Follow us on Wechat

用微信扫码二维码

分享至好友和朋友圈

Volume 4 Issue 4
Jul.  2019
Turn off MathJax
Article Contents
Li Zhenghong, Wang Zhen, Xu Rongkun, Yang Jianlun, Ye Fan, Chu Yanyun, Xu Zeping, Chen Faxin, Meng Shijian, Qi Jianmin, Hu Qinyuan, Qin Yi, Ning Jiaming, Huang Zhanchang, Li Linbo, Jiang Shuqing. Experimental investigation of Z-pinch radiation source for indirect drive inertial confinement fusion[J]. Matter and Radiation at Extremes, 2019, 4(4): 046201. doi: 10.1063/1.5099088
Citation: Li Zhenghong, Wang Zhen, Xu Rongkun, Yang Jianlun, Ye Fan, Chu Yanyun, Xu Zeping, Chen Faxin, Meng Shijian, Qi Jianmin, Hu Qinyuan, Qin Yi, Ning Jiaming, Huang Zhanchang, Li Linbo, Jiang Shuqing. Experimental investigation of Z-pinch radiation source for indirect drive inertial confinement fusion[J]. Matter and Radiation at Extremes, 2019, 4(4): 046201. doi: 10.1063/1.5099088

Experimental investigation of Z-pinch radiation source for indirect drive inertial confinement fusion

doi: 10.1063/1.5099088
More Information
  • Corresponding author: a)Author to whom correspondence should be addressed: wangz_es@caep.cn
  • Received Date: 2019-04-06
  • Accepted Date: 2019-04-17
  • Publish Date: 2019-07-15
  • Z-pinch dynamic hohlraums (ZPDHs) could potentially be used to drive inertial confinement fusion targets. Double- or multishell capsules using the technique of volume ignition could exploit the advantages of ZPDHs while tolerating their radiation asymmetry, which would be unacceptable for a central ignition target. In this paper, we review research on Z-pinch implosions and ZPDHs for indirect drive targets at the Institute of Nuclear Physics and Chemistry, China Academy of Engineering Physics. The characteristics of double-shell targets and the associated technical requirements are analyzed through a one-dimensional computer code developed from MULTI-IFE. Some key issues regarding the establishment of suitable sources for dynamic hohlraums are introduced, such as soft X-ray power optimization, novel methods for plasma profile modulation, and the use of thin-shell liner implosions to inhibit the generation of prior-stagnated plasma. Finally, shock propagation and radiation characteristics in a ZPDH are presented and discussed, together with some plans for future work.
  • loading
  • [1]
    R. B. Spielman et al., “Tungsten wire-array Z-pinch experiments at 200TW and 2 MJ,” Phys. Plasmas 5, 2105–2111 (1998).10.1063/1.872881
    [2]
    W. A. Stygar et al., “Theoretical z-pinch scaling relations for thermo-nuclear-fusion experiments,” Phys. Rev. E 72, 026404 (2005).10.1103/physreve.72.026404
    [3]
    T. J. Nash, M. S. Derzon, G. A. Chandler et al., “High temperature dynamic hohlraums on the pulsed power driver Z,” Phys. Plasmas 6, 2023–2029 (1999).10.1063/1.873457
    [4]
    S. A. Slutz, M. R. Douglas, J. S. Lash et al., “Scaling and optimization of the radiation temperature in dynamic hohlraums,” Phys. Plasmas 8, 1673 (2001).10.1063/1.1360213
    [5]
    J. Bailey, G. Chandler, S. Slutz et al., “X-ray imaging measurements of capsule implosions driven by a Z-pinch dynamic hohlraum,” Phys. Rev. Lett. 89, 095004 (2002).10.1103/physrevlett.89.095004
    [6]
    S. A. Slutz, J. E. Bailey, G. A. Chandler et al., “Dynamic hohlraum driven inertial fusion capsules,” Phys. Plasmas 10, 1875–1882 (2003).10.1063/1.1565117
    [7]
    J. H. Hammer, M. Tabak, S. C. Wilks et al., “High yield inertial confinement fusion target design for a z-pinch-driven hohlraum,” Phys. Plasmas 6, 2129 (1999).10.1063/1.873464
    [8]
    G. R. Bennett, M. E. Cuneo, R. A. Vesey et al., “Symmetric inertial- confinement-fusion-capsule implosions in a double-z-pinch-driven hohlraum,” Phys. Rev. Lett. 89, 245002 (2002).10.1103/physrevlett.89.245002
    [9]
    G. A. Rochau, J. E. Bailey, G. A. Chandler, G. Cooper, G. S. Dunham et al., “High performance capsule implosions driven by the z-pinch dynamic hohlraum,” Plasma Phys. Controlled Fusion 49, B591 (2007).10.1088/0741-3335/49/12b/s55
    [10]
    S. A. Slutz, M. C. Herrmann, R. A. Vesey et al., “Pulsed-power- driven cylindrical liner implosions of laser preheated fuel magnetized with an axial field,” Phys. Plasmas 17, 056303 (2010).10.1063/1.3333505
    [11]
    M. R. Gomez, S. A. Slutz, A. B. Sefkow et al., “Experimental demonstration of fusion-relevant conditions in magnetized liner inertial fusion,” Phys. Rev. Lett. 113, 155003 (2014).10.1103/physrevlett.113.155003
    [12]
    J. A. Cobble and D. B. Sinars, A 1-D Study of the Ignition Space for Magnetic Indirect (X-ray) Drive Targets, A white paper for NNSA, Report No. LA-UR-16-24652, July 6, 2016.
