Citation: | Orlov Nikolay Yu., Kadatskiy Maxim A., Denisov Oleg B., Khishchenko Konstantin V.. Application of quantum-statistical methods to studies of thermodynamic and radiative processes in hot dense plasmas[J]. Matter and Radiation at Extremes, 2019, 4(5): 054403. doi: 10.1063/1.5096439 |
[1] |
S. Yu. Gus’kov, “Thermonuclear gain and parameters of fast ignition ICF-targets,” Laser Part. Beams 23, 255–260 (2005).10.1017/s0263034605050305 doi: 10.1017/s0263034605050305
|
[2] |
A. Bret and C. Deutsch, “Density gradient effects on beam plasma linear instabilities for fast ignition scenario,” Laser Part. Beams 24, 269–273 (2006).10.1017/s0263034606060411 doi: 10.1017/s0263034606060411
|
[3] |
H. Sakagami, T. Johzaki, H. Nagamoto, and K. Mima, “Fast ignition integrated interconnecting code project for cone-guided targets,” Laser Part. Beams 24, 191–198 (2006).10.1017/s0263034606050762 doi: 10.1017/s0263034606050762
|
[4] |
D. Batani, R. Dezulian, R. Redaelli, R. Benocci, H. Stabile et al., “Recent experiments on the hydrodynamics of laser-produced plasmas conducted at the PALS laboratory,” Laser Part. Beams 25, 127–141 (2007).10.1017/s0263034607070164 doi: 10.1017/s0263034607070164
|
[5] |
G. V. Sin’ko, N. A. Smirnov, A. A. Ovechkin, P. R. Levashov, and K. V. Khishchenko, “Thermodynamic functions of the heated electron subsystem in the field of cold nuclei,” High Energy Density Phys. 9, 309–314 (2013).10.1016/j.hedp.2013.02.001 doi: 10.1016/j.hedp.2013.02.001
|
[6] |
A. A. Ovechkin, P. A. Loboda, V. G. Novikov, A. S. Grushin, and A. D. Solomyannaya, “RESEOS—a model of thermodynamic and optical properties of hot and warm dense matter,” High Energy Density Phys. 13, 20–33 (2014).10.1016/j.hedp.2014.09.001 doi: 10.1016/j.hedp.2014.09.001
|
[7] |
A. A. Charakhch’yan and K. V. Khishchenko, “Plane thermonuclear detonation waves initiated by proton beams and quasi-one-dimensional model of fast ignition,” Laser Part. Beams 33, 65–80 (2015).10.1017/s0263034614000780 doi: 10.1017/s0263034614000780
|
[8] |
N. E. Andreev, M. E. Povarnitsyn, M. E. Veysman, A. Ya. Faenov, P. R. Levashov et al., “Interaction of annular-focused laser beams with solid targets,” Laser Part. Beams 33, 541–550 (2015).10.1017/s0263034615000580 doi: 10.1017/s0263034615000580
|
[9] |
K. V. Khishchenko, “Equation of state for tungsten over a wide range of densities and internal energies,” J. Phys.: Conf. Ser. 653, 012081 (2015).10.1088/1742-6596/653/1/012081 doi: 10.1088/1742-6596/653/1/012081
|
[10] |
C. A. McCoy, M. D. Knudson, and S. Root, “Absolute measurement of the Hugoniot and sound velocity of liquid copper at multimegabar pressures,” Phys. Rev. B 96, 174109 (2017).10.1103/physrevb.96.174109 doi: 10.1103/physrevb.96.174109
|
[11] |
S. Zhang, B. Militzer, L. X. Benedict, F. Soubiran, P. A. Sterne, and K. P. Driver, “Path integral Monte Carlo simulations of dense carbon-hydrogen plasmas,” J. Chem. Phys. 148, 102318 (2018).10.1063/1.5001208 doi: 10.1063/1.5001208
|
[12] |
L. V. Al’tshuler, R. F. Trunin, K. K. Krupnikov, and N. V. Panov, “Explosive laboratory devices for shock wave compression studies,” Usp. Fiz. Nauk 166, 575–581 (1996).10.3367/ufnr.0166.199605f.0575 doi: 10.3367/ufnr.0166.199605f.0575
