Follow us on Wechat

用微信扫码二维码

分享至好友和朋友圈

Volume 4 Issue 5
Sep.  2019
Turn off MathJax
Article Contents
Gong Tao, Hao Liang, Li Zhichao, Yang Dong, Li Sanwei, Li Xin, Guo Liang, Zou Shiyang, Liu Yaoyuan, Jiang Xiaohua, Peng Xiaoshi, Xu Tao, Liu Xiangming, Li Yulong, Zheng Chunyang, Cai Hongbo, Liu Zhanjun, Zheng Jian, Wang Zhebin, Li Qi, Li Ping, Zhang Rui, Zhang Ying, Wang Fang, Wang Deen, Wang Feng, Liu Shenye, Yang Jiamin, Jiang Shaoen, Zhang Baohan, Ding Yongkun. Recent research progress of laser plasma interactions in Shenguang laser facilities[J]. Matter and Radiation at Extremes, 2019, 4(5): 055202. doi: 10.1063/1.5092446
Citation: Gong Tao, Hao Liang, Li Zhichao, Yang Dong, Li Sanwei, Li Xin, Guo Liang, Zou Shiyang, Liu Yaoyuan, Jiang Xiaohua, Peng Xiaoshi, Xu Tao, Liu Xiangming, Li Yulong, Zheng Chunyang, Cai Hongbo, Liu Zhanjun, Zheng Jian, Wang Zhebin, Li Qi, Li Ping, Zhang Rui, Zhang Ying, Wang Fang, Wang Deen, Wang Feng, Liu Shenye, Yang Jiamin, Jiang Shaoen, Zhang Baohan, Ding Yongkun. Recent research progress of laser plasma interactions in Shenguang laser facilities[J]. Matter and Radiation at Extremes, 2019, 4(5): 055202. doi: 10.1063/1.5092446

Recent research progress of laser plasma interactions in Shenguang laser facilities

doi: 10.1063/1.5092446
More Information
  • Corresponding author: a)Authors to whom correspondence should be addressed: yangdong.caep@gmail.com and ding-yk@vip.sina.com; a)Authors to whom correspondence should be addressed: yangdong.caep@gmail.com and ding-yk@vip.sina.com
  • Received Date: 2019-02-11
  • Accepted Date: 2019-05-05
  • Publish Date: 2019-09-15
  • We report experimental research on laser plasma interaction (LPI) conducted in Shenguang laser facilities during the past ten years. The research generally consists of three phases: (1) developing platforms for LPI research in mm-scale plasma with limited drive energy, where both gasbag and gas-filled hohlraum targets are tested; (2) studying the effects of beam-smoothing techniques, such as continuous phase plate and polarization smoothing, on the suppression of LPI; and (3) exploring the factors affecting LPI in integrated implosion experiments, which include the laser intensity, gas-fill pressure, size of the laser-entrance hole, and interplay between different beam cones. Results obtained in each phase will be presented and discussed in detail.
  • loading
  • [1]
    J. D. Lindl, Inertial Confinement Fusion: The Quest for Ignition and Energy Gain Using Indirect Drive (Springer-Verlag, New York, 1998).
    [2]
    J. Nuckolls, L. Wood, A. Thiessen, and G. Zimmerman, “Laser compression of matter to super-high densities: Thermonuclear (CTR) applications,” Nature 239, 139 (1972).10.1038/239139a0 doi: 10.1038/239139a0
    [3]
    O. A. Hurricane, D. A. Callahan, D. T. Casey, P. M. Celliers, C. Cerjan et al., “Fuel gain exceeding unity in an inertially confined fusion implosion,” Nature 506, 343 (2014).10.1038/nature13008 doi: 10.1038/nature13008
    [4]
    I. M. Edward, “Ignition on the National ignition facility: A path towards inertial fusion energy,” Nucl. Fusion 49, 104022 (2009).10.1088/0029-5515/49/10/104022 doi: 10.1088/0029-5515/49/10/104022
    [5]
