Follow us on Wechat

用微信扫码二维码

分享至好友和朋友圈

Volume 4 Issue 5
Sep.  2019
Turn off MathJax
Article Contents
Ramis Rafael, Canaud Benoit, Temporal Mauro, Garbett Warren J., Philippe Franck. Analysis of three-dimensional effects in laser driven thin-shell capsule implosions[J]. Matter and Radiation at Extremes, 2019, 4(5): 055402. doi: 10.1063/1.5095612
Citation: Ramis Rafael, Canaud Benoit, Temporal Mauro, Garbett Warren J., Philippe Franck. Analysis of three-dimensional effects in laser driven thin-shell capsule implosions[J]. Matter and Radiation at Extremes, 2019, 4(5): 055402. doi: 10.1063/1.5095612

Analysis of three-dimensional effects in laser driven thin-shell capsule implosions

doi: 10.1063/1.5095612
More Information
  • Corresponding author: a)Author to whom correspondence should be addressed: rafael.ramis@upm.es
  • Received Date: 2019-03-11
  • Accepted Date: 2019-06-06
  • Publish Date: 2019-09-15
  • Three-dimensional (3D) hydrodynamic numerical simulations of laser driven thin-shell gas-filled microballoons have been carried out using the computer code MULTI-3D [Ramis et al., Phys. Plasmas 21 , 082710 (2014)]. The studied configuration corresponds to experiments carried at the ORION laser facility [Hopps et al., Plasma Phys. Controlled Fusion 57 , 064002 (2015)]. The MULTI-3D code solves single-temperature hydrodynamics, electron heat transport, and 3D ray tracing with inverse bremsstrahlung absorption on unstructured Lagrangian grids. Special emphasis has been placed on the genuine 3D effects that are inaccessible to calculations using simplified 1D or 2D geometries. These include the consequences of (i) a finite number of laser beams (10 in the experimental campaign), (ii) intensity irregularities in the beam cross-sectional profiles, (iii) laser beam misalignments, and (iv) power imbalance between beams. The consequences of these imperfections have been quantified by post-processing the numerical results in terms of capsule nonuniformities (synthetic emission and absorption images) and implosion efficiency (convergence ratio and neutron yield). Statistical analysis of these outcomes allows determination of the laser tolerances that guarantee a given level of target performance.
  • loading
  • [1]
    J. H. Nuckolls, L. Wood, A. Thiessen, and G. B. Zimmermann, “Laser compression of matter to super-high densities: Thermonuclear (CTR) applications,” Nature 239, 129 (1972).10.1038/239129a0 doi: 10.1038/239129a0
    [2]
    J. J. Duderstadt and G. A. Moses, Inertial Confinement Fusion (John Wiley & Sons, New York, 1982).
    [3]
    J. Lindl, “Development of the indirect-drive approach to inertial confinement fusion and the target physics basis for ignition and gain,” Phys. Plasmas 2, 3933 (1995).10.1063/1.871025 doi: 10.1063/1.871025
    [4]
    S. Atzeni and J. Meyer-ter-Vehn, The Physics of Inertial Fusion (Oxford Science Publications, Oxford, 2004).
    [5]
    C. Tian, L. Shan, B. Zhang, W. Zhou, D. Liu, B. Bi, F. Zhang, W. Wang, B. Zhang, and Y. Gu, “Realization of high irradiation uniformity for direct drive ICF at the SG-III prototype laser facility,” Eur. Phys. J. D 69, 54 (2015).10.1140/epjd/e2015-50828-x doi: 10.1140/epjd/e2015-50828-x
    [6]
    E. I. Moses, “The National Ignition Facility and the promise of inertial fusion energy,” Fusion Sci. Tech. 60, 11 (2011).10.13182/fst11-342 doi: 10.13182/fst11-342
    [7]