|
[13] |
A. I. Funtikov, “Explosive laboratory measurement of the dynamical compressibility of porous substances in the pressure range from 0.1 to 1 TPa,” Usp. Fiz. Nauk 167, 1119–1120 (1997).10.3367/ufnr.0167.199710j.1119 doi: 10.3367/ufnr.0167.199710j.1119
|
[14] |
D. Nikolaev, V. Ternovoi, V. Kim, and A. Shutov, “Plane shock compression generators, utilizing convergence of conical shock waves,” J. Phys.: Conf. Ser. 500, 142026 (2014).10.1088/1742-6596/500/14/142026 doi: 10.1088/1742-6596/500/14/142026
|
[15] |
M. D. Knudson, R. W. Lemke, D. B. Hayes, C. A. Hall, C. Deeney, and J. R. Asay, “Near-absolute Hugoniot measurements in aluminum to 500 GPa using a magnetically accelerated flyer plate technique,” J. Appl. Phys. 94, 4420–4431 (2003).10.1063/1.1604967 doi: 10.1063/1.1604967
|
[16] |
V. V. Alexandrov, A. V. Branitskii, E. V. Grabovski, Ya. N. Laukhin, G. M. Oleinik et al., “Acceleration of metallic flyers at Angara-5-1 facility,” Phys. At. Nucl. 81, 1586–1589 (2018).10.1134/s1063778818110017 doi: 10.1134/s1063778818110017
|
[17] |
S. Yu. Gus’kov, “Fast ignition of inertial confinement fusion targets,” Plasma Phys. Rep. 39, 1–50 (2013).10.1134/s1063780x13010017 doi: 10.1134/s1063780x13010017
|
[18] |
K. V. Khishchenko and A. A. Charakhch’yan, “On some features of plane waves of thermonuclear burn,” J. Appl. Mech. Tech. Phys. 56, 86–95 (2015).10.1134/s0021894415010149 doi: 10.1134/s0021894415010149
|
[19] |
K. Lan, J. Liu, Z. Li, X. Xie, W. Huo et al., “Progress in octahedral spherical hohlraum study,” Matter Radiat. Extremes 1, 8–27 (2016).10.1016/j.mre.2016.01.003 doi: 10.1016/j.mre.2016.01.003
|
[20] |
R. Betti and O. A. Hurricane, “Inertial-confinement fusion with lasers,” Nat. Phys. 12, 435–448 (2016).10.1038/nphys3736 doi: 10.1038/nphys3736
|
[21] |
I. K. Krasyuk, P. P. Pashinin, A. Yu. Semenov, K. V. Khishchenko, and V. E. Fortov, “Study of extreme states of matter at high energy densities and high strain rates with powerful lasers,” Laser Phys. 26, 094001 (2016).10.1088/1054-660x/26/9/094001 doi: 10.1088/1054-660x/26/9/094001
|
[22] |
T. A. Shelkovenko, S. A. Pikuz, I. N. Tilikin, M. D. Mitchell, S. N. Bland, and D. A. Hammer, “Evolution of X-pinch loads for pulsed power generators with current from 50 to 5000 kA,” Matter Radiat. Extremes 3, 267–277 (2018).10.1016/j.mre.2018.09.001 doi: 10.1016/j.mre.2018.09.001
|
[23] |
R. B. Baksht, V. I. Oreshkin, A. G. Rousskikh, and A. S. Zhigalin, “Energy balance in a Z pinch with suppressed Rayleigh–Taylor instability,” Plasma Phys. Controlled Fusion 60, 035015 (2018).10.1088/1361-6587/aaa79b doi: 10.1088/1361-6587/aaa79b
|
[24] |
X. Wang, “Research at Tsinghua University on electrical explosions of wires,” Matter Radiat. Extremes 4, 017201 (2019).10.1063/1.5081450 doi: 10.1063/1.5081450
|
[25] |
V. V. Ivanov, A. A. Anderson, and D. Papp, “Investigation of wire-array Z-pinches by laser probing diagnostics,” Matter Radiat. Extremes 4, 017401 (2019).10.1063/1.5081453 doi: 10.1063/1.5081453
|
[26] |
