)73:3+<774::aid-cncr2820731305>3.0.co;2-l doi: 10.1002/1097-0142(19940201)73:3+<774::aid-cncr2820731305>3.0.co;2-l
    [6]
    J. Y. Kim et al., “A simple Cu-64 production and its application of Cu-64 ATSM,” Appl. Radiat. Isot. 67(7-8), 1190–1194 (2009).10.1016/j.apradiso.2009.02.060 doi: 10.1016/j.apradiso.2009.02.060
    [7]
    J. Kozempal, K. Abbas, F. Simonelli et al., “A novel method for n. γ. a. 64Cu production by the 64Zn(d, 2p)64Cu reaction and dual ion-exchange column chromatography,” Radiochim. Acta 95(2), 75–80 (2007).10.1524/ract.2007.95.2.75 doi: 10.1524/ract.2007.95.2.75
    [8]
    J. B. Philip et al., “Copper radionuclides and radiopharmaceuticals in nuclear medicine,” Nucl. Med. Biol. 23, 957–980 (1996).10.1016/s0969-8051(96)00130-8 doi: 10.1016/s0969-8051(96)00130-8
    [9]
    Y. Fujibayashi et al., “A new zinc-62/copper-62 generator as a copper-62 source for PET radiopharmaceuticals,” J. Nucl. Med. 30(11), 1838–1842 (1989).10.1177/875647938900500609 doi: 10.1177/875647938900500609
    [10]
    A. G. Mark, “Copper-62 radiopharmaceuticals for diagnistic imaging with position emission tomography (PET),” Transition Met. Chem. 22, 427 (1997).10.1023/a:1018590608538 doi: 10.1023/a:1018590608538
    [11]
    T. Fukumura, K. Okada et al., “An improved 62Zn/62Cu generator based on a cation exchanger and its fully remote-controlled preparation for clinical use,” Nucl. Med. Biol. 33(6), 821–827 (2006).10.1016/j.nucmedbio.2006.05.003 doi: 10.1016/j.nucmedbio.2006.05.003
    [12]
    W. Luo, M. Bobeica, D. Filipescu et al., “Production of radioisotopes of medical interest by photonuclear reaction using ELI-NP γ-ray beam,” Acta Phys. Pol. B 47(3), 763–769 (2016).10.5506/aphyspolb.47.763 doi: 10.5506/aphyspolb.47.763
    [13]
    P. Gould, “Medical isotope shortage reaches crisis level,” Nature 460(7253), 312–313 (2009).10.1038/460312a doi: 10.1038/460312a
    [14]
    V. Noorden and R. Radioisotopes, “The medical testing crisis,” Nature 504(7479), 202–204 (2013).10.1038/504202a doi: 10.1038/504202a
    [15]
    C. Danson, D. Hillier, N. Hopps et al., “Petawatt class lasers worldwide,” High Power Laser Sci. Eng. 3, e3 (2015).10.1017/hpl.2014.52 doi: 10.1017/hpl.2014.52
    [16]
    G. A. Mourou, C. L. Labaune, M. Dunne et al., “Relativistic laser-matter interaction: From attosecond pulse generation to fast ignition,” Plasma Phys. Controlled Fusion 49(12B), B667 (2007).10.1088/0741-3335/49/12b/s61 doi: 10.1088/0741-3335/49/12b/s61
    [17]
    G. A. Mourou, T. Tajima, and S. V. Bulanov, “Optics in the relativistic regime,” Rev. Mod. Phys. 78(2), 309 (2006).10.1103/revmodphys.78.309 doi: 10.1103/revmodphys.78.309
    [18]
    K. W. D. Ledingham, P. McKenna, and R. P. Singhal, “Applications for nuclear phenomena generated by ultra-intense lasers,” Science 300(5622), 1107–1111 (2003).10.1126/science.1080552 doi: 10.1126/science.1080552
    [19]
    W. Qi, Y. Q. Gu et al., “Enhanced photoneutron production by intense picoseconds laser interacting with gas-solid hybrid targets,” Phys. Plasmas 26, 043103 (2019).10.1063/1.5079773 doi: 10.1063/1.5079773
    [20]
    S. Fritzler, V. Malka, G. Grillon et al., “Proton beams generated with high-intensity lasers: Applications to medical isotope production,” Appl. Phys. Lett. 83(15), 3039–3041 (2003).10.1063/1.1616661 doi: 10.1063/1.1616661
    [21]
    K. W. D. Ledingham, P. McKenna, T. McCanny et al., “High power laser production of short-lived isotopes for positron emission tomography,” J. Phys. D: Appl. Phys. 37(16), 2341 (2004).10.1088/0022-3727/37/16/019 doi: 10.1088/0022-3727/37/16/019
    [22]
    C. P. Ridgers, J. G. Kirk, R. Duclous et al., “Modelling gamma-ray photon emission and pair production in high-intensity laser–matter interactions,” J. Comput. Phys. 260, 273–285 (2014).10.1016/j.jcp.2013.12.007 doi: 10.1016/j.jcp.2013.12.007
    [23]
    S. Agostinelli, J. Allison, K. Amako et al., “GEANT4-a simulation toolkit,” Nucl. Instrum. Methods Phys. Res., Sect. A 506(3), 250–303 (2003).10.1016/s0168-9002(03)01368-8 doi: 10.1016/s0168-9002(03)01368-8
    [24]
