Follow us on Wechat

用微信扫码二维码

分享至好友和朋友圈

Volume 4 Issue 6
Nov.  2019
Turn off MathJax
Article Contents
Andreev Dmitrii, Kuskov Artem, Schamiloglu Edl. Review of the relativistic magnetron[J]. Matter and Radiation at Extremes, 2019, 4(6): 067201. doi: 10.1063/1.5100028
Citation: Andreev Dmitrii, Kuskov Artem, Schamiloglu Edl. Review of the relativistic magnetron[J]. Matter and Radiation at Extremes, 2019, 4(6): 067201. doi: 10.1063/1.5100028

Review of the relativistic magnetron

doi: 10.1063/1.5100028
  • Received Date: 2019-04-14
  • Accepted Date: 2019-08-20
  • Available Online: 2021-04-13
  • Publish Date: 2019-11-15
  • The cavity magnetron is the most compact, efficient source of high-power microwave (HPM) radiation. The imprint that the magnetron has had on the world is comparable to the invention of the nuclear bomb. High- and low-power magnetrons are used in many applications, such as radar systems, plasma generation for semiconductor processing, and—the most common—microwave ovens for personal and industrial use. Since the invention of the magnetron in 1921 by Hull, scientists and engineers have improved and optimized magnetron technology by altering the geometry, materials, and operating conditions, as well as by identifying applications. A major step in advancing magnetrons was the relativistic magnetron introduced by Bekefi and Orzechowski at MIT (USA, 1976), followed by the invention of the relativistic magnetron with diffraction output (MDO) by Kovalev and Fuks at the Institute of Applied Physics (Soviet Union, 1977). The performance of relativistic magnetrons did not advance significantly thereafter until researchers at the University of Michigan and University of New Mexico (UNM) independently introduced new priming techniques and new cathode topologies in the 2000s, and researchers in Japan identified a flaw in the original Soviet MDO design. Recently, the efficiency of the MDO has reached 92% with the introduction of a virtual cathode and magnetic mirror, proposed by Fuks and Schamiloglu at UNM (2018). This article presents a historical review of the progression of the magnetron from a device intended to operate as a high-voltage switch controlled by the magnetic field that Hull published in 1921, to the most compact and efficient HPM source in the twenty-first century.
  • loading
  • [1]
    J. J. Coupling , Maggie ( Astounding Science-Fiction, 1948), pp. 77– 93.
    [2]
    S. Phelps , The Tizard Mission: The Top-Secret Operation that Changed the Course of World War II ( Westholme Publishing, Pennsylvania, 2010).
    [3]
    Y. Blanchard , G. Galati , and P. van Genderen , “ The cavity magnetron: Not just a British invention,” IEEE Antennas Propag. Mag. 55, 244– 254 ( 2013). 10.1109/map.2013.6735528 doi: 10.1109/map.2013.6735528
    [4]
    G. Bekefi and T. J. Orzechowski , “ Giant microwave bursts emitted from a field-emission, relativistic-electron-beam magnetron,” Phys. Rev. Lett. 37, 379– 382 ( 1976). 10.1103/physrevlett.37.379 doi: 10.1103/physrevlett.37.379
    [5]
    N. Kovalev , B. Kol’chugin , V. Nechaev , M. Ofitserov , E. Soluyanov , and M. Fuks , “ Relativistic magnetron with diffraction coupling,” Sov. Tech. Phys. Lett. 3, 430– 434 ( 1977).
    [6]
    V. B. Neculaes , R. M. Gilgenbach , and Y. Y. Lau , “ Low-noise microwave magnetrons by azimuthally varying axial magnetic field,” Appl. Phys. Lett. 83, 1938– 1940 ( 2003). 10.1063/1.1609040 doi: 10.1063/1.1609040
    [7]
    M. C. Jones , V. B. Neculaes , W. M. White , Y. Y. Lau , and R. M. Gilgenbach , “ Simulation of rapid startup in microwave magnetrons with azimuthally varying axial magnetic fields,” Appl. Phys. Lett. 84, 1016– 1018 ( 2004). 10.1063/1.1646225 doi: 10.1063/1.1646225
    [8]