    W. L. Kruer, The Physics of Laser Plasma Interactions (Addison-Wesley, Redwood, 1988).
    [6]
    J. D. Lindl, P. Amendt, R. L. Berger, S. G. Glendinning, S. H. Glenzer et al., “The physics basis for ignition using indirect-drive targets on the National Ignition Facility,” Phys. Plasmas 11, 339 (2004).10.1063/1.1578638 doi: 10.1063/1.1578638
    [7]
    R. K. Kirkwood, B. B. Afeyan, W. L. Kruer, B. J. MacGowan, J. D. Moody et al., “Observation of energy transfer between frequency-mismatched laser beams in a large-scale plasma,” Phys. Rev. Lett. 76, 2065 (1996).10.1103/physrevlett.76.2065 doi: 10.1103/physrevlett.76.2065
    [8]
    W. L. Kruer, S. C. Wilks, B. B. Afeyan, and R. K. Kirkwood, “Energy transfer between crossing laser beams,” Phys. Plasmas 3, 382 (1996).10.1063/1.871863 doi: 10.1063/1.871863
    [9]
    P. Michel, L. Divol, E. A. Williams, S. Weber, C. A. Thomas et al., “Tuning the implosion symmetry of ICF targets via controlled crossed-beam energy transfer,” Phys. Rev. Lett. 102, 025004 (2009).10.1103/physrevlett.102.025004 doi: 10.1103/physrevlett.102.025004
    [10]
    P. Michel, L. Divol, E. A. Williams, C. A. Thomas, D. A. Callahan et al., “Energy transfer between laser beams crossing in ignition hohlraums,” Phys. Plasmas 16, 042702 (2009).10.1063/1.3103788 doi: 10.1063/1.3103788
    [11]
    F. Ze, L. J. Suter, S. M. Lane, E. M. Campbell, W. C. Mead et al., “Compression measurements in ablatively driven inertial confinement fusion,” Comments Plasma Phys. Controlled Fusion 10, 33 (1986).
    [12]
    W. L. Kruer, “Intense laser plasma interactions: From Janus to Nova,” Phys. Fluids B 3, 2356 (1991).10.1063/1.859604 doi: 10.1063/1.859604
    [13]
    J. L. Emmett, W. F. Krupke, and J. B. Trenholme, “Future development of high-power solid-state laser systems,” Sov. J. Quantum Electron. 13, 1 (1983).10.1070/qe1983v013n01abeh004004 doi: 10.1070/qe1983v013n01abeh004004
    [14]
    J. T. Hunt and D. R. Speck, “Present and future performance of the Nova laser system,” Opt. Eng. 28, 284461 (1989).10.1117/12.7976974 doi: 10.1117/12.7976974
    [15]
    J. Bunkenberg, J. Boles, D. Brown, J. Eastman, J. Hoose et al., “The omega high-power phosphate-glass system: Design and performance,” IEEE J. Quantum Electron. 17, 1620 (1981).10.1109/jqe.1981.1071344 doi: 10.1109/jqe.1981.1071344
    [16]
    J. Soures, R. J. Hutchison, S. D. Jacobs, L. D. Lund, R. McCrory et al., OMEGA: A Short-Wavelength Laser for Fusion Experiments (Institute of Electrical and Electronic Engineers, New York, 1983).
