Follow us on Wechat

用微信扫码二维码

分享至好友和朋友圈

Volume 4 Issue 6
Nov.  2019
Turn off MathJax
Article Contents
Gu Yan-Jun, Jirka Martin, Klimo Ondrej, Weber Stefan. Gamma photons and electron-positron pairs from ultra-intense laser-matter interaction: A comparative study of proposed configurations[J]. Matter and Radiation at Extremes, 2019, 4(6): 064403. doi: 10.1063/1.5098978
Citation: Gu Yan-Jun, Jirka Martin, Klimo Ondrej, Weber Stefan. Gamma photons and electron-positron pairs from ultra-intense laser-matter interaction: A comparative study of proposed configurations[J]. Matter and Radiation at Extremes, 2019, 4(6): 064403. doi: 10.1063/1.5098978

Gamma photons and electron-positron pairs from ultra-intense laser-matter interaction: A comparative study of proposed configurations

doi: 10.1063/1.5098978
  • Received Date: 2019-04-05
  • Accepted Date: 2019-08-29
  • Available Online: 2021-04-13
  • Publish Date: 2019-11-15
  • High-energy γ-photon generation via nonlinear Compton scattering and electron–positron pair creation via the Breit–Wheeler process driven by laser–plasma interaction are modeled, and a number of mechanisms are proposed. Owing to the small cross section, these processes require both an ultra-intense laser field and a relativistic electron bunch. The extreme conditions for such scenarios can be achieved through recent developments in laser technology. Photon emission via nonlinear Thomson and Compton scattering has been observed experimentally. High-energy positron beams generated via a multiphoton process have recently been observed too. This paper reviews the principles of γ-ray emission and e+e pair creation in the context of laser–plasma interaction. Several proposed experimental setups for γ-ray emission and e+e pair creation by ultra-intense laser pulses are compared in terms of their efficiency and the quality of the γ-photon and positron beams produced for ultrashort (15 fs) and longer (150 fs) multi-petawatt laser beams.
  • loading
  • [1]
    A. D. Strickland and G. Mourou, “Compression of amplified chirped optical pulses,” Opt. Commun. 56, 219 (1985).10.1016/0030-4018(85)90120-8 doi: 10.1016/0030-4018(85)90120-8
    [2]
    V. Yanovsky et al., “Ultra-high intensity- 300-TW laser at 0.1 Hz repetition rate,” Opt. Express 16, 2109 (2008).10.1364/oe.16.002109 doi: 10.1364/oe.16.002109
    [3]
    A. S. Pirozhkov et al., “Approaching the diffraction-limited, bandwidth-limited petawatt,” Opt. Express 25, 20486 (2017).10.1364/oe.25.020486 doi: 10.1364/oe.25.020486
    [4]
    G. Mourou, G. Korn, W. Sandner, and J. Collier, ELI Extreme Light Infrastructure (Whitebook) (THOSS Media GmbH, Berlin, Germany, 2011).
    [5]
    G. Chériaux et al., “Apollon-10p: Status and implementation,” AIP Conf. Proc. 1462, 78 (2012).10.1063/1.4736764 doi: 10.1063/1.4736764
    [6]
    C. Bamber et al., “Studies of nonlinear QED in collisions of 46.6 GeV electrons with intense laser pulses,” Phys. Rev. D 60, 092004 (1999).10.1103/physrevd.60.092004 doi: 10.1103/physrevd.60.092004
    [7]
    A. R. Bell and J. G. Kirk, “Possibility of prolific pair production with high-power lasers,” Phys. Rev. Lett. 101, 200403 (2008).10.1103/physrevlett.101.200403 doi: 10.1103/physrevlett.101.200403
    [8]
    I. V. Sokolov, N. M. Naumova, J. A. Nees, and G. A. Mourou, “Pair creation in QED-strong pulsed laser fields interacting with electron beams,” Phys. Rev. Lett. 105, 195005 (2010).10.1103/physrevlett.105.195005 doi: 10.1103/physrevlett.105.195005
    [9]
    S. S. Bulanov, V. D. Mur, N. B. Narozhny, J. Nees, and V. S. Popov, “Multiple colliding electromagnetic pulses: A way to lower the threshold of e+e− pair production from vacuum,” Phys. Rev. Lett. 104, 220404 (2010).10.1103/physrevlett.104.220404 doi: 10.1103/physrevlett.104.220404