    C. Lion, “The LMJ program: An overview,” J. Phys.: Conf. Ser. 244, 012003 (2010).10.1088/1742-6596/244/1/012003 doi: 10.1088/1742-6596/244/1/012003
    [8]
    T. R. Boehly, D. L. Brown, R. S. Craxton, R. L. Keck, J. P. Knauer, J. H. Kelly, T. J. Kessler, S. A. Kumpan, S. J. Loucks, S. A. Letzring, F. J. Marshall, R. L. McCrory, S. F. B. Morse, W. Seka, J. M. Soures, and C. P. Verdon, “Initial performance results of the OMEGA laser system,” Opt. Commun. 133, 495–506 (1997).10.1016/s0030-4018(96)00325-2 doi: 10.1016/s0030-4018(96)00325-2
    [9]
    N. Hopps, C. Danson, S. Duffield, D. Egan, S. Elsmere, M. Girling, E. Harvey, D. Hillier, M. Norman, S. Parker, P. Treadwell, D. Winter, and T. Bett, “Comprehensive description of the Orion laser facility,” Appl. Opt. 52(15), 3597–3607 (2013).10.1364/ao.52.003597 doi: 10.1364/ao.52.003597
    [10]
    H. Azechi, T. Jitsuno, T. Kanabe, M. Katayama, K. Mima, N. Miyanaga, M. Nakai, S. Nakai, H. Nakaishi, M. Nakatsuka, A. Nishiguchi, P. A. Norrays, Y. Setsuhara, M. Takagi, M. Yamanaka, and C. Yamanaka, “High-density compression experiments at ILE, Osaka,” Laser Part. Beams 9(2), 193–207 (1991).10.1017/s0263034600003281 doi: 10.1017/s0263034600003281
    [11]
    S. Fujioka, Z. Zhang, N. Yamamoto, S. Ohira, Y. Fujii, K. Ishihara, T. Johzaki, A. Sunahara, Y. Arikawa, K. Shigemori, Y. Hironaka, Y. Sakawa, Y. Nakata, J. Kawanaka, H. Nagatomo, H. Shiraga, N. Miyanaga, T. Norimatsu, H. Nishimura, and H. Azechi, “High-energy-density plasmas generation on GEKKO-LFEX laser facility for fast-ignition laser fusion studies and laboratory astrophysics,” Plasma Phys. Controlled Fusion 54, 124042 (2012).10.1088/0741-3335/54/12/124042 doi: 10.1088/0741-3335/54/12/124042
    [12]
    W. Zheng, X. Wei, Q. Zhu, F. Jing, D. Hu, J. Su, K. Zheng, X. Yuan, H. Zhou, W. Dai, W. Zhou, F. Wang, D. Xu, X. Xie, B. Feng, Z. Peng, L. Guo, Y. Chen, X. Zhang, L. Liu, D. Lin, Z. Dang, Y. Xiang, and X. Deng, “Laser performance of the SG-III laser facility,” High Power Laser Sci. Eng. 4, e21 (2016).10.1017/hpl.2016.20 doi: 10.1017/hpl.2016.20
    [13]
    M. Temporal, R. Ramis, B. Canaud, V. Brandon, S. Laffite, and B. J. L. Garrec, “Irradiation uniformity of directly driven ICF targets in the context of the shock ignition scheme,” Plasma Phys. Controlled Fusion 53, 124008 (2011).10.1088/0741-3335/53/12/124008 doi: 10.1088/0741-3335/53/12/124008
    [14]
    M. Temporal, B. Canaud, W. J. Garbett, F. Philippe, and R. Ramis, “Polar direct drive illumination uniformity provided by the Orion facility,” Eur. Phys. J. D 67, 205 (2013).10.1140/epjd/e2013-40362-4 doi: 10.1140/epjd/e2013-40362-4
    [15]
    M. Murakami and D. Nishi, “Optimization of laser illumination configuration for directly driven inertial confinement fusion,” Matter Radiat. Extremes 2(2), 55–68 (2017).10.1016/j.mre.2016.12.002 doi: 10.1016/j.mre.2016.12.002
    [16]
    M. Temporal, B. Canaud, W. J. Garbett, and R. Ramis, “Numerical analysis of the direct drive illumination uniformity for the laser megajoule facility,” Phys. Plasmas 21, 012710 (2014).10.1063/1.4863460 doi: 10.1063/1.4863460
    [17]
    M. Temporal, B. Canaud, W. J. Garbett, R. Ramis, and S. Weber, “Irradiation uniformity at the laser megajoule facility in the context of the shock ignition scheme,” High Power Laser Sci. Eng. 2, e8 (2014).10.1017/hpl.2014.12 doi: 10.1017/hpl.2014.12
    [18]
    M. Temporal, B. Canaud, W. Garbett, and R. Ramis, “Optimal laser intensity profiles for an uniform target illumination in direct-drive inertial confinement fusion,” High Power Laser Sci. Eng. 2, e37 (2014).10.1017/hpl.2014.42 doi: 10.1017/hpl.2014.42