V. M. Romanova, A. R. Mingaleev, A. E. Ter-Oganesyan, T. A. Shelkovenko, G. V. Ivanenkov, and S. A. Pikuz, “Core structure and secondary breakdown of an exploding wire in the current-pause regime,” Matter Radiat. Extremes 4, 026401 (2019).10.1063/1.5085487 doi: 10.1063/1.5085487
|
[27] |
D. Yanuka, S. Theocharous, S. Efimov, S. N. Bland, A. Rososhek et al., “Synchrotron based x-ray radiography of convergent shock waves driven by underwater electrical explosion of a cylindrical wire array,” J. Appl. Phys. 125, 093301 (2019).10.1063/1.5089011 doi: 10.1063/1.5089011
|
[28] |
D. H. H. Hoffmann, A. Blazevic, P. Ni, O. Rosmej, M. Roth et al., “Present and future perspectives for high energy density physics with intense heavy ion and laser beams,” Laser Part. Beams 23, 47–53 (2005).10.1017/s0263034605229993 doi: 10.1017/s0263034605229993
|
[29] |
A. M. Khalenkov, N. G. Borisenko, V. N. Kondrashov, Yu. A. Merkuliev, J. Limpouch, and V. G. Pimenov, “Experience of micro-heterogeneous target fabrication to study energy transport in plasma near critical density,” Laser Part. Beams 24, 283–290 (2006).10.1017/s0263034606060435 doi: 10.1017/s0263034606060435
|
[30] |
O. N. Rosmej, N. Zhidkov, V. Vatulin, N. Sulov, A. Kunin et al., Experiments on heating of low Z targets by means of hohlraum radiation, in GSI Scientific Report 2009, edited by K. Grosse (GSI, Darmstadt, 2010), p. 387.
|
[31] |
S. F. Gnyusov, V. P. Rotshtein, A. E. Mayer, V. V. Rostov, A. V. Gunin et al., “Simulation and experimental investigation of the spall fracture of 304L stainless steel irradiated by a nanosecond relativistic high-current electron beam,” Int. J. Fract. 199, 59–70 (2016).10.1007/s10704-016-0088-8 doi: 10.1007/s10704-016-0088-8
|
[32] |
S. A. Barengolts, V. G. Mesyats, V. I. Oreshkin, E. V. Oreshkin, K. V. Khishchenko et al., “Mechanism of vacuum breakdown in radio-frequency accelerating structures,” Phys. Rev. Accel. Beams 21, 061004 (2018).10.1103/physrevaccelbeams.21.061004 doi: 10.1103/physrevaccelbeams.21.061004
|
[33] |
L. V. Al’tshuler, B. N. Moiseev, L. V. Popov, G. V. Simakov, and R. F. Trunin, “Relative compressibility of iron and lead at pressures of 31 to 34 Mbar,” Sov. Pys. JETP 27, 420–422 (1968).
|
[34] |
C. E. Ragan, M. G. Silbert, and B. C. Diven, “Shock compression of molybdenum to 2.0 TPa by means of a nuclear explosion,” J. Appl. Phys. 48, 2860–2870 (1977).10.1063/1.324094 doi: 10.1063/1.324094
|
[35] |
A. C. Mitchell, W. J. Nellis, R. A. Heinle, G. W. Repp, J. A. Moriarty et al., “Shock-impedance-match experiments at pressures to 2.5 TPa (25 Mbar),” Physica B+C 139, 591–594 (1986).10.1016/0378-4363(86)90657-1 doi: 10.1016/0378-4363(86)90657-1
|
[36] |
E. N. Avrorin, B. K. Vodolaga, V. A. Simonenko, and V. E. Fortov, “High-intensity shock-waves and the extreme states of matter,” Usp. Fiz. Nauk 163, 1–34 (1993).10.3367/ufnr.0163.199305a.0001 doi: 10.3367/ufnr.0163.199305a.0001
|
[37] |
R. F. Trunin, “Shock compression of condensed matters in strong shock-waves caused by underground nuclear-explosions,” Usp. Fiz. Nauk 164, 1215–1237 (1994).10.3367/ufnr.0164.199411d.1215 doi: 10.3367/ufnr.0164.199411d.1215
|
[38] |
Ya. B. Zel’dovich and Yu. P. Raizer, Physics of Shock Waves and High-Temperature Hydrodynamic Phenomena (Academic Press, New York, 1967).