    [17]
    T. R. Boehly, D. L. Brown, R. S. Craxton, R. L. Keck, J. P. Knauer et al., “Initial performance results of the OMEGA laser system,” Opt. Commun. 133, 495 (1997).10.1016/s0030-4018(96)00325-2 doi: 10.1016/s0030-4018(96)00325-2
    [18]
    E. I. Moses, R. N. Boyd, B. A. Remington, C. J. Keane, and R. Al-Ayat, “The National Ignition Facility: Ushering in a new age for high energy density science,” Phys. Plasmas 16, 041006 (2009).10.1063/1.3116505 doi: 10.1063/1.3116505
    [19]
    P. A. Holstein, D. Babonneau, C. Bowen, F. Chaland, C. Cherfils et al., “Target physics for the megajoule laser (LMJ),” Nucl. Fusion 44, S177 (2004).10.1088/0029-5515/44/12/s07 doi: 10.1088/0029-5515/44/12/s07
    [20]
    N. Fleurot, C. Cavailler, and J. L. Bourgade, “The laser mégajoule (LMJ) Project dedicated to inertial confinement fusion: Development and construction status,” Fusion Eng. Des. 74, 147 (2005).10.1016/j.fusengdes.2005.06.251 doi: 10.1016/j.fusengdes.2005.06.251
    [21]
    Z. Lin, X. Deng, D. Fan, S. Wang, S. Chen et al., “SG-II laser elementary research and precision SG-II program,” Fusion Eng. Des. 44, 61 (1999).10.1016/s0920-3796(98)00308-1 doi: 10.1016/s0920-3796(98)00308-1
    [22]
    X. M. Zhang, W. G. Zheng, X. F. Wei, F. Jing, Z. Sui, et al., “Preliminary experimental results of shenguang III technical integration experiment line,” in High-Power Lasers and Applications III, edited by D. Fan, K. I. Ueda, and J. Lee (SPIE-International Society Optical Engineering, Bellingham, 2004), p. 6.
    [23]
    [24]
    N. B. Meezan, L. J. Atherton, D. A. Callahan, E. L. Dewald, S. Dixit et al., “National ignition Campaign Hohlraum energetics,” Phys. Plasmas 17, 056304 (2010).10.1063/1.3354110 doi: 10.1063/1.3354110
    [25]
    S. N. Dixit, M. D. Feit, M. D. Perry, and H. T. Powell, “Designing fully continuous phase screens for tailoring focal-plane irradiance profiles,” Opt. Lett. 21, 1715 (1996).10.1364/ol.21.001715 doi: 10.1364/ol.21.001715
    [26]
    E. Lefebvre, R. L. Berger, A. B. Langdon, B. J. MacGowan, J. E. Rothenberg et al., “Reduction of laser self-focusing in plasma by polarization smoothing,” Phys. Plasmas 5, 2701 (1998).10.1063/1.872957 doi: 10.1063/1.872957
    [27]
    S. Skupsky, R. W. Short, T. Kessler, R. S. Craxton, S. Letzring et al., “Improved laser-beam uniformity using the angular-dispersion of frequency-modulated light,” J. Appl. Phys. 66, 3456 (1989).10.1063/1.344101 doi: 10.1063/1.344101
    [28]
    J. D. Moody, B. J. MacGowan, J. E. Rothenberg, R. L. Berger, L. Divol et al., “Backscatter reduction using combined spatial, temporal, and polarization beam smoothing in a long-scale-length laser plasma,” Phys. Rev. Lett. 86, 2810 (2001).10.1103/physrevlett.86.2810 doi: 10.1103/physrevlett.86.2810
    [29]
    S. H. Glenzer, R. L. Berger, L. M. Divol, R. K. Kirkwood, B. J. MacGowan et al., “Reduction of stimulated scattering losses from hohlraum plasmas with laser beam smoothing,” Phys. Plasmas 8, 1692 (2001).10.1063/1.1363613 doi: 10.1063/1.1363613
    [30]
    D. H. Froula, L. Divol, R. L. Berger, R. A. London, N. B. Meezan et al., “Direct measurements of an increased threshold for stimulated Brillouin scattering with polarization smoothing in ignition hohlraum plasmas,” Phys. Rev. Lett. 101, 115002 (2008).10.1103/physrevlett.101.115002 doi: 10.1103/physrevlett.101.115002
    [31]