    M. C. Jones , V. B. Neculaes , Y. Y. Lau , R. M. Gilgenbach , and W. M. White , “ Cathode priming of a relativistic magnetron,” Appl. Phys. Lett. 85, 6332– 6334 ( 2004). 10.1063/1.1841454 doi: 10.1063/1.1841454
    [9]
    M. C. Jones , V. B. Neculaes , Y. Y. Lau , R. M. Gilgenbach , W. M. White , B. W. Hoff , and N. M. Jordan , “ Magnetron priming by multiple cathodes,” Appl. Phys. Lett. 87, 081501-1– 081501-3 ( 2005). 10.1063/1.2031928 doi: 10.1063/1.2031928
    [10]
    M. Fuks and E. Schamiloglu , “ Rapid start of oscillations in a magnetron with a “transparent” cathode,” Phys. Rev. Lett. 96, 205101-1– 205101-4 ( 2005). 10.1103/physrevlett.95.205101 doi: 10.1103/physrevlett.95.205101
    [11]
    M. Daimon and W. Jiang , “ Modified configuration of relativistic magnetron with diffraction output for efficiency improvement,” Appl. Phys. Lett. 91, 191503-1– 191503-3 ( 2007). 10.1063/1.2803757 doi: 10.1063/1.2803757
    [12]
    M. Daimon , K. Itoh , G. Imada , and W. Jiang , “ Experimental demonstration of relativistic magnetron with modified output configuration,” Appl. Phys. Lett. 92, 191504-1– 191504-3 ( 2008). 10.1063/1.2930684 doi: 10.1063/1.2930684
    [13]
    M. I. Fuks and E. Schamiloglu , “ 70% efficient relativistic magnetron with axial extraction of radiation through a horn antenna,” IEEE Trans. Plasma Sci. 38, 1302– 1312 ( 2010). 10.1109/tps.2010.2042823 doi: 10.1109/tps.2010.2042823
    [14]
    C. Leach , S. Prasad , M. I. Fuks , C. J. Buchenauer , J. McConaha , and E. Schamiloglu , “ Experimental demonstration of a high-efficiency relativistic magnetron with diffraction output with spherical cathode endcap,” IEEE Trans. Plasma Sci. 45, 282– 288 ( 2017). 10.1109/tps.2016.2644625 doi: 10.1109/tps.2016.2644625
    [15]
    M. I. Fuks and E. Schamiloglu , “ Application of a magnetic mirror to increase total efficiency in relativistic magnetrons,” Phys. Rev. Lett. 122, 224801-1– 224801-5 ( 2019). 10.1103/physrevlett.122.224801 doi: 10.1103/physrevlett.122.224801
    [16]
    J. Benford , “ Relativistic magnetrons,” in High-Power Microwave Sources, edited by V. L. Granatstein and I. Alexeff ( Artech House, Massachusetts, 1987), Chap. 10.
    [17]
    S. H. Gold and G. S. Nusinovich , “ Review of high-power microwave source research,” Rev. Sci. Instrum. 68, 3945– 3974 ( 1997). 10.1063/1.1148382 doi: 10.1063/1.1148382
    [18]
    J. Benford , J. Swegle , and E. Schamiloglu , High Power Microwaves, 3rd ed. ( CRC Press, Florida, 2015).
    [19]
    [20]
    [21]
    A. W. Hull , “ The effect of a uniform magnetic field on the motion of electrons between coaxial cylinders,” Phys. Rev. 18, 31– 57 ( 1921). 10.1103/physrev.18.31 doi: 10.1103/physrev.18.31
    [22]
    A. W. Hull , “ The magnetron,” J. Am. Inst. Electr. Eng. 40, 715– 723 ( 1921). 10.1109/joaiee.1921.6594005 doi: 10.1109/joaiee.1921.6594005
    [23]
    [24]
    H. F. Alexeev and D. E. Malyarov , “ Getting powerful vibrations of magnetrons in centimeter wavelength range,” Mag. Tech. Phys. 10, 1297– 1300 ( 1940).
    [25]
    [26]
    K. Okabe , “ On the short-wave limit of magnetron oscillations,” Proc. IRE 17, 652– 659 ( 1929). 10.1109/jrproc.1929.221722 doi: 10.1109/jrproc.1929.221722
    [27]
    H. Yagi , “ Beam transmission of ultra-short waves,” Proc. IRE 16, 715– 740 ( 1928). 10.1109/jrproc.1928.221464 doi: 10.1109/jrproc.1928.221464
    [28]
    A. Žaček , “ A new method for generation of undamped oscillations (a preliminary report),” Č. Pěstováni Mat. Fys. 53, 378– 380 ( 1924).
    [29]
    E. Habann , Eine neue Generatorröhre (A New Generator Tube) ( Jahrbuch für drahtlose Telegraphie, 1924), Vol. 24.
    [30]
    [31]
    [32]
    [33]
    K. Fritz , “ Beitrag zur geschichte der magnetronentwicklung in Deutschland bis 1945” (“Contribution to the history of magnetron development in Germany until 1945”), Arch. Elektrischen Übertragung 6, 209– 210 ( 1952).