|
[39] |
P. Adamek, O. Renner, L. Drska, F. B. Rosmej, and J. F. Wyart, “Genetic algorithms in spectroscopic diagnostics of hot dense plasmas,” Laser Part. Beams 24, 511–518 (2006).10.1017/s0263034606060678 doi: 10.1017/s0263034606060678
|
[40] |
I. V. Lomonosov, “Multi-phase equation of state for aluminum,” Laser Part. Beams 25, 567–584 (2007).10.1017/s0263034607000687 doi: 10.1017/s0263034607000687
|
[41] |
M. E. Povarnitsyn, N. E. Andreev, P. R. Levashov, K. V. Khishchenko, D. A. Kim et al., “Laser irradiation of thin films: Effect of energy transformation,” Laser Part. Beams 31, 663–671 (2013).10.1017/s0263034613000700 doi: 10.1017/s0263034613000700
|
[42] |
I. V. Lomonosov and S. V. Fortova, “Wide-range semiempirical equations of state of matter for numerical simulation on high-energy processes,” High Temp. 55, 585–610 (2017).10.1134/s0018151x17040113 doi: 10.1134/s0018151x17040113
|
[43] |
A. F. Nikiforov, V. G. Novikov, and V. B. Uvarov, Quantum-Statistical Models of Hot Dense Matter (Birkhäuser, Basel, 2005).
|
[44] |
N. Yu. Orlov, “A method of calculating selfconsistent potentials for a mixture of chemical elements,” USSR Comput. Math. Math. Phys. 26, 165–170 (1986).10.1016/0041-5553(86)90092-3 doi: 10.1016/0041-5553(86)90092-3
|
[45] |
N. Yu. Orlov, O. B. Denisov, G. A. Vergunova, and O. N. Rozmej, “Mathematical modeling of the Au-doping effect on the radiative properties of porous polymers in experiments with laser and heavy-ion beams,” J. Russ. Laser Res. 35, 119–123 (2014).10.1007/s10946-014-9407-6 doi: 10.1007/s10946-014-9407-6
|
[46] |
N. H. March, W. H. Young, and S. Sampanthar, The Many-Body Problem in Quantum Mechanics (Cambridge University Press, Cambridge, 1967).
|
[47] |
W. Kohn and P. Vashishta, “General density functional theory,” in Theory of the Inhomogeneous Electron Gas, Physics of Solids and Liquids, edited by S. Lundqvist and N. H. March (Springer, Boston, MA, 1983).
|
[48] |
A. K. Radjagopal, “Theory of inhomogeneous electron systems: Spin-density-functional formalism,” Adv. Chem. Phys. 41, 59–193 (1980).10.1002/9780470142608.ch2 doi: 10.1002/9780470142608.ch2
|
[49] |
N. Yu. Orlov and V. E. Fortov, “Comparative analysis of the theoretical models of a hot dense plasma and the density functional theory,” Plasma Phys. Rep. 27, 44–55 (2001).10.1134/1.1339483 doi: 10.1134/1.1339483
|
[50] |
N. Yu. Orlov, “Quantum-statistical calculation of the properties of a mixture of chemical elements allowing for fluctuations in the occupation numbers of electron states,” USSR Comput. Math. Math. Phys. 27, 64–70 (1987).10.1016/0041-5553(87)90010-3 doi: 10.1016/0041-5553(87)90010-3
|
[51] |
N. Yu. Orlov, “Ion model of a hot dense plasma,” Laser Part. Beams 15, 627–634 (1997).10.1017/s0263034600011198 doi: 10.1017/s0263034600011198
|
[52] |
L. H. Thomas, “The calculation of atomic fields,” Math. Proc. Cambridge Philos. Soc. 23, 542–548 (1927).10.1017/S0305004100011683 doi: 10.1017/S0305004100011683