    [13]
    L. B. Yang, H. D. Liao, C. W. Sun, K. Ouyang, J. Li et al., “RT instability in cylindrical implosion of jelly ring,” Chin. Phys. 13, 1747 (2004).10.1088/1009-1963/13/10/031
    [14]
    H. T. Shi, X. B. Zou, and X. X. Wang, “Fully vaporized electrical explosion of bare tungsten wire in vacuum,” Appl. Phys. Lett. 109, 134105 (2016).10.1063/1.4963758
    [15]
    X. L. Zhu, S. Zhao, X. B. Zou, H. T. Shi, H. Y. Luo, and X. X. Wang, “The development of coated and non-coated wire explosions observed by X-ray backlighting,” Phys. Plasmas 22, 112707 (2015).10.1063/1.4935915
    [16]
    X. L. Zhu, X. B. Zou, S. Zhao, H. T. Shi, R. Zhang, H. Y. Luo, and X. X. Wang, “Measuring the evolution of mass density distribution of wire explosion,” IEEE Trans. Plasma Sci. 42, 2522 (2014).10.1109/tps.2014.2326464
    [17]
    K. Wang, Z. Q. Shi, Y. J. Shi, J. Wu, and S. L. Jia, “Study on the energy deposition in fast electrical explosion of single aluminum wire in vacuum,” in XXVI International Symposium on Discharges and Electrical Insulation in Vacuum, Mumbai, India, 2014.
    [18]
    M. Li, L. Sheng, L. P. Wang et al., “The effects of insulating coatings and current prepulse on tungsten planar wire array Z-pinches,” Phys. Plasmas 22, 122710 (2015).10.1063/1.4938276
    [19]
    L. Sheng, Y. Li, Y. Yuan, B. D. Peng, M. Li et al., “Experimental study of insulated aluminum planar wire array Z pinches,” Acta Phys. Sin. 63, 055201 (2014).10.7498/aps.63.055201
    [20]
    L. Wang, J. Wu, N. Guo, J. Han, M. Li et al., “Investigation of the resistance and inductance of planar wire array at Qiangguang accelerator,” Plasma Sci. Technol. 14, 842–846 (2012).10.1088/1009-0630/14/9/13
    [21]
    R. K. Xu, Z. H. Li, J. L. Yang, X. W. Zhou, S. L. Jiang et al., “New results of Sino-Russian joint Z-pinch experiments,” Acta Phys. Sin. 60, 045208 (2011).
    [22]
    Z. Wang, Z. H. Li, R. K. Xu, J. L. Yang, N. Ding et al., “X-ray radiation power optimization in 1MA to 4MA wire-array implosions,” Acta Phys. Sin. 60, 025209 (2011).
    [23]
    J. Deng, W. Xie, S. Feng, M. Wang, H. Li et al., “Initial performance of the primary test stand,” IEEE Trans. Plasma Sci. 41, 2580–2583 (2013).10.1109/tps.2013.2274154
    [24]
    W. Zou, F. Guo, L. Chen, S. Song, M. Wang et al., “Full circuit calculation for electromagnetic pulse transmission in a high current facility,” Phys. Rev. Spec. Top.--Accel. Beams 17, 110401 (2014).10.1103/physrevstab.17.110401
    [25]
    X. J. Peng, “Design of a Z-pinch driven inertial confinement fusion target,” internal report (unpublished).
    [26]
    Y. K. Zhao, B. Y. Ouyang, W. Wen, and M. Wang, “Critical value of volume ignition and condition of nonequilibrium burning of DT in inertial confinement fusion,” Acta Phys. Sin. 64, 045205 (2015).10.7498/aps.64.045205
    [27]
    X. J. Peng, “Z-pinch fusion-fission hybrid reactor—The energy technology road with great competitive power,” J. Southwest Univ. Sci. Tech. 25, 1 (2010).