    [34]
    H. A. H. Boot and J. T. Randall , “ The cavity magnetron,” J. Inst. Electr. Eng. 93( IIIA), 928– 938 ( 1946). 10.1049/ji-3a-1.1946.0183 doi: 10.1049/ji-3a-1.1946.0183
    [35]
    J. E. Brittain , “ The magnetron and the beginnings of the microwave age,” Phys. Today 38( 7), 60– 67 ( 1985). 10.1063/1.880982 doi: 10.1063/1.880982
    [36]
    [37]
    E. Schamiloglu , R. J. Barker , M. Gundersen , and A. A. Neuber , “ Modern pulsed power: Charlie Martin and beyond,” Proc. IEEE 92, 1014– 1020 ( 2004). 10.1109/jproc.2004.829058 doi: 10.1109/jproc.2004.829058
    [38]
    A. Palevsky and G. Bekefi , “ Microwave emission from pulsed, relativistic e-beam diodes. II. The multiresonator magnetron,” Phys. Fluids 22, 986– 996 ( 1979). 10.1063/1.862663 doi: 10.1063/1.862663
    [39]
    O. Buneman , R. H. Levy , and L. M. Linson , “ Stability of crossed-field electron beams,” J. Appl. Phys. 37, 3203– 3222 ( 1966). 10.1063/1.1703185 doi: 10.1063/1.1703185
    [40]
    T. J. Orzechowski and G. Bekefi , “ Microwave emission from pulsed, relativistic e-beam diodes. I. The smooth-bore magnetron,” Phys. Fluids 22, 978– 985 ( 1979). 10.1063/1.862662 doi: 10.1063/1.862662
    [41]
    W. P. Ballard , S. A. Self , and F. W. Crawford , “ A relativistic magnetron with a thermionic cathode,” J. Appl. Phys. 53, 7580– 7591 ( 1982). 10.1063/1.330129 doi: 10.1063/1.330129
    [42]
    J. Golden , J. Orzechowski , and G. Bekefi , “ Magnetic insulation of an intense relativistic electron beam,” J. Appl. Phys. 45, 3211– 3212 ( 1974). 10.1063/1.1663755 doi: 10.1063/1.1663755
    [43]
    [44]
    A. N. Didenko , A. S. Sulakshin , G. P. Fomenko , Yu. G. Shtein , and Iu. G. Iushkov , “ Intense microwave emission from a relativistic magnetron,” Sov. Tech. Phys. Lett. 4, 3– 4 ( 1978).
    [45]
    A. N. Didenko , A. S. Sulakshin , G. P. Fomenko , V. I. Tsvetkov , Iu.G. Shtein , and Iu. G. Iushkov , “ Relativistic magnetron with microsecond pulse lengths,” Sov. Tech. Phys. Lett. 4, 331– 332 ( 1978).
    [46]
    J. G. Small , W. O. Eckhardt , and F. Chilton , “ Decoy discrimination using ground-based high power microwaves,” Proc. SPIE 1061, 342– 349 ( 1989). 10.1117/12.951814 doi: 10.1117/12.951814
    [47]
    J. Benford , H. Sze , W. Woo , R. R. Smith , and B. Harteneck , “ Phase locking of relativistic magnetrons,” Phys. Rev. Lett. 62, 969– 971 ( 1989). 10.1103/physrevlett.62.969 doi: 10.1103/physrevlett.62.969
    [48]
    J. S. Levine , N. Aiello , J. Benford , and B. Harteneck , “ Design and operation of a module of phase-locked relativistic magnetrons,” J. Appl. Phys. 70, 2838– 2848 ( 1991). 10.1063/1.349347 doi: 10.1063/1.349347
    [49]
    K. A. Sharypov , V. V. Rostov , A. G. Sadykova , V. G. Shpak , S. A. Shunailov , and M. I. Yalandin , “ A phase-stabilized superradiant Ka-band oscillator driven by nanosecond voltage pulses with amplitude variations and reduced rise rates,” Appl. Phys. Lett. 113, 223502-1– 223502-5 ( 2018). 10.1063/1.5055596 doi: 10.1063/1.5055596
    [50]
    A. D. Andreev , “ Computer simulations of frequency- and phase-locking of cavity magnetrons,” J. Electromagn. Wave Appl. 32, 1501– 1518 ( 2018). 10.1080/09205071.2018.1452636 doi: 10.1080/09205071.2018.1452636
    [51]
    J. S. Levine , B. D. Harteneck , and H. D. Price , “ Frequency-agile relativistic magnetrons,” Proc. SPIE 2557, 74– 79 ( 1995).
    [52]
    J. Benford , J. Swegle , and E. Schamiloglu , High Power Microwaves, 3rd ed. ( CRC Press, Florida, 2015), pp. 190– 192.
    [53]
    M. C. Jones , R. M. Gilgenbach , W. M. White , M. R. Lopez , V. B. Neculaes , and Y. Y. Lau , “ Projection ablation lithography cathode for high-current, relativistic magnetron,” Rev. Sci. Instrum. 75, 2976– 2980 ( 2004). 10.1063/1.1784561 doi: 10.1063/1.1784561
    [54]
    H. Bosman , M. Fuks , S. Prasad , and E. Schamiloglu , “ Improvement of the output characteristics of magnetrons using the transparent cathode,” IEEE Trans. Plasma Sci. 34, 606– 619 ( 2006). 10.1109/tps.2006.875771 doi: 10.1109/tps.2006.875771
    [55]
    T. P. Fleming , P. J. Mardahl , L. Bowers , K. Cartwright , M. T. Bettencourt , and M. D. Haworth , “ Virtual prototyping of novel cathodes for the relativistic magnetron,” Comput. Sci. Eng. 9, 18– 28 ( 2007). 10.1109/mcse.2007.131 doi: 10.1109/mcse.2007.131
    [56]
    [57]
    V. B. Neculaes , M. C. Jones , R. M. Gilgenbach , Y. Y. Lau , J. W. Luginsland , B. W. Hoff , W. M. White , N. M. Jordan , P. Pengvanich , Y. Hidaka , and H. L. Bosman , “ Magnetic perturbation effects on noise and startup in DC-operating oven magnetrons,” IEEE Trans. Plasma Sci. 52, 864– 871 ( 2005). 10.1109/ted.2005.845857 doi: 10.1109/ted.2005.845857
    [58]
    B. Goplen , L. Ludeking , D. Smith , and G. Warren , “ User-configurable MAGIC for electromagnetic PIC calculations,” Comput. Phys. Commun. 87, 54– 86 ( 1995). 10.1016/0010-4655(95)00010-d doi: 10.1016/0010-4655(95)00010-d
    [59]
    [60]
    J. Benford and G. Benford , “ Survey of pulse shortening in high-power microwave sources,” IEEE Trans. Plasma Sci. 25, 311– 317 ( 1997). 10.1109/27.602505 doi: 10.1109/27.602505
    [61]
    E. Schamiloglu and Y. Y. Lau , “ The 7th special issue on high-power microwave generation,” IEEE Trans. Plasma Sci. 26, 232– 234 ( 1998). 10.1109/tps.1998.700748 doi: 10.1109/tps.1998.700748
    [62]
    F. J. Agee , “ Evolution of pulse shortening research in narrow band, high power microwave sources,” IEEE Trans. Plasma Sci. 26, 235– 245 ( 1998). 10.1109/27.700749 doi: 10.1109/27.700749
    [63]
    High Power Microwave Sources and Technologies, edited by R. J. Barker and E. Schamiloglu ( IEEE Press; John Wiley and Sons, New York, 2001), Chap. 4.