|
[53] |
E. Fermi, “Statistical method to determine some properties of atoms,” Rend. Accad. Naz. Lincei 6, 602–607 (1927).
|
[54] |
R. P. Feynman, N. Metropolis, and E. Teller, “Equations of state of elements based on the generalized Fermi–Thomas theory,” Phys. Rev. 75, 1561–1573 (1949).10.1103/physrev.75.1561 doi: 10.1103/physrev.75.1561
|
[55] |
D. A. Kirzhnits, “Quantum corrections to the Thomas–Fermi equation,” Sov. Phys. JETP 5, 64–71 (1957).
|
[56] |
N. N. Kalitkin, “The Thomas–Fermi model of the atom with quantum and exchange corrections,” Sov. Phys. JETP 11, 1106–1110 (1960).
|
[57] |
B. F. Rozsnyai, “Relativistic Hartree–Fock–Slater calculations for arbitrary temperature and matter density,” Phys. Rev. A 5, 1137–1149 (1972).10.1103/physreva.5.1137 doi: 10.1103/physreva.5.1137
|
[58] |
A. F. Nikiforov and V. B. Uvarov, “Description of the state of matter at high temperatures based on equations of the self-consistent field,” Chislennye Metody Mekh. Sploshnoi Sredy 4, 114–117 (1973).
|
[59] |
B. F. Rozsnyai, “An overview of the problems connected with theoretical calculations for hot plasmas,” J. Quant. Spectrosc. Radiat. Transfer 27, 211–217 (1982).10.1016/0022-4073(82)90111-x doi: 10.1016/0022-4073(82)90111-x
|
[60] |
J. Zeng, F. Jin, and J. Yuan, “Radiative opacity of plasmas studied by detailed term (level) accounting approaches,” Front. Phys. China 1, 468–489 (2006).10.1007/s11467-006-0042-8 doi: 10.1007/s11467-006-0042-8
|
[61] |
A. V. Bushman and V. E. Fortov, “Models of equation of the matter state,” Usp. Fiz. Nauk 140, 177–232 (1983).10.3367/ufnr.0140.198306a.0177 doi: 10.3367/ufnr.0140.198306a.0177
|
[62] |
F. Perrot, “Hartree–Fock study of the ground-state energy and band structure of metallic copper,” Phys. Rev. B 11, 4872–4884 (1975).10.1103/physrevb.11.4872 doi: 10.1103/physrevb.11.4872
|
[63] |
M. A. Kadatskiy and K. V. Khishchenko, “Theoretical investigation of the shock compressibility of copper in the average-atom approximation,” Phys. Plasmas 25, 112701 (2018).10.1063/1.5050248 doi: 10.1063/1.5050248
|
[64] |
S. I. Anisimov, A. M. Prokhorov, and V. E. Fortov, “The use of powerful lasers for the study of matter under superhigh pressures,” Usp. Fiz. Nauk 142, 395–434 (1984).10.3367/ufnr.0142.198403b.0395 doi: 10.3367/ufnr.0142.198403b.0395
|
[65] |
V. A. Alekseyev, V. E. Fortov, and I. T. Yakubov, “Physical properties of high-pressure plasma,” Usp. Fiz. Nauk 139, 193–222 (1983).10.3367/UFNr.0139.198302a.0193 doi: 10.3367/UFNr.0139.198302a.0193
|
[66] |
W. Ebeling, “Nonideality effects in plasmas with multiply charged ions,” Contrib. Plasma Phys. 29, 165–172 (1989).10.1002/ctpp.2150290206 doi: 10.1002/ctpp.2150290206
|
[67] |
V. G. Novikov, “Inclusion of individual states of ions in the modified Hartree–Fock–Slater model,” High Temp. 30, 573–578 (1992).