    [28]
    X. J. Peng and Z. Wang, “Conceptual research on Z-pinch driven fusion-fission hybrid reactor,” High Power Laser Part. Beams 26, 90201 (2014).10.3788/hplpb20142609.90201
    [29]
    N. Ding, Y. Zhang, D. L. Xiao, J. M. Wu, Z. H. Dai et al., “Theoretical and numerical research of wire array Z-pinch and dynamic hohlraum at IAPCM,” Matter Radiat. Extremes 1, 135 (2016).10.1016/j.mre.2016.06.001
    [30]
    R. Ramisa and J. Meyer-ter-Vehn, “MULTI-IFE—A one-dimensional computer code for Inertial Fusion Energy (IFE) target simulations,” Comput. Phys. Commun. 203, 226 (2016).10.1016/j.cpc.2016.02.014
    [31]
    Y. Y. Chu, Z. Wang, J. M. Qi, F. Y. Wu, Z. H. Li et al., “Numerical simulation on a new cylindrical target for Z-pinch driven inertial confinement fusion,” Nucl. Fusion 57, 066019 (2017).10.1088/1741-4326/aa685e
    [32]
    S. L. Jiang, J. M. Ning, R. K. Xu, Z. H. Li, C. Guo et al., “Scintillant detection system for Z-pinch X-ray radiation power,” At. Energy Sci. Tech. 40, 96 (2006).
    [33]
    Q. Y. Hu, J. M. Ning, F. Ye, S. J. Meng, R. K. Xu et al., “A free-standing thin foil bolometer for measuring soft x-ray fluence,” Rev. Sci. Instrum. 87, 103302 (2016).10.1063/1.4963859
    [34]
    G. X. Xia, Z. P. Xu, R. K. Xu, J. C. Chen, and F. Q. Zhang, “Application of framing camera in wire array Z-pinch experiments,” Nucl. Electron Detect. Technol. 27, 966 (2007).
    [35]
    Z. Wang, J. L. Yang, R. K. Xu, L. B. Li, Z. P. Xu et al., “Framing shadowgraphy of 266nm laser probing for the diagnosis of Z-pinch plasmas,” Acta Phys. Sin. 55, 5942 (2006).
    [36]
    Z. Wang, J. L. Yang, N. Ding, I. N. Frolov, R. K. Xu et al., “UV laser probing of imploding wire-array plasmas on the Angara-5-1 facility,” IEEE Trans. Plasma Sci. 36, 174 (2008).10.1109/tps.2007.913902
    [37]
    R. K. Xu, Z. H. Li, C. Guo et al., “One-dimensional temporal-spatial X-ray imaging system,” Acta Phys. Sin. 52, 1203–1206 (2003).
    [38]
    D. H. Kalantar and D. A. Hammer, “The x-pinch as a point source of x-rays for backlighting,” Rev. Sci. Instrum. 66, 779 (1995).10.1063/1.1146219
    [39]
    X. L. Zhu, X. B. Zou, S. Zhao, R. Zhang, H. T. Shi et al., “Mass density evolution of wire explosion observed using X-ray backlight,” IEEE Trans. Plasma Sci. 42, 3221 (2014).10.1109/tps.2014.2329036
    [40]
    R. Zhang, H. Y. Luo, X. B. Zou, H. T. Shi, X. L. Zhu et al., “Energy spectrum measurement of X-ray radiation from a compact x-pinch device,” IEEE Trans. Plasma Sci. 42(10), 3143–3147 (2014).10.1109/tps.2014.2312542
    [41]
    J. Wu, L. P. Wang, M. Li, G. Wu, M. T. Qiu et al., “Experimental investigations of tungsten X-pinches using the QiangGuang-1 facility,” Acta Phys. Sin. 63, 035205 (2014).10.7498/aps.63.035205
    [42]
    G. R. Bennett, O. L. Landen, R. F. Adams et al., “X-ray imaging techniques on Z using the Z-Beamlet laser,” Rev. Sci. Instrum. 72, 657 (2001).10.1063/1.1315645
    [43]
    E. Esarey, “Nonlinear Thomson scattering of intense laser pulses from beams and plasmas,” Phys. Rev. E 48, 3003 (1993).10.1103/physreve.48.3003
    [44]
    F. Ye, F. B. Xue, C. Guo, Z. H. Li, and J. L. Yang, “Utilization of convex crystal spectrograph to obtain monochromatic X-ray images of Z-pinch plasmas,” Acta Phys. Sin. 57, 1792 (2008).10.7498/aps.57.1792
    [45]
    F. Ye, Y. Qin, S. Q. Jiang, F. B. Xue, and Z. H. Li, “A time-resolved spectroscopic diagnostic based on fast scintillator and optical fiber array for z-pinch plasmas,” Rev. Sci. Instrum. 80, 106105 (2009).10.1063/1.3249563
    [46]
    F. B. Xue, J. L. Yang, and R. K. Xu, “Application of micro magnetic probe to diagnosis of load current in Z-pinch experiments,” High Power Laser Part. Beams 22, 2055 (2010).10.3788/hplpb20102209.2055
    [47]
    N. Ding, J. Wu, Z. H. Yang, S. W. Fu, C. Ning et al., “Simulation of Z-pinch implosion using MARED code,” High Power Laser Part. Beams 20, 212 (2008).