    [64]
    D. Price , J. S. Levine , and J. Benford , “ Diode plasma effects on the microwave pulse length from relativistic magnetrons,” IEEE Trans. Plasma Sci. 26, 348– 353 ( 1998). 10.1109/27.700765 doi: 10.1109/27.700765
    [65]
    D. Shiffler , M. Haworth , K. Cartwright , R. Umstattd , M. Ruebush , S. Heidger , M. LaCour , K. Golby , D. Sullivan , P. Duselis , and J. Luginsland , “ Review of cold cathode research at the Air Force Research Laboratory,” IEEE Trans. Plasma Sci. 36, 718– 728 ( 2008). 10.1109/tps.2008.926227 doi: 10.1109/tps.2008.926227
    [66]
    D. A. Shiffler , J. Heggemeier , M. J. LaCour , K. Golby , and M. Ruebush , “ Low level plasma formation in a carbon velvet cesium iodide coated cathode,” Phys. Plasmas 11, 1680– 1684 ( 2004). 10.1063/1.1666571 doi: 10.1063/1.1666571
    [67]
    M. Fuks and E. Schamiloglu , “ Optimization of the parameters of a relativistic magnetron with diffraction output,” Proc. SPIE 4720, 18– 27 ( 2002). 10.1117/12.469840 doi: 10.1117/12.469840
    [68]
    M. Fuks , N. F. Kovalev , A. Andreev , and E. Schamiloglu , “ Mode conversion in a magnetron with axial extraction of radiation,” IEEE Trans. Plasma Sci. 34, 620– 626 ( 2006). 10.1109/tps.2006.875770 doi: 10.1109/tps.2006.875770
    [69]
    W. Li and Y. G. Liu , “ An efficient mode conversion configuration in relativistic magnetron with axial diffraction output,” J. Appl. Phys. 106, 053303-1– 053303-3 ( 2009). 10.1063/1.3211323 doi: 10.1063/1.3211323
    [70]
    W. Li and Y. G. Liu , “ Choosing optimum method for the efficient design of a relativistic magnetron with diffraction output,” J. Appl. Phys. 108, 113303-1– 113303-5 ( 2010). 10.1063/1.3520219 doi: 10.1063/1.3520219
    [71]
    W. Li and Y. G. Liu , “ Modified magnetic field distribution in relativistic magnetron with diffraction output for compact operation,” Phys. Plasmas 18, 023103-1– 023103-4 ( 2011). 10.1063/1.3551759 doi: 10.1063/1.3551759
    [72]
    W. Li , J. Zhang , Y. G. Liu , H.-W. Yang , and D.-F. Shi , “ Frequency agile characteristics of a dielectric filled relativistic magnetron with diffraction output,” Appl. Phys. Lett. 101, 223506-1– 223506-3 ( 2012). 10.1063/1.4768691 doi: 10.1063/1.4768691
    [73]
    W. Li , Y.-G. Liu , T. Shu , H.-W. Yang , Y.-W. Fan , C.-W. Yuan , and J. Zhang , “ Experimental demonstration of a compact high efficient relativistic magnetron with directly axial radiation,” Phys. Plasmas 19, 013105-1– 013105-4 ( 2012). 10.1063/1.3677882 doi: 10.1063/1.3677882
    [74]
    W. Li , Y.-G. Liu , J. Zhang , T. Shu , H.-W. Yang , Y.-W. Fan , and C.-W. Yuan , “ Effects of the transparent cathode on the performance of a relativistic magnetron with axial radiation,” Rev. Sci. Instrum. 83, 024707-1– 024707-4 ( 2012). 10.1063/1.3681445 doi: 10.1063/1.3681445
    [75]
    W. Li , Y. G. Liu , J. Zhang , H.-W. Yang , and B.-L. Qian , “ Experimental investigations of the TE 11 mode radiation from a relativistic magnetron with diffraction output ,” Phys. Plasmas 19, 113108-1– 113108-3 ( 2012). 10.1063/1.4767647 doi: 10.1063/1.4767647
    [76]
    W. Li , Y.-G. Liu , J. Zhang , D.-F. Shi , and W. Q. Zhang , “ Experimental investigations on the relations between configurations and radiation patterns of a relativistic magnetron with diffraction output,” J. Appl. Phys. 113, 023304-1– 023304-4 ( 2013). 10.1063/1.4774245 doi: 10.1063/1.4774245
    [77]