|
[68] |
L. D. Landau and E. M. Lifshitz, Statistical Physics. Part 1 (Pergamon, Oxford, 1980).
|
[69] |
J. P. Hansen, “Statistical mechanics of dense ionized matter. I. Equilibrium properties of the classical one-component plasma,” Phys. Rev. A 8, 3096–3109 (1973).10.1103/physreva.8.3096 doi: 10.1103/physreva.8.3096
|
[70] |
R. G. Palmer and J. D. Weeks, “Exact solution of the mean spherical model for charged hard spheres in a uniform neutralizing background,” J. Chem. Phys. 58, 4171–4174 (1973).10.1063/1.1678973 doi: 10.1063/1.1678973
|
[71] |
N. N. Kalitkin, L. V. Kuzmina, and A. I. Funtikov, “The main Hugoniot-curves of 10 metals,” Mat. Model. 14, 27–42 (2002).
|
[72] |
L. V. Al’tshuler, S. B. Kormer, A. A. Bakanova, and R. F. Trunin, “Equation of state for aluminum, copper, and lead in the high pressure region,” Sov. Phys. JETP 11, 573–579 (1960).
|
[73] |
R. H. Warnes, “Shock wave compression of three polynuclear aromatic compounds,” J. Chem. Phys. 53, 1088–1094 (1970).10.1063/1.1674102 doi: 10.1063/1.1674102
|
[74] |
L. V. Al’tshuler, A. A. Bakanova, I. P. Dudoladov, E. A. Dynin, R. F. Trunin, and B. S. Chekin, “Shock adiabatic curves of metals,” J. Appl. Mech. Tech. Phys. 22, 145–169 (1981).10.1007/bf00907938 doi: 10.1007/bf00907938
|
[75] |
A. C. Mitchell and W. J. Nellis, “Shock compression of aluminum, copper, and tantalum,” J. Appl. Phys. 52, 3363–3374 (1981).10.1063/1.329160 doi: 10.1063/1.329160
|
[76] |
R. F. Trunin, L. F. Gudarenko, M. V. Zhernokletov, and G. V. Simakov, Experimental Data on Shock-Wave Compression and Adiabatic Expansion of Condensed Substances, 2nd ed. (RFNC-VNIITF, Sarov, 2006), pp. 24–25.
|
[77] |
M. A. Kadatskiy and K. V. Khishchenko, “Comparison of Hugoniots calculated for aluminum in the framework of three quantum-statistical models,” J. Phys.: Conf. Ser. 653, 012079 (2015).10.1088/1742-6596/653/1/012079 doi: 10.1088/1742-6596/653/1/012079
|
[78] |
V. A. Simonenko, N. P. Voloshin, A. S. Vladimirov, A. P. Nagibin, V. N. Nogin et al., “Absolute measurements of shock compressibility of aluminum at pressures P ≳ 1 TPa,” Zh. Eksp. Teor. Fiz. 88, 1452–1459 (1985).
|
[79] |
L. P. Volkov, N. P. Voloshin, A. S. Vladimirov, V. N. Nogin, and V. A. Simonenko, “Shock compressibility of aluminum at a pressure of 10 Mbar,” JETP Lett. 31, 588–592 (1980).
|
[80] |
M. A. Podurets, V. M. Ktitorov, R. F. Trunin, L. V. Popov, A. Ya. Matveev et al., “Shock-wave compression of aluminum at pressures of 1.7 TPa,” High Temp. 32, 890–892 (1994).