    [10]
    A. A. Gonoskov, A. V. Korzhimanov, A. V. Kim, M. Marklund, and A. M. Sergeev, “Ultrarelativistic nanoplasmonics as a route towards extreme-intensity attosecond pulses,” Phys. Rev. E 84, 046403 (2011).10.1103/physreve.84.046403 doi: 10.1103/physreve.84.046403
    [11]
    K. T. Phuoc et al., “All-optical Compton gamma-ray source,” Nat. Photonics 6, 308 (2012).10.1038/nphoton.2012.82 doi: 10.1038/nphoton.2012.82
    [12]
    T. Nakamura et al., “High-power γ-ray flash generation in ultraintense laser-plasma interactions,” Phys. Rev. Lett. 108, 195001 (2012).10.1103/physrevlett.108.195001 doi: 10.1103/physrevlett.108.195001
    [13]
    C. P. Ridgers et al., “Dense electron-positron plasmas and ultraintense γ rays from laser-irradiated solids,” Phys. Rev. Lett. 108, 165006 (2012).10.1103/physrevlett.108.165006 doi: 10.1103/physrevlett.108.165006
    [14]
    L. L. Ji, A. Pukhov, I. Y. Kostyukov, B. F. Shen, and K. Akli, “Radiation-reaction trapping of electrons in extreme laser fields,” Phys. Rev. Lett. 112, 145003 (2014).10.1103/physrevlett.112.145003 doi: 10.1103/physrevlett.112.145003
    [15]
    T. G. Blackburn, C. P. Ridgers, J. G. Kirk, and A. R. Bell, “Quantum radiation reaction in laser–electron-beam collisions,” Phys. Rev. Lett. 112, 015001 (2014).10.1103/physrevlett.112.015001 doi: 10.1103/physrevlett.112.015001
    [16]
    X.-L. Zhu et al., “Enhanced electron trapping and γ ray emission by ultra-intense laser irradiating a near-critical-density plasma filled gold cone,” New J. Phys. 17, 053039 (2015).10.1088/1367-2630/17/5/053039 doi: 10.1088/1367-2630/17/5/053039
    [17]
    X. Ribeyre et al., “Pair creation in collision of γ-ray beams produced with high-intensity lasers,” Phys. Rev. E 93, 013201 (2016).10.1103/physreve.93.013201 doi: 10.1103/physreve.93.013201
    [18]
    Y. J. Gu, O. Klimo, S. Weber, and G. Korn, “High density ultrashort relativistic positron beam generation by laser-plasma interaction,” New J. Phys. 18, 113023 (2016).10.1088/1367-2630/18/11/113023 doi: 10.1088/1367-2630/18/11/113023
    [19]
    H.-Z. Li et al., “Ultra-bright gamma-ray emission and dense positron production from two laser-driven colliding foils,” Sci. Rep. 7, 17312 (2017).10.1038/s41598-017-17605-6 doi: 10.1038/s41598-017-17605-6
    [20]
    H. X. Chang et al., “Brilliant petawatt gamma-ray pulse generation in quantum electrodynamic laser-plasma interaction,” Sci. Rep. 7, 45031 (2017).10.1038/srep45031 doi: 10.1038/srep45031
    [21]
    X.-L. Zhu et al., “Dense GeV electron-positron pairs generated by lasers in near-critical-density plasmas,” Nat. Commun. 7, 13686 (2016).10.1038/ncomms13686 doi: 10.1038/ncomms13686
    [22]
    Z. Gong et al., “Brilliant GeV gamma-ray flash from inverse Compton scattering in the QED regime,” Plasma Phys. Controlled Fusion 60, 044004 (2018).10.1088/1361-6587/aaa9b1 doi: 10.1088/1361-6587/aaa9b1
    [23]
    M. Jirka, O. Klimo, M. Vranic, S. Weber, and G. Korn, “QED cascade with 10 PW-class lasers,” Sci. Rep. 7, 15302 (2017).10.1038/s41598-017-15747-1 doi: 10.1038/s41598-017-15747-1
    [24]
    T. G. Blackburn and M. Marklund, “Nonlinear Breit-Wheeler pair creation with bremsstrahlung γ rays,” Plasma Phys. Controlled Fusion 60(5), 054009 (2018).10.1088/1361-6587/aab3b4 doi: 10.1088/1361-6587/aab3b4
    [25]
    G. A. Mourou, T. Tajima, and S. V. Bulanov, “Optics in the relativistic regime,” Rev. Mod. Phys. 78, 309 (2006).10.1103/revmodphys.78.309 doi: 10.1103/revmodphys.78.309
    [26]
    A. Di Piazza, K. Z. Hatsagortsyan, and C. H. Keitel, “Strong signatures of radiation reaction below the radiation-dominated regime,” Phys. Rev. Lett. 102, 254802 (2009).10.1103/physrevlett.102.254802 doi: 10.1103/physrevlett.102.254802