    [48]
    Z. Wang, R. K. Xu, J. L. Yang, X. S. Hua, and L. B. Li, “Experimental study on imploding characteristics of wire-array Z pinches on QiangGuang-1 facility,” Chin. Phys. 16, 772 (2007).10.1088/1009-1963/16/3/035
    [49]
    F. Q. Zhang, Z. H. Li, Z. P. Xu et al., “X-ray observations of tungsten wire array Z-pinch implosions on QiangGuang-1 facility,” Chin. Phys. 15, 2058 (2006).10.1088/1009-1963/15/9/028
    [50]
    H. M. Cai, W. D. Wu, L. Zhang, T. Li, and X. W. Zhou, “Z-pinch wire-array micro assembly station,” High Power Laser Part. Beams 09, 1351 (2009).
    [51]
    H. M. Cai, W. D. Wu, L. Zhang, Z. X. Huang, and X. W. Zhou, “Visual inspection technology of Z-pinch wire-array assembly parameters,” High Power Laser Part. Beams 22, 68 (2010).10.3788/hplpb20102201.0068
    [52]
    J. P. Chittenden, S. V. Lebedev, S. N. Bland, A. Ciardi, and M. G. Haines, “The different dynamical modes of nested wire array Z-pinches,” Phys. Plasmas 8, 675–678 (2001).10.1063/1.1351552
    [53]
    N. Ding, Y. Zhang, Q. Liu, D. L. Xiao, X. J. Shu, and C. Ning, “Effects of various inductances on the dynamic models of the Z-pinch implosion of nested wire arrays,” Acta Phys. Sin. 58, 1083 (2009).
    [54]
    M. E. Cuneo, D. B. Sinars, D. E. Bliss, E. M. Waisman, J. L. Porter et al., “Direct experimental evidence for current-transfer mode operation of nested tungsten wire arrays at 16–19 MA,” Phys. Rev. Lett. 94, 225003 (2005).10.1103/physrevlett.94.225003
    [55]
    V. Smirnov, S. Zakharov, and E. Grabovskii, “Increase in radiation intensity in a quasi-spherical double liner/dynamic hohlraum system,” JETP Lett. 81, 442–447 (2005).10.1134/1.1984026
    [56]
    T. Nash, P. VanDevender, D. McDaniel, and L. Abbot, “Quasi-spherical direct drive fusion,” Sandia National Laboratory Report No. SAND 2007–0235.