|
[81] |
V. A. Simonenko, “Experimental measurements of equation of state for metals to 200 Mbar and comparison with Thomas–Fermi and other theoretical models,” High Pressure Sci. Technol. 5, 816–818 (1990).10.1080/08957959008246268 doi: 10.1080/08957959008246268
|
[82] |
K. P. Driver, F. Soubiran, and B. Militzer, “Path integral Monte Carlo simulations of warm dense aluminum,” Phys. Rev. E 97, 063207 (2018).10.1103/physreve.97.063207 doi: 10.1103/physreve.97.063207
|
[83] |
R. F. Trunin, G. V. Simakov, M. A. Podurets, B. N. Moiseyev, and L. V. Popov, “Dynamic compressibility of quartz and quartzite at high pressure,” Izv. Acad. Sci. USSR Phys. Solid Earth 1, 8–11 (1971).
|
[84] |
C. E. Ragan, “Shock compression measurements at 1 to 7 TPa,” Phys. Rev. A 25, 3360–3375 (1982).10.1103/physreva.25.3360 doi: 10.1103/physreva.25.3360
|
[85] |
C. E. Ragan, “Shock-wave experiments at threefold compression,” Phys. Rev. A 29, 1391–1402 (1984).10.1103/physreva.29.1391 doi: 10.1103/physreva.29.1391
|
[86] |
E. N. Avrorin, B. K. Vodolaga, N. P. Voloshin, G. V. Kovalenko, V. F. Kuropatenko et al., “Experimental study of shell effects for shock adiabates of condensed substances,” Zh. Eksp. Teor. Fiz. 93, 613–626 (1987).
|
[87] |
E. N. Avrorin, B. K. Vodolaga, N. P. Voloshin, V. F. Kuropatenko, G. V. Kovalenko et al., “Experimental confirmation of shell effects on the shock adiabats of aluminum and lead,” JETP Lett. 43, 308–311 (1986).
|
[88] |
A. S. Vladimirov, N. P. Voloshin, V. N. Nogin, A. V. Petrovtsev, and V. A. Simonenko, “Shock compressibility of aluminum at p ≳ 1 Gbar,” JETP Lett. 39, 82–85 (1984).
|
[89] |
R. F. Trunin, N. V. Panov, and A. B. Medvedev, “Shock compressibility of iron, aluminum, and tantalum under terapascal pressures in laboratory conditions,” High Temp. 33, 328–329 (1995).
|
[90] |
R. F. Trunin, N. V. Panov, and A. B. Medvedev, “Compressibility of iron, aluminum, molybdenum, titanium, and tantalum at shock-wave pressures of 1–2.5 TPa,” JETP Lett. 62, 591–594 (1995).
|
[91] |
M. A. Kadatskiy and K. V. Khishchenko, “Shock compressibility of iron calculated in the framework of quantum-statistical models with different ionic parts,” J. Phys.: Conf. Ser. 774, 012005 (2016).10.1088/1742-6596/774/1/012005 doi: 10.1088/1742-6596/774/1/012005
|
[92] | |
[93] |
M. V. Zhernokletov, A. B. Medvedev, and G. V. Simakov, “Isentropes of unloading and the equation of molybdenum state at high-energy densities,” Khim. Fiz. 14(2–3), 49–55 (1995).
|
[94] |
L. V. Al’tshuler, “Use of shock waves in high-pressure physics,” Sov. Phys. Usp. 8, 52–91 (1965).10.1070/PU1965v008n01ABEH003062 doi: 10.1070/PU1965v008n01ABEH003062
|
[95] |
R. F. Trunin, M. A. Podurets, G. V. Simakov, L. V. Popov, and A. G. Sevast’yanov, “New data on aluminum, plexiglas and quartz compressibility obtained during strong shock-waves of underground nuclear-explosion,” Zh. Eksp. Teor. Fiz. 108, 851–861 (1995).