    D.-F. Shi , B.-L. Qian , H.-G. Wang , W. Li , and Y.-W. Wang , “ A compact mode conversion configuration in relativistic magnetron with a TE 10 output mode ,” IEEE Trans. Plasma Sci. 43, 3512– 3516 ( 2015). 10.1109/tps.2015.2433731 doi: 10.1109/tps.2015.2433731
    [78]
    D.-F. Shi , B.-L. Qian , H.-G. Wang , and W. Li , “ A novel TE 11 mode axial output structure for a compact relativistic magnetron ,” J. Phys. D: Appl. Phys. 49– 135103-1– 135103-6 ( 2016). 10.1088/0022-3727/49/13/135103 doi: 10.1088/0022-3727/49/13/135103
    [79]
    D.-F. Shi , B.-L. Qian , H.-G. Wang , W. Li , and G.-X. Du , “ A novel relativistic magnetron with circularly polarized TE 11 coaxial waveguide mode ,” J. Phys. D: Appl. Phys. 49, 465104-1– 465104-7 ( 2016). 10.1088/0022-3727/49/46/465104 doi: 10.1088/0022-3727/49/46/465104
    [80]
    D.-F. Shi , B.-L. Qian , H.-G. Wang , W. Li , and G.-X. Du , “ Theoretical investigations on radiation generation of TEM, linearly or circularly polarized TE n1 coaxial waveguide mode in relativistic magnetron ,” Sci. Rep. 7, 1491-1– 1491-11 ( 2017). 10.1038/s41598-017-01583-w doi: 10.1038/s41598-017-01583-w
    [81]
    D.-F. Shi , B.-L. Qian , H.-G. Wang , W. Li , and G.-X. Du , “ A frequency tunable relativistic magnetron with a wide operation regime,” AIP Adv. 7, 025010-1– 025010-12 ( 2017). 10.1063/1.4971760 doi: 10.1063/1.4971760
    [82]
    D.-F. Shi , B.-L. Qian , H.-G. Wang , W. Li , J.-C. Ju , and G.-X. Du , “ A modified relativistic magnetron with TEM output mode,” Phys. Plasmas 24, 013118-1– 013118-6 ( 2017). 10.1063/1.4975006 doi: 10.1063/1.4975006
    [83]
    W. Yang , Z. Dong , Y. Yang , and Y. Dong , “ Numerical investigation of the relativistic magnetron using a novel semitransparent cathode,” IEEE Trans. Plasma Sci. 42, 3458– 3464 ( 2014). 10.1109/tps.2014.2359434 doi: 10.1109/tps.2014.2359434
    [84]
    X.-Y. Wang , Y.-W. Fan , D.-F. Shi , and T. Shu , “ A high-efficiency relativistic magnetron with the filled dielectric,” Phys. Plasmas 23, 073103-1– 073103-4 ( 2016). 10.1063/1.4956460 doi: 10.1063/1.4956460
    [85]
    L. Lei , F. Qin , S. Xu , and D. Wang , “ Preliminary experimental investigation of a compact high-efficiency relativistic magnetron with low guiding magnetic field,” IEEE Trans. Plasma Sci. 47, 209– 213 ( 2019). 10.1109/tps.2018.2879820 doi: 10.1109/tps.2018.2879820
    [86]
    S. Li , Y. Fan , and X. Wang , “ An L-band relativistic magnetron with cathode priming,” IEEE Trans. Plasma Sci. 47, 204– 208 ( 2019). 10.1109/tps.2018.2881174 doi: 10.1109/tps.2018.2881174
    [87]
    F. Qin , S. Xu , L.-R. Lei , B.-Q. Ju , and D. Wang , “ A compact relativistic magnetron with lower output mode,” IEEE Trans. Electron Devices 66, 1960– 1964 ( 2019). 10.1109/ted.2019.2898446 doi: 10.1109/ted.2019.2898446
    [88]
    T. Li , J. Li , and B. Hu , “ Experimental studies on the A6 relativistic magnetron with permanent magnet,” IEEE Trans. Plasma Sci. 39, 1776– 1780 ( 2011). 10.1109/tps.2011.2160097 doi: 10.1109/tps.2011.2160097
    [89]
    M. Liu , M. I. Fuks , E. Schamiloglu , and C. Liu , “ Operation characteristics of 12-cavity relativistic magnetron with single-stepped cavities,” IEEE Trans. Plasma Sci. 42, 3283– 3287 ( 2014). 10.1109/tps.2014.2311458 doi: 10.1109/tps.2014.2311458
    [90]
    M. Liu , M. I. Fuks , E. Schamiloglu , and C. Liu , “ Operation characteristics of A6 relativistic magnetron using single-stepped cavities with axial extraction,” IEEE Trans. Plasma Sci. 42, 3344– 3348 ( 2014). 10.1109/tps.2014.2352353 doi: 10.1109/tps.2014.2352353