    [19]
    M. Temporal, B. Canaud, W. J. Garbett, F. Philippe, and R. Ramis, “Overlapping laser profiles used to mitigate the negative effects of beam uncertainties in direct-drive LMJ configurations,” Eur. Phys. J. D 69, 12 (2015).10.1140/epjd/e2014-50695-y doi: 10.1140/epjd/e2014-50695-y
    [20]
    S. Skupsky and K. Lee, “Uniformity of energy deposition for laser driven fusion,” J. Appl. Phys. 54, 3662–3671 (1983).10.1063/1.332599 doi: 10.1063/1.332599
    [21]
    M. Murakami, K. Nishihara, and H. Azechi, “Irradiation nonuniformities due to imperfections of laser beams,” J. Appl. Phys. 74, 802 (1992).10.1063/1.354869 doi: 10.1063/1.354869
    [22]
    M. Temporal, B. Canaud, W. J. Garbett, and R. Ramis, “Comparison between illumination model and hydrodynamic simulation for a direct drive laser irradiated target,” Laser Part. Beams 32, 549–556 (2014).10.1017/s0263034614000500 doi: 10.1017/s0263034614000500
    [23]
    M. Temporal, B. Canaud, W. J. Garbett, and R. Ramis, “Effect of the laser intensity profile on the shock non-uniformity in a directly driven spherical target,” J. Plasma Phys. 81, 905810514 (2015).10.1017/s0022377815000938 doi: 10.1017/s0022377815000938
    [24]
    M. Temporal, B. Canaud, W. J. Garbett, and R. Ramis, “Uniformity of spherical shock wave dynamically stabilized by two successive laser profiles in direct-drive ICF implosions,” Phys. Plasmas 22, 102709 (2015).10.1063/1.4934712 doi: 10.1063/1.4934712
    [25]
    R. Ramis, M. Temporal, B. Canaud, and V. Brandon, “Three-dimensional symmetry analysis of a direct-drive irradiation scheme for the laser megajoule facility,” Phys. Plasmas 21, 082710 (2014).10.1063/1.4893311 doi: 10.1063/1.4893311
    [26]
    N. S. Krasheninnikova, S. M. Finnegan, and M. J. Schmitt, “An initial assessment of three-dimensional polar direct drive capsule asymmetries for implosions at the National Ignition Facility,” Phys. Plasmas 19(1), 012702 (2012).10.1063/1.3671972 doi: 10.1063/1.3671972
    [27]
    I. V. Igumenshchev, V. N. Goncharov, F. J. Marshall, J. P. Knauer, E. M. Campbell, C. J. Forrest, D. H. Froula, V. Y. Glebov, R. L. McCrory, S. P. Regan, T. C. S. S. Skupsky, and C. Stoeckl, “Three-dimensional modeling of direct-drive cryogenic implosions on OMEGA,” Phys. Plasmas 23, 052702 (2016).10.1063/1.4948418 doi: 10.1063/1.4948418
    [28]
    E. Goldman, J. A. Delettrez, and E. I. Thorsos, “A theoretical interpretation of exploding pusher laser fusion experiments,” Nucl. Fusion 19, 555–569 (1979).10.1088/0029-5515/19/5/001 doi: 10.1088/0029-5515/19/5/001
    [29]
    N. Hopps, K. Oades, J. Andrew, C. Brown, G. Cooper, C. Danson, S. Daykin, S. Duffield, R. Edwards, D. Egan, S. Elsmere, S. Gales, M. Girling, E. Gumbrell, E. Harvey, D. Hillier, D. Hoarty, C. Horsfield, S. James, A. Leatherland, S. Masoero, A. Meadowcroft, M. Norman, S. Parker, S. Rothman, M. Rubery, P. Treadwell, D. Winter, and T. Bett, “Overview of laser systems for the Orion facility at the AWE,” Plasma Phys. Controlled Fusion 57, 064002 (2015).10.1088/0741-3335/57/6/064002 doi: 10.1088/0741-3335/57/6/064002
    [30]
    D. I. Hillier, C. N. Danson, S. J. Duffield, D. A. Egan, S. P. Elsmere, M. T. Girling, E. J. Harvey, N. W. Hopps, M. J. Norman, S. J. F. Parker, P. T. Treadwell, D. N. Winter, and T. H. Bett, “Orion: A high contrast user facility,” J. Phys.: Conf. Ser. 688, 012030 (2016).10.1088/1742-6596/688/1/012030 doi: 10.1088/1742-6596/688/1/012030