|
[96] |
T. J. Orzechowski, M. D. Rosen, H. N. Kornblum, J. L. Porter, L. J. Suter et al., “The Rosseland mean opacity of a mixture of gold and gadolinium at high temperatures,” Phys. Rev. Lett. 77, 3545–3548 (1996).10.1103/physrevlett.77.3545 doi: 10.1103/physrevlett.77.3545
|
[97] |
D. A. Callahan-Miller and M. Tabak, “Progress in target physics and design for heavy ion fusion,” Phys. Plasmas 7, 2083–2091 (2000).10.1063/1.874031 doi: 10.1063/1.874031
|
[98] |
O. B. Denisov, N. Yu. Orlov, S. Yu. Gus’kov, V. B. Rozanov, N. V. Zmitrenko, and A. P. Mikhailov, “Modeling of the composition of materials for soft X-ray sources used in research on inertial confinement fusion,” Plasma Phys. Rep. 31, 684–689 (2005).10.1134/1.2031629 doi: 10.1134/1.2031629
|
[99] |
D. B. Sinars, S. A. Pikuz, T. A. Shelkovenko, K. M. Chandler, D. A. Hammer, and J. P. Apruzese, “Time-resolved spectroscopy of Al, Ti, and Mo X pinch radiation using an X-ray streak camera,” J. Quant. Spectrosc. Radiat. Transfer 78, 61–83 (2003).10.1016/s0022-4073(02)00180-2 doi: 10.1016/s0022-4073(02)00180-2
|
[100] |
N. Yu. Orlov, S. Yu. Gus’kov, S. A. Pikuz, V. B. Rozanov, T. A. Shelkovenko et al., “Theoretical and experimental studies of the radiative properties of hot dense matter for optimizing soft X-ray sources,” Laser Part. Beams 25, 415–423 (2007).10.1017/s0263034607000535 doi: 10.1017/s0263034607000535
|
[101] |
N. Yu. Orlov, O. B. Denisov, O. N. Rosmej, D. Schäfer, Th. Nisius et al., “Theoretical and experimental studies of material radiative properties and their applications to laser and heavy ion inertial fusion,” Laser Part. Beams 29, 69–80 (2011).10.1017/s0263034610000777 doi: 10.1017/s0263034610000777
|
[102] |
S. A. Pikuz, T. A. Shelkovenko, and D. A. Hammer, “X-pinch. Part I,” Plasma Phys. Rep. 41, 291–342 (2015).10.1134/s1063780x15040054 doi: 10.1134/s1063780x15040054
|
[103] |
S. A. Pikuz, T. A. Shelkovenko, and D. A. Hammer, “X-pinch. Part II,” Plasma Phys. Rep. 41, 445–491 (2015).10.1134/s1063780x15060045 doi: 10.1134/s1063780x15060045
|
[104] |
S. B. Hansen, A. S. Shlyaptseva, S. A. Pikuz, T. A. Shelkovenko, D. B. Sinars et al., “Analysis of L-shell line spectra with 50-ps time resolution from Mo X-pinch plasmas,” Phys. Rev. E 70, 026402 (2004).10.1103/physreve.70.026402 doi: 10.1103/physreve.70.026402
|
[105] |
N. Yu. Orlov, O. B. Denisov, and G. A. Vergunova, “Temperature diagnostics of a Z-pinch plasma using calculations of the spectral brightness of X-ray radiation in a large interval of radiation energies,” J. Russ. Laser Res. 37, 91–96 (2016).10.1007/s10946-016-9548-x doi: 10.1007/s10946-016-9548-x
|
[106] |
N. R. Pereira and J. Davis, “X rays from Z-pinches on relativistic electron-beam generators,” J. Appl. Phys. 64, R1–R27 (1988).10.1063/1.341808 doi: 10.1063/1.341808
|
[107] |
I. N. Tilikin, T. A. Shelkovenko, S. A. Pikuz, and D. A. Hammer, “Determination of the size of a radiation source by the method of calculation of diffraction patterns,” Opt. Spectrosc. 115, 128–136 (2013).10.1134/s0030400x13050184 doi: 10.1134/s0030400x13050184
|
[108] |
M. A. Kadatskiy, “Quantum-statistical calculations of the thermodynamic properties of molybdenum at high energy densities,” High Energy Density Phys. 33, 100700 (2019).10.1016/j.hedp.2019.100700 doi: 10.1016/j.hedp.2019.100700
|