    [57]
    Y. Zhang, N. Ding, Z. H. Li, S. Sun, C. Xue et al., “Dynamics of quasi-spherical Z-pinch implosions with mass redistribution and displacement modification,” Phys. Plasmas 19, 122704 (2012).10.1063/1.4771575
    [58]
    J. P. Chittenden, S. V. Lebedev, A. R. Bell, R. Aliaga-Rossel, S. N. Bland et al., “Plasma formation and implosion structure in wire array Z pinches,” Phys. Rev. Lett. 83, 100 (1999).10.1103/physrevlett.83.100
    [59]
    M. E. Cuneo, E. M. Waisman, S. V. Lebedev, J. P. Chittenden, W. A. Stygar et al., “Characteristics and scaling of tungsten-wire-array Z-pinch implosion dynamics at 20 MA,” Phys. Rev. E 71, 046406 (2005).10.1103/PhysRevE.71.046406
    [60]
    S. V. Lebedev, F. N. Beg, S. N. Bland, J. P. Chittenden, A. E. Dangor et al., “Effect of discrete wires on the implosion dynamics of wire array Z pinches,” Phys. Plasmas 8, 3734 (2001).10.1063/1.1385373
    [61]
    V. V. Alexsandrov, A. V. Branitskii, G. S. Volkov, E. V. Grabovskii, M. V. Zurin et al., “Dynamics of heterogeneous liners with prolonged plasma creation,” Plasma Phys. Rep. 27, 89–109 (2001).10.1134/1.1348487
    [62]
    P. V. Sasorov, B. V. Oliver, E. P. Yu, and T. A. Mehlhorn, “One-dimensional ablation in multiwire arrays,” Phys. Plasmas 15, 022702 (2008).10.1063/1.2832715
    [63]
    E. P. Yu, B. V. Oliver, D. B. Sinars, T. A. M. M. E. Cuneo et al., “Steady-state radiation ablation in the wire-array Z-pinch,” Phys. Plasmas 14, 022705 (2007).10.1063/1.2435332
    [64]
    T. A. Shelkovenko, S. A. Pikuz, J. D. Douglass et al., “Wire core and coronal plasma expansion in wire-array Z pinches with small numbers of wires,” Phys. Plasmas 14, 102702 (2007).10.1063/1.2786859
    [65]
    E. P. Yu, B. V. Oliver, and D. B. Sinars, “Wire core and coronal plasma expansion in wire-array Z pinches with small numbers of wires,” Phys. Plasmas 14, 022705 (2007).10.1063/1.2435332
    [66]
    F. N. Beg, S. V. Lebedev, S. N. Bland et al., “The effect of current prepulse on wire array Z-pinch implosions,” Phys. Plasmas 9, 375 (2002).10.1063/1.1417512
    [67]
    S. V. Lebedev, D. J. Ampleford, S. N. Bland et al., “Physics of wire array Z-pinch implosions: Experiments at imperial college,” Plasma Phys. Controlled Fusion 47, A91 (2005).10.1088/0741-3335/47/5a/009
    [68]
    G. S. Sarkisov, S. E. Rosenthal, K. W. Struve et al., “Effect of current prepulse on wire array initiation on the 1-MA ZEBRA accelerator,” Phys. Plasmas 14, 052704 (2007).10.1063/1.2734575
    [69]
    G. S. Sarkisov, S. E. Rosenthal, K. W. Struve et al., “Initiation of aluminum wire array on the 1-MA ZEBRA accelerator and its effect on ablation dynamics and x-ray yield,” Phys. Plasmas 14, 112701 (2007).10.1063/1.2804961
    [70]
    D. B. Sinars, T. A. Shelkovenko, S. A. Pikuz et al., “The effect of insulating coatings on exploding wire plasma formation,” Phys. Plasmas 7, 429 (2000).10.1063/1.873825
    [71]
    G. S. Sarkisov, S. E. Rosenthal, and K. W. Struve, “Corona-free electrical explosion of polyimide-coated tungsten wire in vacuum,” Phys. Rev. Lett. 94, 035004 (2005).10.1103/physrevlett.94.035004
    [72]
    G. S. Sarkisov, S. E. Rosenthal, and K. W. Struve, “Transformation of a tungsten wire to the plasma state by nanosecond electrical explosion in vacuum,” Phys. Rev. E 77, 056406 (2008).10.1103/physreve.77.056406
    [73]
    Z. H. Li, R. K. Xu, Y. Y. Chu et al., “Experimental investigation of the ribbon-array ablation process,” Phys. Plasmas 20, 032702 (2013).10.1063/1.4794199
    [74]
    K. J. Peterson, D. B. Sinars, E. P. Yu et al., “Electrothermal instability growth in magnetically driven pulsed power liners,” Phys. Plasmas 19, 092701 (2012).10.1063/1.4751868
    [75]
    K. J. Peterson, T. J. Awe, E. P. Yu et al., “Electrothermal instability mitigation by using thick dielectric coatings on magnetically imploded conductors,” Phys. Rev. Lett. 112, 135002 (2014).10.1103/physrevlett.112.135002
    [76]
    S. J. Meng, Q. Y. Hu, J. M. Ning, F. Ye, Z. C. Huang et al., “Measurement of axial radiation properties in Z-pinch dynamic hohlraum at Julong-1,” Phys. Plasmas 24, 014505 (2017).10.1063/1.4974771
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(31)  / Tables(2)

    Article Metrics

    Article views (290) PDF downloads(7) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return