    D. H. Froula, L. Divol, R. A. London, R. L. Berger, T. Doppner et al., “Observation of the density threshold behavior for the onset of stimulated Raman scattering in high-temperature hohlraum plasmas,” Phys. Rev. Lett. 103, 045006 (2009).10.1103/physrevlett.103.045006 doi: 10.1103/physrevlett.103.045006
    [32]
    D. H. Froula, L. Divol, R. A. London, R. L. Berger, T. Doppner et al., “Experimental basis for laser-plasma interactions in ignition hohlraums at the National Ignition Facility,” Phys. Plasmas 17, 056302 (2010).10.1063/1.3304474 doi: 10.1063/1.3304474
    [33]
    S. H. Glenzer, D. H. Froula, L. Divol, M. Dorr, R. L. Berger et al., “Experiments and multiscale simulations of laser propagation through ignition-scale plasmas,” Nat. Phys. 3, 716 (2007).10.1038/nphys709 doi: 10.1038/nphys709
    [34]
    D. S. Montgomery, B. B. Afeyan, J. A. Cobble, J. C. Fernandez, M. D. Wilke et al., “Evidence of plasma fluctuations and their effect on the growth of stimulated Brillouin and stimulated Raman scattering in laser plasmas,” Phys. Plasmas 5, 1973 (1998).10.1063/1.872868 doi: 10.1063/1.872868
    [35]
    L. F. Berzak Hopkins, N. B. Meezan, S. Le Pape, L. Divol, A. J. Mackinnon et al., “First high-convergence cryogenic implosion in a near-vacuum hohlraum,” Phys. Rev. Lett. 17, 175001 (2015).10.1103/PhysRevLett.114.175001 doi: 10.1103/PhysRevLett.114.175001
    [36]
    D. H. Froula, J. S. Ross, B. B. Pollock, P. Davis, A. N. James et al., “Quenching of the nonlocal electron heat transport by large external magnetic fields in a laser-produced plasma measured with imaging Thomson scattering,” Phys. Rev. Lett. 98, 135001 (2007).10.1103/physrevlett.98.135001 doi: 10.1103/physrevlett.98.135001
    [37]
    D. S. Montgomery, B. J. Albright, D. H. Barnak, P. Y. Chang, J. R. Davies et al., “Use of external magnetic fields in hohlraum plasmas to improve laser-coupling,” Phys. Plasmas 22, 010703 (2015).10.1063/1.4906055 doi: 10.1063/1.4906055
    [38]
    T. Gong, J. Zheng, Z. Li, Y. Ding, D. Yang et al., “Mitigating stimulated scattering processes in gas-filled hohlraums via external magnetic fields,” Phys. Plasmas 22, 092706 (2015).10.1063/1.4931077 doi: 10.1063/1.4931077
    [39]
    P. Neumayer, R. L. Berger, L. Divol, D. H. Froula, R. A. London et al., “Suppression of stimulated Brillouin scattering by increased Landau damping in multiple-ion-species hohlraum plasmas,” Phys. Rev. Lett. 100, 105001 (2008).10.1103/physrevlett.100.105001 doi: 10.1103/physrevlett.100.105001
    [40]
    P. Neumayer, R. L. Berger, D. Callahan, L. Divol, D. H. Froula et al., “Energetics of multiple-ion species hohlraum plasmas,” Phys. Plasmas 15, 056307 (2008).10.1063/1.2890126 doi: 10.1063/1.2890126
    [41]
    [42]
    C. Labaune, H. A. Baldis, B. S. Bauer, V. T. Tikhonchuk, and G. Laval, “Time-resolved measurements of secondary Langmuir waves produced by the Langmuir decay instability in a laser-produced plasma,” Phys. Plasmas 5, 234 (1998).10.1063/1.872692 doi: 10.1063/1.872692
    [43]
    S. Depierreux, C. Labaune, J. Fuchs, D. Pesme, V. T. Tikhonchuk et al., “Langmuir decay instability cascade in laser-plasma experiments,” Phys. Rev. Lett. 89, 045001 (2002).10.1103/physrevlett.89.045001 doi: 10.1103/physrevlett.89.045001
    [44]
    H. C. Bandulet, C. Labaune, K. Lewis, and S. Depierreux, “Thomson-scattering study of the subharmonic decay of ion-acoustic waves driven by the Brillouin instability,” Phys. Rev. Lett. 93, 035002 (2004).10.1103/physrevlett.93.035002 doi: 10.1103/physrevlett.93.035002