    [27]
    A. Di Piazza, C. Müller, K. Z. Hatsagortsyan, and C. H. Keitel, “Extremely high-intensity laser interactions with fundamental quantum systems,” Rev. Mod. Phys. 84, 1177 (2012).10.1103/revmodphys.84.1177 doi: 10.1103/revmodphys.84.1177
    [28]
    S. V. Bulanov, “Magnetic reconnection: From MHD to QED,” Plasma Phys. Controlled Fusion 59, 014029 (2017).10.1088/0741-3335/59/1/014029 doi: 10.1088/0741-3335/59/1/014029
    [29]
    J. M. Cole et al., “Experimental evidence of radiation reaction in the collision of a high-intensity laser pulse with a laser-wakefield accelerated electron beam,” Phys. Rev. X 8, 011020 (2018).10.1103/physrevx.8.011020 doi: 10.1103/physrevx.8.011020
    [30]
    K. Poder et al., “Experimental signatures of the quantum nature of radiation reaction in the field of an ultraintense laser,” Phys. Rev. X 8, 031004 (2018).10.1103/physrevx.8.031004 doi: 10.1103/physrevx.8.031004
    [31]
    J. Galy, M. Maucec, D. J. Hamilton, R. Edwards, and J. Magill, “Bremsstrahlung production with high-intensity laser matter interactions and applications,” New J. Phys. 9, 23 (2007).10.1088/1367-2630/9/2/023 doi: 10.1088/1367-2630/9/2/023
    [32]
    K. W. D. Ledingham and W. Galster, “Laser-driven particle and photon beams and some applications,” New J. Phys. 12, 045005 (2010).10.1088/1367-2630/12/4/045005 doi: 10.1088/1367-2630/12/4/045005
    [33]
    Y. Glinec et al., “High-resolution γ-ray radiography produced by a laser-plasma driven electron source,” Phys. Rev. Lett. 94, 025003 (2005).10.1103/physrevlett.94.025003 doi: 10.1103/physrevlett.94.025003
    [34]
    A. Giulietti et al., “Intense γ-ray source in the giant-dipole-resonance range driven by 10-TW laser pulses,” Phys. Rev. Lett. 101, 105002 (2008).10.1103/physrevlett.101.105002 doi: 10.1103/physrevlett.101.105002
    [35]
    J. Vyskočil, O. Klimo, and S. Weber, “Simulations of bremsstrahlung emission in ultra-intense laser interactions with foil targets,” Plasma Phys. Controlled Fusion 60, 054013 (2018).10.1088/1361-6587/aab4c3 doi: 10.1088/1361-6587/aab4c3
    [36]
    G. Sarri et al., “Ultrahigh brilliance multi-MeV γ-ray beams from nonlinear relativistic Thomson scattering,” Phys. Rev. Lett. 113, 224801 (2014).10.1103/physrevlett.113.224801 doi: 10.1103/physrevlett.113.224801
    [37]
    D. J. Stark, T. Toncian, and A. V. Arefiev, “Enhanced multi-MeV photon emission by a laser-driven electron beam in a self-generated magnetic field,” Phys. Rev. Lett. 116, 185003 (2016).10.1103/physrevlett.116.185003 doi: 10.1103/physrevlett.116.185003
    [38]
    W. Yan et al., “High-order multiphoton Thomson scattering,” Nat. Photonics 11, 514 (2017).10.1038/nphoton.2017.100 doi: 10.1038/nphoton.2017.100
    [39]
    B. Martinez, E. d’Humières, and L. Gremillet, “Synchrotron emission from nanowire array targets irradiated by ultraintense laser pulses,” Plasma Phys. Controlled Fusion 60, 074009 (2018).10.1088/1361-6587/aac5a3 doi: 10.1088/1361-6587/aac5a3
    [40]
    W. M. Wang, Zh. M. Sheng, P. Gibbon, L. M. Chen, Y. T. Li, and J. Zhang, “Collimated ultrabright gamma rays from electron wiggling along a petawatt laser-irradiated wire in the QED regime,” Proc. Natl. Acad. Sci. U. S. A. 115, 9911 (2018).10.1073/pnas.1809649115 doi: 10.1073/pnas.1809649115
    [41]
    C. Bula et al., “Observation of nonlinear effects in Compton scattering,” Phys. Rev. Lett. 76, 3116 (1996).10.1103/physrevlett.76.3116 doi: 10.1103/physrevlett.76.3116
    [42]
    A. Di Piazza, K. Z. Hatsagortsyan, and C. H. Keitel, “Quantum radiation reaction effects in multiphoton Compton scattering,” Phys. Rev. Lett. 105, 220403 (2010).10.1103/physrevlett.105.220403 doi: 10.1103/physrevlett.105.220403
    [43]