    W. Luo, H. Y. Lan, Y. Xu et al., “Implementation of the n-body Monte-Carlo event generator into the Geant4 toolkit for photonuclear studies,” Nucl. Instrum. Methods Phys. Res., Sect. A 849, 49–54 (2017).10.1016/j.nima.2017.01.010 doi: 10.1016/j.nima.2017.01.010
    [25]
    A. Modena et al., “Electron acceleration from the breaking of relativistic plasma waves,” Nature 377, 606 (1995).10.1038/377606a0 doi: 10.1038/377606a0
    [26]
    R. Hu, B. Liu, H. Lu et al., “Dense helical electron bunch generation in near-critical density plasmas with ultrarelativistic laser intensities,” Sci. Rep. 5, 15499 (2015).10.1038/srep15499 doi: 10.1038/srep15499
    [27]
    X. L. Wang, Z. Y. Xu, W. Luo et al., “Transmutation prospect of long-lived nuclear waste induced by high-charge electron beam from laser plasma accelerator,” Phys. Plasmas 24(9), 093105 (2017).10.1063/1.4998470 doi: 10.1063/1.4998470
    [28]
    X. L. Wang, Z. Y. Tan, W. Luo et al., “Photo-transmutation of long-lived radionuclide 135Cs by laser–plasma driven electron source,” Laser Part. Beams 34(3), 433–439 (2016).10.1017/s0263034616000318 doi: 10.1017/s0263034616000318
    [29]
    E. Irani, H. Omidvar, and R. Sadighi-Bonabi, “Gamma rays transmutation of Palladium by bremsstrahlung and laser inverse Compton scattering,” Energy Convers. Manage. 77, 558–563 (2014).10.1016/j.enconman.2013.09.029 doi: 10.1016/j.enconman.2013.09.029
    [30]
    V. V. Varlamov, A. I. Davydov, M. A. Makarov et al., “Reliability of the data on the cross sections of the partial photoneutron reaction for 63,65 Cu and 80Se nuclei,” Bull. Russ. Acad. Sci.: Phys. 80(3), 317–324 (2016).10.3103/s1062873816030333 doi: 10.3103/s1062873816030333
    [31]
    K. M. Spohr, M. Shaw, W. Galster et al., “Study of photo-proton reactions driven by bremsstrahlung radiation of high-intensity laser generated electrons,” New J. Phys. 10(4), 043037 (2008).10.1088/1367-2630/10/4/043037 doi: 10.1088/1367-2630/10/4/043037
    [32]
    W. Luo, D. L. Balabanski, and D. Filipescu, “A data-based photonuclear simulation algorithm for determining specific activity of medical radioisotopes,” Nucl. Sci. Tech. 27(5), 113 (2016).10.1007/s41365-016-0111-9 doi: 10.1007/s41365-016-0111-9
    [33]
    W. Luo, M. Bobeica et al., “Estimates for production of radioisotopes of medical interest at extreme light infrastructure–nuclear physics facility,” Appl. Phys. B 122(1), 8 (2016).10.1007/s00340-015-6292-9 doi: 10.1007/s00340-015-6292-9
    [34]
    R. Zhang, X. Tian, D. Zhou et al., “Single-mode millijoule fiber laser system with high pulse shaping ability,” Optik 157, 1087–1093 (2018).10.1016/j.ijleo.2017.11.198 doi: 10.1016/j.ijleo.2017.11.198
    [35]
    A. Klenke et al., “Coherently combined 16-channel multicore fiber laser system,” Opt. Lett. 43, 1519 (2018).10.1364/ol.43.001519 doi: 10.1364/ol.43.001519
    [36]
    S. Fourmaux, S. Payeur et al., “Laser beam wavefront correction for ultra-high intensities with the 200 TW laser system at the advanced laser light source,” Opt. Express 16(16), 11987–11994 (2008).10.1364/oe.16.011987 doi: 10.1364/oe.16.011987
    [37]
    C. Liu, S. Banerjee, J. Zhang et al., “Repetitive petawatt-class laser with near-diffraction-limited focal spot and transform-limited pulse duration,” Proc. SPIE 8599, 859919 (2013).10.1117/12.2005008 doi: 10.1117/12.2005008
    [38]
    M. D. Perry, D. Pennington, B. C. Stuart et al., “Petawatt laser pulses,” Opt. Lett. 24(3), 160–162 (1999).10.1364/ol.24.000160 doi: 10.1364/ol.24.000160
    [39]
    N. G. Haynes et al., “Performance of a 62Zn/62Cu generator in clinical trials of PET perfusion agent 62Cu-PTSM,” J. Nucl. Med. 41, 309–314 (2000).10.1159/000161573 doi: 10.1159/000161573
    [40]
    T. J. Xu, B. F. Shen et al., “Ultrashort megaelectronvolt positron beam generation based on laser-accelerated electrons,” Phys. Plasmas 23(3), 033109 (2016).10.1063/1.4943280 doi: 10.1063/1.4943280
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(10)

    Article Metrics

    Article views (198) PDF downloads(11) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return