Follow us on Wechat

用微信扫码二维码

分享至好友和朋友圈

Volume 4 Issue 5
Sep.  2019
Turn off MathJax
Article Contents
Katrík Peter, Hoffmann Dieter H. H., Mustafin Edil, Strašík Ivan. Experimental study of residual activity induced in aluminum targets irradiated by high-energy heavy-ion beams: A comparison of experimental data and FLUKA simulations[J]. Matter and Radiation at Extremes, 2019, 4(5): 055403. doi: 10.1063/1.5097035
Citation: Katrík Peter, Hoffmann Dieter H. H., Mustafin Edil, Strašík Ivan. Experimental study of residual activity induced in aluminum targets irradiated by high-energy heavy-ion beams: A comparison of experimental data and FLUKA simulations[J]. Matter and Radiation at Extremes, 2019, 4(5): 055403. doi: 10.1063/1.5097035

Experimental study of residual activity induced in aluminum targets irradiated by high-energy heavy-ion beams: A comparison of experimental data and FLUKA simulations

doi: 10.1063/1.5097035
More Information
  • Corresponding author: a)Authors to whom correspondence should be addressed: p.katrik@gsi.de and Hoffmann@xjtu.edu.cn; a)Authors to whom correspondence should be addressed: p.katrik@gsi.de and Hoffmann@xjtu.edu.cn
  • Received Date: 2019-03-22
  • Accepted Date: 2019-05-22
  • Publish Date: 2019-09-15
  • A number of heavy-ion accelerators are either under construction (e.g., the Facility for Antiproton and Ion Research in Darmstadt and the High Intensity Accelerator Facility in China) or already in operation at many places worldwide. For these accelerators, activation of construction components due to beam loss, even during routine machine operation, is a serious issue, especially with the upcoming high-intensity facilities. Aluminum is one of the most commonly used construction materials in beam lines, collimators, and other components. Therefore, we report here on activation experiments on aluminum samples to verify and benchmark simulation codes. The analysis was performed by gamma spectroscopy of the irradiated targets. Our results on the induced activity measured in samples irradiated by uranium beams at 125 MeV/u and 200 MeV/u and a xenon beam at 300 MeV/u show activation levels significantly lower than those predicted by FLUKA simulations.
  • loading
  • [1]
    L. Evans and P. Bryant, “LHC machine,” J. Instrum. 3, S08001 (2008).10.1088/1748-0221/3/08/S08001 doi: 10.1088/1748-0221/3/08/S08001
    [2]
    J. E. Leiss, “Impact of accelerators on United-States Science, technology, and productivity,” IEEE Trans. Nucl. Sci. 30(2), 1353–1356 (2017).10.1109/TNS.1983.4332530 doi: 10.1109/TNS.1983.4332530
    [3]
    X. S. Yan, L. Yang, X. C. Zhang, and W. L. Zhan, “Concept of an accelerator-driven advanced nuclear energy system,” Energies 10(7), 944 (2017).10.3390/en10070944 doi: 10.3390/en10070944
    [4]
    I. Hofmann, “Heavy ion accelerator-driven inertial fusion,” Rev. Accel. Sci. Technol. 8, 37–53 (2015).10.1142/s1793626815300030 doi: 10.1142/s1793626815300030
    [5]
    F. Winterberg, “On the ignition of small thermonuclear assemblies,” Laser Part. Beams 36, 232–235 (2018).10.1017/s0263034618000204 doi: 10.1017/s0263034618000204
    [6]
    A. C. Müller, “Nuclear waste incineration and accelerator aspects from the European PDS-XADS study,” Nucl. Phys. A 751, 453C–468C (2005).10.1016/j.nuclphysa.2005.02.015 doi: 10.1016/j.nuclphysa.2005.02.015
    [7]
    D. H. H. Hoffmann, A. Blazevic, P. Ni et al., “Present and future perspectives for high energy density physics with intense heavy ion and laser beams,” Laser Part. Beams 23, 47–53 (2005).10.1017/s0263034605229993 doi: 10.1017/s0263034605229993
    [8]
    M. Kostin, G. Bollen, D. Georgobiani et al., “Analysis of residual activity at the FRIB linear accelerator,” J. Phys. Conf. Ser. 1046, 012014 (2018).10.1088/1742-6596/1046/1/012014 doi: 10.1088/1742-6596/1046/1/012014
