Follow us on Wechat

用微信扫码二维码

分享至好友和朋友圈

Volume 4 Issue 3
May  2019
Turn off MathJax
Article Contents
Tarasenko V. F., Lomaev M. I., Baksht E. Kh., Beloplotov D. V., Burachenko A. G., Sorokin D. A., Lipatov E. I.. Spectral and amplitude-time characteristics of crystals excited by a runaway electron beam[J]. Matter and Radiation at Extremes, 2019, 4(3): 037401. doi: 10.1063/1.5096563
Citation: Tarasenko V. F., Lomaev M. I., Baksht E. Kh., Beloplotov D. V., Burachenko A. G., Sorokin D. A., Lipatov E. I.. Spectral and amplitude-time characteristics of crystals excited by a runaway electron beam[J]. Matter and Radiation at Extremes, 2019, 4(3): 037401. doi: 10.1063/1.5096563

Spectral and amplitude-time characteristics of crystals excited by a runaway electron beam

doi: 10.1063/1.5096563
More Information
  • Corresponding author: a)Author to whom correspondence should be addressed: VFT@loi.hcei.tsc.ru
  • Received Date: 2019-02-01
  • Accepted Date: 2019-02-19
  • Available Online: 2021-04-13
  • Publish Date: 2019-05-15
  • The generation of runaway electrons (REs) is a significant problem in tokamak installations, causing energy loss, and melting and vaporization of the walls of the vacuum chamber. The wide deployment of Cherenkov-type detectors, in addition to other methods, is routinely used to detect high-energy electrons. This paper focuses on the cathodoluminescence and Cherenkov radiation excited in different crystals by REs. The spectral energy density of Cherenkov radiation in CaF2 (fluorite) and diamond at various initial electron energies is calculated, taking into account the ionization losses of electron energy, the dispersion of the refractive index of these substances, and the electron energy distribution of the beam.
  • loading
  • [1]
    M. J. Sadowski, “Generation and diagnostics of fast electrons within tokamak plasmas,” Nukleonika 56(2), 85–98 (2011).
    [2]
    P. V. Savrukhin and E. A. Shestakov, “A study on the effects of magnetohydrodynamic perturbations on nonthermal beam formation during the current decay phase of disruptions in the T-10 tokamak,” Nucl. Fusion 55(4), 043016 (2015).10.1088/0029-5515/55/4/043016 doi: 10.1088/0029-5515/55/4/043016
    [3]
    B. Pourshahab, M. R. Abdi, A. Sadighzadeh, and C. Rasouli, “Temporal and spatial evolution of runaway electrons at the instability moments in Damavand tokamak,” Phys. Plasmas 23, 072501 (2016).10.1063/1.4955218 doi: 10.1063/1.4955218
    [4]
    R. J. Zhou, L. Q. Hu, Y. Zhang, G. Q. Zhong, S. Y. Lin et al., “Runaway electrons generated during spontaneous disruptions in the EAST tokamak,” Nucl. Fusion 57(11), 114002 (2017).10.1088/1741-4326/aa7c9d doi: 10.1088/1741-4326/aa7c9d
    [5]
    V. P. Budaev, Y. V. Martynenko, S. A. Grashin, R. N. Giniyatulin, I. I. Arkhipov et al., “Tungsten melting and erosion under plasma heat load in tokamak discharges with disruptions,” Nucl. Mater. Energy 12, 418–422 (2017).10.1016/j.nme.2016.11.029 doi: 10.1016/j.nme.2016.11.029
    [6]
    L. Zeng, Z. Y. Chen, Y. B. Dong, H. R. Koslowski, Y. Liang et al., “Runaway electron generation during disruptions in the J-TEXT tokamak,” Nucl. Fusion 57(4), 046001 (2017).10.1088/1741-4326/aa57d9 doi: 10.1088/1741-4326/aa57d9
    [7]
    J. Zebrowski, L. Jakubowski, M. Rabinski, M. J. Sadowski, M. J. Jakubowski et al., “Studies of runaway electrons via Cherenkov effect in tokamaks,” J. Phys.: Conf. Ser. 959(1), 012002 (2018).10.1088/1742-6596/959/1/012002 doi: 10.1088/1742-6596/959/1/012002
    [8]
    A. J. Dai, Z. Y. Chen, D. W. Huang, R. H. Tong, J. Zhang et al., “Conversion of magnetic energy to runaway kinetic energy during the termination of runaway current on the J-TEXT tokamak,” Plasma Phys. Controlled Fusion 60(5), 055003 (2018).10.1088/1361-6587/aab16d doi: 10.1088/1361-6587/aab16d