    [91]
    M. Liu , L. I. Bolun , C.-L. Liu , M. Fuks , and E. Schamiloglu , “ Simulation of secondary electron emission and backscattered electron emission in A6 relativistic magnetron driven by different cathodes,” Plasma Sci. Technol. 17, 64– 70 ( 2015). 10.1088/1009-0630/17/1/12 doi: 10.1088/1009-0630/17/1/12
    [92]
    M. Liu , E. Schamiloglu , M. I. Fuks , C. Liu , and W. Jiang , “ Operation characteristics of a 12-cavity relativistic magnetron when considering secondary and backscattered electron emission,” IEEE Trans. Plasma Sci. 43, 1855– 1861 ( 2015). 10.1109/tps.2015.2415498 doi: 10.1109/tps.2015.2415498
    [93]
    M. Liu , C.-L. Liu , Z. Huang , E. Schamiloglu , M. Fuks , and W. Jiang , “ Investigation of the operating characteristics of a 12-cavity rising-sun relativistic magnetron with diffraction output using particle-in-cell simulations,” Phys. Plasmas 23, 052104-1– 052104-9 ( 2016). 10.1063/1.4948467 doi: 10.1063/1.4948467
    [94]
    M. Liu , C. Liu , Z. Wang , W. Jiang , and E. Schamiloglu , “ Optimizing the parameters of a 12-cavity rising-sun relativistic magnetron with single-stepped cavities for π-mode operation,” IEEE Trans. Plasma Sci. 44, 2852– 2858 ( 2016). 10.1109/tps.2016.2609922 doi: 10.1109/tps.2016.2609922
    [95]
    M. Liu , E. Schamiloglu , W. Jiang , M. Fuks , and C. Liu , “ Investigation of the operating characteristics of a 12 stepped-cavity relativistic magnetron with axial extraction driven by an ‘F’ transparent cathode using particle-in-cell simulations,” Phys. Plasmas 23, 112109-1– 112109-10 ( 2016). 10.1063/1.4967707 doi: 10.1063/1.4967707
    [96]
    M. Liu , E. Schamiloglu , C. Liu , M. I. Fuks , W. Jiang , and J. Feng , “ ‘Crab-like’ A6 relativistic magnetron with diffraction output driven by a transparent cathode,” Phys. Plasmas 26, 013301-1– 013301-4 ( 2019). 10.1063/1.5079761 doi: 10.1063/1.5079761
    [97]
    Y. Hadas , A. Sayapin , Y. E. Krasik , V. Bernshtam , and I. Schnitzer , “ Plasma dynamics during relativistic S-band magnetron operation,” J. Appl. Phys. 104, 064125-1– 064125-7 ( 2008). 10.1063/1.2986520 doi: 10.1063/1.2986520
    [98]
    A. Sayapin , Y. Hadas , and Y. E. Krasik , “ Drastic improvement in the S-band relativistic magnetron operation,” Appl. Phys. Lett. 95, 074101-1– 074101-3 ( 2009). 10.1063/1.3206939 doi: 10.1063/1.3206939
    [99]
    Y. Hadas , A. Sayapin , T. Kweller , and Y. E. Krasik , “ S-band relativistic magnetron operation with an active plasma cathode,” J. Appl. Phys. 105, 083307-1– 083307-7 ( 2009). 10.1063/1.3108590 doi: 10.1063/1.3108590
    [100]
    Y. Hadas , T. Kweller , A. Sayapin , Y. E. Krasik , and V. Bernshtam , “ Plasma parameters of an active cathode during relativistic magnetron operation,” J. Appl. Phys. 106, 063306-1– 063306-5 ( 2009). 10.1063/1.3225915 doi: 10.1063/1.3225915
    [101]
    A. Sayapin and Y. E. Krasik , “ Numerical simulation of the magnetron operation with resonance load,” J. Appl. Phys. 107, 074501-1– 074501-7 ( 2010). 10.1063/1.3359679 doi: 10.1063/1.3359679
    [102]
    A. Sayapin and A. Shlapakovski , “ Transient operation of the relativistic S-band magnetron with radial output,” J. Appl. Phys. 109, 063301-1– 063301-5 ( 2011). 10.1063/1.3553839 doi: 10.1063/1.3553839
    [103]
    T. Queller , J. Z. Gleizer , and Y. E. Krasik , “ Secondary-electrons-induced cathode plasma in a relativistic magnetron,” Appl. Phys. Lett. 101, 214101-1– 214101-4 ( 2012). 10.1063/1.4767953 doi: 10.1063/1.4767953