    A. Benedetti, M. Tamburini, and C. H. Keitel, “Giant collimated gamma-ray flashes,” Nat. Photonics 12, 319 (2018).10.1038/s41566-018-0139-y doi: 10.1038/s41566-018-0139-y
    [44]
    X. L. Zhu et al., “Bright attosecond γ-ray pulses from nonlinear Compton scattering with laser-illuminated compound targets,” Appl. Phys. Lett. 112, 174102 (2018).10.1063/1.5028555 doi: 10.1063/1.5028555
    [45]
    Y. J. Gu and S. Weber, “Intense, directional and tunable γ-ray emission via relativistic oscillaitng plasma mirror,” Opt. Express 26, 19932 (2018).10.1364/oe.26.019932 doi: 10.1364/oe.26.019932
    [46]
    G. Breit and J. A. Wheeler, “Collision of two light quanta,” Phys. Rev. 46, 1087 (1934).10.1103/physrev.46.1087 doi: 10.1103/physrev.46.1087
    [47]
    A. I. Nikishov and V. I. Ritus, “Interaction of electrons and photons with a very strong electromagnetic field,” Sov. Phys. - Usp. 13, 303 (1970).10.1070/pu1970v013n02abeh004234 doi: 10.1070/pu1970v013n02abeh004234
    [48]
    M. Jirka et al., “Electron dynamics and γ and e−e+ production by colliding laser pulses,” Phys. Rev. E 93, 023207 (2016).10.1103/physreve.93.023207 doi: 10.1103/physreve.93.023207
    [49]
    M. Tamburini, A. D. Piazza, and C. H. Keitel, “Laser-pulse-shape control of seeded QED cascades,” Sci. Rep. 7, 5694 (2017).10.1038/s41598-017-05891-z doi: 10.1038/s41598-017-05891-z
    [50]
    O. Jansen et al., “Leveraging extreme laser-driven magnetic fields for gamma-ray generation and pair production,” Plasma Phys. Controlled Fusion 60, 054006 (2018).10.1088/1361-6587/aab222 doi: 10.1088/1361-6587/aab222
    [51]
    M. Vranic, O. Klimo, G. Korn, and S. Weber, “Multi-GeV electron-positron beam generation from laser-electron scattering,” Sci. Rep. 8, 4702 (2018).10.1038/s41598-018-23126-7 doi: 10.1038/s41598-018-23126-7
    [52]
    Y.-J. Gu, O. Klimo, S. V. Bulanov, and S. Weber, “Brilliant gamma-ray beam and electron-positron pair production by enhanced attosecond pulses,” Commun. Phys. 1, 93 (2018).10.1038/s42005-018-0095-3 doi: 10.1038/s42005-018-0095-3
    [53]
    S. V. Bulanov et al., “On some theoretical probels of laser wake-field accelerators,” J. Plasma Phys. 82, 905820308 (2016).10.1017/s0022377816000623 doi: 10.1017/s0022377816000623
    [54]
    C. Gahn et al., “Multi-MeV electron beam generation by direct laser acceleration in high-density plasma channels,” Phys. Rev. Lett. 83, 4772 (1999).10.1103/physrevlett.83.4772 doi: 10.1103/physrevlett.83.4772
    [55]
    S. V. Bulanov et al., “On the problems of relativistic laboratory astrophysics and fundamental physics with super powerful lasers,” Plasma Phys. Rep. 41, 1 (2015).10.1134/s1063780x15010018 doi: 10.1134/s1063780x15010018
    [56]
    L. Landau and E. Lifshitz, The Classical Theory of Fields, Volume 2 of Course of Theoretical Physics, 4th ed. (Pergamon, Amsterdam, 1975).
    [57]
    C. Ridgers et al., “Modelling gamma-ray photon emission and pair production in high-intensity laser–matter interactions,” J. Comput. Phys. 260, 273 (2014).10.1016/j.jcp.2013.12.007 doi: 10.1016/j.jcp.2013.12.007
    [58]
    T. D. Arber et al., “Contemporary particle-in-cell approach to laser-plasma modelling,” Plasma Phys. Controlled Fusion 57, 113001 (2015).10.1088/0741-3335/57/11/113001 doi: 10.1088/0741-3335/57/11/113001
    [59]
    W. Luo et al., “Dense electron-positron plasmas and gamma-ray bursts generation by counter-propagating quantum electrodynamics-strong laser interaction with solid targets,” Phys. Plasmas 22, 063112 (2015).10.1063/1.4923265 doi: 10.1063/1.4923265
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(2)  / Tables(1)

    Article Metrics

    Article views (316) PDF downloads(9) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return