    [45]
    C. Niemann, S. H. Glenzer, J. Knight, L. Divol, E. A. Williams et al., “Observation of the parametric two-ion decay instability with Thomson scattering,” Phys. Rev. Lett. 93, 045004 (2004).10.1103/physrevlett.93.045004 doi: 10.1103/physrevlett.93.045004
    [46]
    D. Umstadter, R. Williams, C. Clayton, and C. Joshi, “Observation of steepening in electron plasma waves driven by stimulated Raman backscattering,” Phys. Rev. Lett. 59, 292 (1987).10.1103/physrevlett.59.292 doi: 10.1103/physrevlett.59.292
    [47]
    D. Umstadter, W. B. Mori, and C. Joshi, “The coupling of stimulated Raman and Brillouin scattering in a plasma,” Phys. Fluids B 1, 183 (1989).10.1063/1.859085 doi: 10.1063/1.859085
    [48]
    B. I. Cohen, B. F. Lasinski, A. B. Langdon, and E. A. Williams, “Resonantly excited nonlinear ion waves,” Phys. Plasmas 4, 956 (1997).10.1063/1.872187 doi: 10.1063/1.872187
    [49]
    B. I. Cohen, H. A. Baldis, R. L. Berger, K. G. Estabrook, E. A. Williams et al., “Modeling of the competition of stimulated Raman and Brillouin scatter in multiple beam experiments,” Phys. Plasmas 8, 571 (2001).10.1063/1.1339234 doi: 10.1063/1.1339234
    [50]
    A. V. Maximov, W. Rozmus, V. T. Tikhonchuk, D. F. DuBois, H. A. Rose et al., “Effects of plasma long-wavelength hydrodynamical fluctuations on stimulated Brillouin scattering,” Phys. Plasmas 3, 1689 (1996).10.1063/1.871679 doi: 10.1063/1.871679
    [51]
    S. Huller, P. E. Masson-Laborde, D. Pesme, M. Casanova, F. Detering et al., “Harmonic decomposition to describe the nonlinear evolution of stimulated Brillouin scattering,” Phys. Plasmas 13, 022703 (2006).10.1063/1.2168403 doi: 10.1063/1.2168403
    [52]
    D. S. Montgomery, “Two decades of progress in understanding and control of laser plasma instabilities in indirect drive inertial fusion,” Phys. Plasmas 23, 055601 (2016).10.1063/1.4946016 doi: 10.1063/1.4946016
    [53]
    G. J. Morales and T. M. Oneil, “Nonlinear frequency-shift of an electron-plasma wave,” Phys. Rev. Lett. 28, 417 (1972).10.1103/physrevlett.28.417 doi: 10.1103/physrevlett.28.417
    [54]
    R. E. Giacone and H. X. Vu, “Nonlinear kinetic simulations of stimulated Brillouin scattering,” Phys. Plasmas 5, 1455 (1998).10.1063/1.872803 doi: 10.1063/1.872803
    [55]
    D. H. Froula, L. Divol, and S. H. Glenzer, “Measurements of nonlinear growth of ion-acoustic waves in two-ion-species plasmas with Thomson scattering,” Phys. Rev. Lett. 88, 105003 (2002).10.1103/physrevlett.88.105003 doi: 10.1103/physrevlett.88.105003
    [56]
    L. Divol, R. L. Berger, B. I. Cohen, E. A. Williams, A. B. Langdon et al., “Modeling the nonlinear saturation of stimulated Brillouin backscatter in laser heated plasmas,” Phys. Plasmas 10, 1822 (2003).10.1063/1.1557055 doi: 10.1063/1.1557055
    [57]
    J. F. Myatt, J. Zhang, R. W. Short, A. V. Maximov, W. Seka et al., “Multiple-beam laser-plasma interactions in inertial confinement fusion,” Phys. Plasmas 21, 055501 (2014).10.1063/1.4878623 doi: 10.1063/1.4878623
    [58]
    D. Turnbull, P. Michel, J. E. Ralph, L. Divol, J. S. Ross et al., “Multibeam seeded Brillouin sidescatter in inertial confinement fusion experiments,” Phys. Rev. Lett. 114, 125001 (2015).10.1103/physrevlett.114.125001 doi: 10.1103/physrevlett.114.125001
    [59]