    [104]
    A. Sayapin , A. Levin , and Y. E. Krasik , “ Stabilization of the frequency of relativistic S-band magnetron with radial output,” IEEE Trans. Plasma Sci. 41, 3001– 3004 ( 2013). 10.1109/tps.2013.2280818 doi: 10.1109/tps.2013.2280818
    [105]
    J. G. Leopold , A. S. Shlapakovski , A. Sayapin , and Y. E. Krasik , “ Revisiting power flow and pulse shortening in a relativistic magnetron,” IEEE Trans. Plasma Sci. 43, 3168– 3175 ( 2015). 10.1109/tps.2015.2463717 doi: 10.1109/tps.2015.2463717
    [106]
    A. Sayapin , A. Levin , and Y. E. Krasik , “ Operation of a six-cavity S-band relativistic magnetron at frequencies in the range of its resonant response,” IEEE Trans. Plasma Sci. 43, 3827– 3832 ( 2015). 10.1109/tps.2015.2482822 doi: 10.1109/tps.2015.2482822
    [107]
    J. G. Leopold , A. S. Shlapakovski , A. F. Sayapin , and Y. E. Krasik , “ Pulse-shortening in a relativistic magnetron: The role of anode block axial endcaps,” IEEE Trans. Plasma Sci. 44, 1375– 1385 ( 2016). 10.1109/tps.2016.2580613 doi: 10.1109/tps.2016.2580613
    [108]
    A. Sayapin , U. Dai , and Y. E. Krasik , “ S-band relativistic magnetron operation with multichannel radial outputs of the microwave power,” IEEE Trans. Plasma Sci. 45, 229– 234 ( 2017). 10.1109/tps.2016.2647320 doi: 10.1109/tps.2016.2647320
    [109]
    Y. E. Krasik , J. G. Leopold , and U. Dai , “ A relativistic magnetron operated with permanent magnets,” IEEE Trans. Plasma Sci. 47, 3997– 4005 ( 2019). 10.1109/tps.2019.2926535 doi: 10.1109/tps.2019.2926535
    [110]
    W. M. White , R. M. Gilgenbach , M. C. Jones , V. B. Neculaes , Y. Y. Lau , P. Pengvanich , N. M. C. Jordan , B. W. Hoff , R. Edgar , T. A. Spencer , and D. Price , “ Radio frequency priming of a long-pulse relativistic magnetron,” IEEE Trans. Plasma Sci. 34, 627– 634 ( 2006). 10.1109/tps.2006.875829 doi: 10.1109/tps.2006.875829
    [111]
    R. Adler , “ A study of locking phenomena in oscillators,” Proc. IEEE 61, 1380– 1385 ( 1973). 10.1109/proc.1973.9292 doi: 10.1109/proc.1973.9292
    [112]
    M. Liu , C. Michel , S. Prasad , M. Fuks , E. Schamiloglu , and C.-L. Liu , “ RF mode switching in a relativistic magnetron with diffraction output,” Appl. Phys. Lett. 97, 251501-1– 251501-3 ( 2010). 10.1063/1.3529463 doi: 10.1063/1.3529463
    [113]
    M. Liu , C.-L. Liu , D. Galbreath , C. Michel , S. Prasad , M. I. Fuks , and E. Schamiloglu , “ Frequency switching in a relativistic magnetron with diffraction output,” J. Appl. Phys. 110, 033304-1– 033304-7 ( 2011). 10.1063/1.3614037 doi: 10.1063/1.3614037
    [114]
    M. Liu , M. Fuks , E. Schamiloglu , and C.-L. Liu , “ Frequency switching in a 12-cavity relativistic magnetron with axial extraction of radiation,” IEEE Trans. Plasma Sci. 40, 1569– 1574 ( 2012). 10.1109/tps.2012.2196291 doi: 10.1109/tps.2012.2196291
    [115]
    B. van der Pol , “ The nonlinear theory of electric oscillations,” Proc. IRE 22, 1051– 1086 ( 1934). 10.1109/jrproc.1934.226781 doi: 10.1109/jrproc.1934.226781
    [116]
    C. Leach , S. Prasad , M. Fuks , and E. Schamiloglu , “ Compact relativistic magnetron with Gaussian radiation pattern,” IEEE Trans. Plasma Sci. 40, 3116– 3120 ( 2012). 10.1109/tps.2012.2212910 doi: 10.1109/tps.2012.2212910
    [117]
    C. Leach , S. Prasad , M. Fuks , and E. Schamiloglu , “ Compact A6 magnetron with permanent magnet,” in Proceedings of the 2012 IEEE International Vacuum Electronics Conference ( IEEE, Monterey, CA, 2012), pp. 491– 492.