    [9]
    M. Rubel, S. Brezinsek, J. W. Coenen, A. Huber, A. Kirschner et al., “Overview of wall probes for erosion and deposition studies in the TEXTOR tokamak,” Matter Radiat. Extremes 2(3), 87–104 (2017).10.1016/j.mre.2017.03.002 doi: 10.1016/j.mre.2017.03.002
    [10]
    L. D. Landau, J. S. Bell, M. J. Kearsley, L. P. Pitaevskii, E. M. Lifshitz et al., Electrodynamics of Continuous Media (Pergamon Press, 1984).
    [11]
    V. I. Solomonov and S. G. Mikhailov, Pulse Cathodoluminescence and its Application for Analysis of Condensed Matter (Ural Branch of RAS, Ekaterinburg, 2003) (in Russian).
    [12]
    A. M. Zaitsev, Optical Properties of Diamond: A Data Handbook (Springer-Verlag, Berlin, 2001).
    [13]
    E. Kh. Baksht, A. G. Burachenko, and V. F. Tarasenko, “Pulsed cathodoluminescence of diamond, calcite, spodumene, and fluorite under the action of subnanosecond electron beam,” Tech. Phys. Lett. 36(11), 1020–1023 (2010).10.1134/s1063785010110143 doi: 10.1134/s1063785010110143
    [14]
    V. F. Tarasenko, E. Kh. Baksht, A. G. Burachenko, D. V. Beloplotov, and A. V. Kozyrev, “Luminescence of polymethyl methacrylate excited by runaway electron beam and by KrCl excilamp,” IEEE Trans. Plasma Sci. 45(1), 76–84 (2017).10.1109/tps.2016.2637570 doi: 10.1109/tps.2016.2637570
    [15]
    D. A. Sorokin, A. G. Burachenko, D. V. Beloplotov, V. F. Tarasenko, E. Kh. Baksht et al., “Luminescence of crystals excited by a runaway electron beam and by excilamp radiation with a peak wavelength of 222 nm,” J. Appl. Phys. 122, 154902 (2017).10.1063/1.4996965 doi: 10.1063/1.4996965
    [16]
    K. N. Mukhin, Experimental Nuclear Physics: Physics of Atomic Nucleus (Mir, Moscow, 1987), Vol. 1.
    [17]
    I. N. Bekman, Nuclear Physics, Course of Lectures (MSU, Moscow, 2010) (in Russian).
    [18]
    [19]
    [20]
    V. I. Bespalov, Interaction of Ionizing Radiation with Matter (TPU, Tomsk, 2008) (in Russian).
    [21]
    Z. A. Al’bikov, A. I. Veretennikov, and O. V. Kozlov, Detectors of Pulsed Ionizing Radiation (Atomizdat, Moscow, 1978) (in Russian).
    [22]
    E. A. Stroganova, I. N. Parshina, M. A. Kiekpaev, and P. A. Ponomareva, Organic Chemistry. Part 2. Methods for Isolation, Purification and Identification of Organic Compounds: A Practical Work (OSU, Orenburg, 2013).
    [23]
    Generation of Runaway Electron Beams and X-Rays in High Pressure Gases, Volume 1: Techniques and Measurements, edited by V. F. Tarasenko (Nova Science Publishers, Inc., New York, 2016).
    [24]
    V. F. Tarasenko, C. Zhang, E. Kh. Baksht, A. G. Burachenko, T. Shao et al., “Review of supershort avalanche electron beam during nanosecond-pulse discharges in some gases,” Matter Radiat. Extremes 2(3), 105–116 (2017).10.1016/j.mre.2016.10.004 doi: 10.1016/j.mre.2016.10.004
    [25]
    V. M. Efanov, M. V. Efanov, A. V. Komashko, A. V. Kirilenko, P. M. Yarin et al., Ultra-Wideband, Short Pulse Electromagnetics (Springer, New York, 2010).
    [26]
    G. A. Mesyats, S. D. Korovin, V. V. Rostov, V. G. Shpak, and M. I. Yalandin, “The RADAN series of compact pulsed power generators and their applications,” Proc. IEEE 92(7), 1166–1179 (2004).10.1109/jproc.2004.829005 doi: 10.1109/jproc.2004.829005
    [27]
    V. F. Tarasenko, E. Kh. Baksht, A. G. Burachenko, I. D. Kostyrya, M. I. Lomaev et al., “Modes of generation of runaway electron beams in He, H2, Ne and N2 at a pressure of 1-760 Torr,” IEEE Trans. Plasma Sci. 38, 2583–2587 (2010).10.1109/tps.2010.2041474 doi: 10.1109/tps.2010.2041474
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(7)

    Article Metrics

    Article views (83) PDF downloads(5) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return