    C. Neuville, V. Tassin, D. Pesme, M. C. Monteil, P. E. Masson-Laborde et al., “Experimental evidence of the collective Brillouin scattering of multiple laser beams sharing acoustic waves,” Phys. Rev. Lett. 116, 235002 (2016).10.1103/physrevlett.116.235002 doi: 10.1103/physrevlett.116.235002
    [60]
    D. E. Hinkel, M. D. Rosen, E. A. Williams, A. B. Langdon, C. H. Still et al., “Stimulated Raman scatter analyses of experiments conducted at the National Ignition Facility,” Phys. Plasmas 18, 056312 (2011).10.1063/1.3577836 doi: 10.1063/1.3577836
    [61]
    P. Michel, L. Divol, E. L. Dewald, J. L. Milovich, M. Hohenberger et al., “Multibeam stimulated Raman scattering in inertial confinement fusion conditions,” Phys. Rev. Lett. 115, 055003 (2015).10.1103/physrevlett.115.055003 doi: 10.1103/physrevlett.115.055003
    [62]
    C. Stoeckl, R. E. Bahr, B. Yaakobi, W. Seka, S. P. Regan et al., “Multibeam effects on fast-electron generation from two-plasmon-decay instability,” Phys. Rev. Lett. 90, 235002 (2003).10.1103/physrevlett.90.235002 doi: 10.1103/physrevlett.90.235002
    [63]
    E. L. Dewald, F. Hartemann, P. Michel, J. Milovich, M. Hohenberger et al., “Generation and beaming of early hot electrons onto the capsule in laser-driven ignition hohlraums,” Phys. Rev. Lett. 116, 075003 (2016).10.1103/physrevlett.116.075003 doi: 10.1103/physrevlett.116.075003
    [64]
    Z. C. Li, J. Zheng, X. H. Jiang, Z. B. Wang, D. Yang et al., “Interaction of 0.53 μm laser pulse with millimeter-scale plasmas generated by gasbag target,” Phys. Plasmas 19, 062703 (2012).10.1063/1.4729332 doi: 10.1063/1.4729332
    [65]
    Z. C. Li, J. Zheng, X. H. Jiang, Z. B. Wang, D. Yang et al., “Methods of generation and detailed characterization of millimeter-scale plasmas using a gasbag target,” Chin. Phys. Lett. 28, 125202 (2011).10.1088/0256-307x/28/12/125202 doi: 10.1088/0256-307x/28/12/125202
    [66]
    Z. B. Wang, J. Zheng, B. Zhao, C. X. Yu, X. H. Jiang et al., “Thomson scattering from laser-produced gold plasmas in radiation conversion layer,” Phys. Plasmas 12, 082703 (2005).10.1063/1.2008262 doi: 10.1063/1.2008262
    [67]
    Z. C. Li, J. A. Zheng, Y. K. Ding, Q. A. Yin, X. H. Jiang et al., “Generation and characterization of millimeter-scale plasmas for the research of laser plasma interactions on Shenguang-III prototype,” Chin. Phys. B 19, 125202 (2010).10.1088/1674-1056/19/12/125202 doi: 10.1088/1674-1056/19/12/125202
    [68]
    L. Hao, Y. Q. Zhao, D. Yang, Z. J. Liu, X. Y. Hu et al., “Analysis of stimulated Raman backscatter and stimulated Brillouin backscatter in experiments performed on SG-III prototype facility with a spectral analysis code,” Phys. Plasmas 21, 072705 (2014).10.1063/1.4890019 doi: 10.1063/1.4890019
    [69]
    T. Gong, Z. Li, B. Zhao, G.-y. Hu, and J. Zheng, “Noise sources and competition between stimulated Brillouin and Raman scattering: A one-dimensional steady-state approach,” Phys. Plasmas 20, 092702 (2013).10.1063/1.4821827 doi: 10.1063/1.4821827
    [70]
    H. Yong, P. Song, C.-L. Zhai, D.-G. Kang, J.-F. Gu et al., “Numerical simulation of 2-D radiation-drive ignition implosion process,” Commun. Theor. Phys. 59, 737 (2013).10.1088/0253-6102/59/6/15 doi: 10.1088/0253-6102/59/6/15
    [71]
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(22)

    Article Metrics

    Article views (292) PDF downloads(19) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return