    [9]
    P. Spiller and G. Franchetti, “The FAIR accelerator project at GSI,” Nucl. Instrum. Methods Phys. Res. A 561, 305–309 (2006).10.1016/j.nima.2006.01.043 doi: 10.1016/j.nima.2006.01.043
    [10]
    J. C. Yang, J. W. Xia, G. Q. Xiao, H. S. Xu et al., “High intensity heavy ion accelerator facility (HIAF) in China,” Nucl. Instrum. Methods Part B 317, 263–265 (2013).10.1016/j.nimb.2013.08.046 doi: 10.1016/j.nimb.2013.08.046
    [11]
    A. Fertman, E. Mustafin, R. Hinca, I. Strasik, M. Pavlovic et al., “First results of an experimental study of the residual activity induced by high-energy uranium ions in steel and copper,” Nucl. Instrum. Methods Phys. Res. B 260, 579–591 (2007).10.1016/j.nimb.2007.03.077 doi: 10.1016/j.nimb.2007.03.077
    [12]
    A. A. Golubev, A. V. Kantsyrev, V. E. Luckjashin et al., “Measurement of the energy deposition profile for U-238 ions with specific energy 500 and 950 MeV/u in stainless steel and copper targets,” Nucl. Instrum. Methods Phys. Res. B 263, 339–344 (2007).10.1016/j.nimb.2007.06.023 doi: 10.1016/j.nimb.2007.06.023
    [13]
    I. Strašík, E. Mustafin, and M. Pavlovič, “Residual activity induced by heavy ions and beam-loss criteria for heavy-ion accelerators,” Phys. Rev. Spec. Top. - Accel. Beams 13, 071004 (2010).10.1103/physrevstab.13.071004 doi: 10.1103/physrevstab.13.071004
    [14]
    V. Chetvertkova, I. Strašík, A. Belousov et al., “Activation of aluminium by argon: Experimental study and simulations,” Nucl. Instrum. Methods Phys. Res. B 269, 1336–1340 (2011).10.1016/j.nimb.2011.03.017 doi: 10.1016/j.nimb.2011.03.017
    [15]
    E. Mustafin, T. Seidl, A. Plotnikov et al., “Ion irradiation studies of construction materials for high-power accelerators,” Radiat. Eff. Defects Solids 164, 460–469 (2009).10.1080/10420150902949894 doi: 10.1080/10420150902949894
    [16]
    I. Strašík, V. Chetvertkova, E. Mustafin et al., “Depth profiling of residual activity of 237U fragments as a range verification technique for 238U primary ion beam,” Phys. Rev. Spec. Top. - Accel. Beams 15, 071001-1–071001-13 (2012).10.1103/physrevstab.15.071001 doi: 10.1103/physrevstab.15.071001
    [17]
    I. Strašík, E. Mustafin, A. Fertman et al., “Experimental study of the residual activity induced by 950 MeV/u uranium beam in stainless steel and copper,” Nucl. Instrum. Methods Phys. Res. B 266, 3443 (2008).10.1016/j.nimb.2008.05.013 doi: 10.1016/j.nimb.2008.05.013
    [18]
    P. Katrík, E. Mustafin, D. H. H. Hoffmann et al., “Activation of accelerator constructing materials by heavy ions,” Nucl. Instrum. Methods Phys. Res. B 365, 525–528 (2015).10.1016/j.nimb.2015.09.022 doi: 10.1016/j.nimb.2015.09.022
    [19]
    G. Battistoni, F. Cerutti, A. Fasso et al., “The FLUKA code: Description and benchmarking,” AIP Conf. Proc. 896, 31 (2007).10.1063/1.2720455 doi: 10.1063/1.2720455
    [20]
    [21]
    J. F. Ziegler, M. D. Ziegler, and J. P. Biersack, “SRIM—The stopping and range of ions in matter (2010),” Nucl. Instrum. Methods Phys. Res., Sect. B 268, 1818 (2010).10.1016/j.nimb.2010.02.091 doi: 10.1016/j.nimb.2010.02.091
    [22]
    [23]
    K. Parodi, T. Bortfeld, W. Enghardt et al., “PET imaging for treatment verification of ion therapy: Implementation and experience at GSI Darmstadt,” Nucl. Instrum. Methods Phys. Res. A 591, 282–286 (2008).10.1016/j.nima.2008.03.075 doi: 10.1016/j.nima.2008.03.075
    [24]
    [25]
    [26]
    P. Forck, Lectures Notes on Beam Instrumentation and Diagnostic (Joint Universities Accelerator School, 2011).
    [27]
    [28]
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(9)  / Tables(2)

    Article Metrics

    Article views (177) PDF downloads(9) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return