    [118]
    [119]
    [120]
    C. Leach , S. Prasad , M. Fuks , and E. Schamiloglu , “ Suppression of leakage current in a relativistic magnetron using a novel design cathode endcap,” IEEE Trans. Plasma Sci. 40, 2089– 2093 ( 2012). 10.1109/tps.2012.2199136 doi: 10.1109/tps.2012.2199136
    [121]
    [122]
    M. I. Fuks , S. Prasad , and E. Schamiloglu , “ Efficient magnetron with a virtual cathode,” IEEE Trans. Plasma Sci. 44, 1298– 1302 ( 2016). 10.1109/tps.2016.2525921 doi: 10.1109/tps.2016.2525921
    [123]
    [124]
    M. I. Fuks , D. A. Andreev , A. Kuskov , and E. Schamiloglu , “ Low energy state electron beam in a uniform channel,” Plasma 2, 222– 228 ( 2019). 10.3390/plasma2020016 doi: 10.3390/plasma2020016
    [125]
    [126]
    [127]
    R. M. Gilgenbach , Y. Y. Lau , D. M. French , B. W. Hoff , M. Franzi , and J. Luginsland , “ Recirculating planar magnetrons for high-power high-frequency radiation generation,” IEEE Trans. Plasma Sci. 39, 980– 987 ( 2011). 10.1109/tps.2010.2099670 doi: 10.1109/tps.2010.2099670
    [128]
    M. A. Franzi , R. M. Gilgenbach , B. W. Hoff , D. A. Chalenski , D. Simon , Y. Y. Lau , and J. Luginsland , “ Recirculating-planar-magnetron simulations and experiment,” IEEE Trans. Plasma Sci. 41, 639– 645 ( 2013). 10.1109/tps.2013.2242493 doi: 10.1109/tps.2013.2242493
    [129]
    M. Franzi , R. Gilgenbach , Y. Y. Lau , B. Hoff , G. Greening , and P. Zhang , “ Passive mode control in the recirculating planar magnetron,” Phys. Plasmas 20, 033108-1– 033108-8 ( 2013). 10.1063/1.4794967 doi: 10.1063/1.4794967
    [130]
    D. H. Simon , Y. Y. Lau , G. Greening , P. Wong , B. W. Hoff , and R. M. Gilgenbach , “ Stability of Brillouin flow in planar, conventional, and inverted magnetrons,” Phys. Plasmas 22, 082104-1– 082104-5 ( 2015). 10.1063/1.4927798 doi: 10.1063/1.4927798
    [131]
    M. A. Franzi , G. B. Greening , N. M. Jordan , R. M. Gilgenbach , D. H. Simon , Y. Y. Lau , B. W. Hoff , and J. Luginsland , “ Microwave power and phase measurements on a recirculating planar magnetron,” IEEE Trans. Plasma Sci. 43, 1675– 1682 ( 2015). 10.1109/tps.2015.2417774 doi: 10.1109/tps.2015.2417774
    [132]
    G. B. Greening , N. M. Jordan , S. C. Exelby , D. H. Simon , Y. Y. Lau , and R. M. Gilgenbach , “ Multi-frequency recirculating planar magnetrons,” Appl. Phys. Lett. 109, 074101-1– 074101-4 ( 2016). 10.1063/1.4961070 doi: 10.1063/1.4961070
    [133]
    G. B. Greening , S. C. Exelby , D. A. Packard , N. M. Jordan , Y. Y. Lau , and R. M. Gilgenbach , “ Harmonic frequency locking in the multifrequency recirculating planar magnetron,” IEEE Trans. Electron Devices 65, 2347– 2353 ( 2018). 10.1109/ted.2018.2810240 doi: 10.1109/ted.2018.2810240
    [134]
    N. M. Jordan , G. B. Greening , S. C. Exelby , D. A. Packard , Y. Y. Lau , and R. M. Gilgenbach , “ Pulse shortening in recirculating planar magnetrons,” IEEE Trans. Electron Devices 65, 2354– 2360 ( 2018). 10.1109/ted.2018.2807739 doi: 10.1109/ted.2018.2807739
    [135]
    P. L. Kapitza , “ The prospects for the future development of high-power electronics,” in High-Power Microwave Electronics ( Pergamon Press; The Macmillan Company, New York, 1964), pp. 106– 114.
    [136]
    [137]
    D. M. French , B. W. Hoff , Y. Y. Lau , and R. M. Gilgenbach , “ Negative, positive, and infinite mass properties of a rotating electron beam,” Appl. Phys. Lett. 97, 111501-1– 111501-3 ( 2010). 10.1063/1.3488833 doi: 10.1063/1.3488833
    [138]
    [139]
    S. Ashby , R. R. Smith , N. Aiello , J. N. Benford , N. Cooksey , D. V. Drury , B. D. Harteneck , J. S. Levine , P. Sincerny , L. Thompson , and L. Schlitt , “ High peak and average power with an L-band relativistic magnetron on CLIA,” IEEE Trans. Plasma Sci. 20, 344– 350 ( 1992). 10.1109/27.142835 doi: 10.1109/27.142835
    [140]
    N. M. Jordan , G. B. Greening , B. W. Hoff , S. S. Maestas , S. C. Exelby , and R. M. Gilgenbach , “ Additively manufactured high power microwave anodes,” IEEE Trans. Plasma Sci. 44, 1258– 1264 ( 2016). 10.1109/tps.2016.2565261 doi: 10.1109/tps.2016.2565261
    [141]
    D. Gamzina , M. Kozina , A. Mehta , E. A. Nanni , S. Tantawi , P. B. Welander , T. Horn , and C. Ledford , “ Copper reconsidered: Material innovations to transform vacuum electronics,” in Abstracts for IVEC 2019 ( Busan, South Korea, 2019), Vol. 23, No. 1.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(25)  / Tables(1)

    Article Metrics

    Article views (479) PDF downloads(41) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return