    [31]
    S. Skupsky, J. A. Marozas, R. S. Craxton, R. Betti, T. J. B. Collins, J. A. Delettrez, V. N. Goncharov, P. W. McKenty, P. B. Radha, T. R. Boehly, J. P. Knauer, F. J. Marshall, D. R. Harding, J. D. Kilkenny, D. D. Meyerhofer, T. C. Sangster, and R. L. McCrory, “Polar direct drive on the National Ignition Facility,” Phys. Plasmas 11(5), 2763–2770 (2004).10.1063/1.1689665 doi: 10.1063/1.1689665
    [32]
    R. Ramis and J. Meyer-ter-Vehn, “MULTI-IFE a one-dimensional computer code for inertial fusion energy (IFE) target simulations,” Comput. Phys. Commun. 203, 226–237 (2016).10.1016/j.cpc.2016.02.014 doi: 10.1016/j.cpc.2016.02.014
    [33]
    R. Ramis, “Hydrodynamic analysis of laser-driven cylindrical implosions,” Phys. Plasmas 20, 082705 (2013).10.1063/1.4818801 doi: 10.1063/1.4818801
    [34]
    R. Ramis and J. R. Sanmartín, “Electron temperature versus laser intensity times wavelength squared: A comparison of theory and experiments,” Nucl. Fusion 23(6), 739–749 (1983).10.1088/0029-5515/23/6/002 doi: 10.1088/0029-5515/23/6/002
    [35]
    R. C. Malone, R. L. McCrory, and R. L. Morse, “Indications of strongly flux-limited electron thermal conduction in laser-target experiments,” Phys. Rev. Lett. 34(12), 721–724 (1975).10.1103/physrevlett.34.721 doi: 10.1103/physrevlett.34.721
    [36]
    J. Li, B. Zhao, H. Li, and J. Zheng, “Study of flux limiter using Fokker–Planck and fluid simulations of planar laser-driven ablation,” Plasma Phys. Controlled Fusion 52, 085008 (2010).10.1088/0741-3335/52/8/085008 doi: 10.1088/0741-3335/52/8/085008
    [37]
    R. Courant, K. Friedrichs, and H. Lewy, “Über die partiellen differenzengleichungen der mathematischen physik,” Math. Ann. 100(1), 32–74 (1928).10.1007/bf01448839 doi: 10.1007/bf01448839
    [38]
    R. Ramis, J. Meyer-ter-Vehn, and J. Ramírez, “MULTI2D a computer code for two-dimensional radiation hydrodynamics,” Comput. Phys. Commun. 180, 977–994 (2009).10.1016/j.cpc.2008.12.033 doi: 10.1016/j.cpc.2008.12.033
    [39]
    W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery, Numerical Recipes in C (Cambridge University Press, Cambridge, 1992).
    [40]
    H.-S. Bosch and G. M. Hale, “Improved formulas for fusion cross-sections and thermal reactivities,” Nucl. Fusion 32, 611–631 (1992).10.1088/0029-5515/32/4/i07 doi: 10.1088/0029-5515/32/4/i07
    [41]
    K. Eidmann, “Radiation transport and atomic physics modeling in high-energy density laser-produced plasmas,” Laser Part. Beams 12, 223–244 (1994).10.1017/s0263034600007709 doi: 10.1017/s0263034600007709
    [42]
    B. Canaud and M. Temporal, “High-gain shock ignition of direct-drive ICF targets for the Laser Mégajoule,” New J. Phys. 12, 043037 (2010).10.1088/1367-2630/12/4/043037 doi: 10.1088/1367-2630/12/4/043037
    [43]
    W. Zheng, X. Wei, Q. Zhu, F. Jing, D. Hu, X. Yuan, W. Dai, W. Zhou, F. Wang, D. Xu, X. Xie, B. Feng, Z. Peng, L. Guo, Y. Chen, X. Zhang, L. Liu, D. Lin, Z. Dang, Y. Xiang, R. Zhang, F. Wang, H. Jia, and X. Deng, “Laser performance upgrade for precise ICF experiment in SG-III laser facility,” Matter Radiat. Extremes 2(5), 243–255 (2017).10.1016/j.mre.2017.07.004 doi: 10.1016/j.mre.2017.07.004
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(13)  / Tables(3)

    Article Metrics

    Article views (212) PDF downloads(4) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return