Follow us on Wechat

用微信扫码二维码

分享至好友和朋友圈

Volume 4 Issue 6
Nov.  2019
Turn off MathJax
Article Contents
Peng H., Marquès J.-R., Lancia L., Amiranoff F., Berger R. L., Weber S., Riconda C.. Plasma optics in the context of high intensity lasers[J]. Matter and Radiation at Extremes, 2019, 4(6): 065401. doi: 10.1063/1.5091550
Citation: Peng H., Marquès J.-R., Lancia L., Amiranoff F., Berger R. L., Weber S., Riconda C.. Plasma optics in the context of high intensity lasers[J]. Matter and Radiation at Extremes, 2019, 4(6): 065401. doi: 10.1063/1.5091550

Plasma optics in the context of high intensity lasers

doi: 10.1063/1.5091550
  • Received Date: 2019-02-03
  • Accepted Date: 2019-06-23
  • Available Online: 2021-04-13
  • Publish Date: 2019-11-15
  • The use of plasmas provides a way to overcome the low damage threshold of classical solid-state based optical materials, which is the main limitation encountered in producing and manipulating intense and energetic laser pulses. Plasmas can directly amplify or alter the characteristics of ultra-short laser pulses via the three-wave coupling equations for parametric processes. The strong-coupling regime of Brillouin scattering (sc-SBS) is of particular interest: recent progress in this domain is presented here. This includes the role of the global phase in the spatio-temporal evolution of the three-wave coupled equations for backscattering that allows a description of the coupling dynamics and the various stages of amplification from the initial growth to the so-called self-similar regime. The understanding of the phase evolution allows control of the directionality of the energy transfer via the phase relation between the pulses. A scheme that exploits this coupling in order to use the plasma as a wave plate is also suggested.
  • loading
  • [1]
    D. Strickland and G. A. Mourou, Opt. Commun. 56, 219 (1985).10.1016/0030-4018(85)90120-8 doi: 10.1016/0030-4018(85)90120-8
    [2]
    D. Forslund et al., “Theory of stimulated scattering processes in laserirradiated plasmas,” Phys. Fluids 18, 1002 (1975).10.1063/1.861248 doi: 10.1063/1.861248
    [3]
    A. Andreev et al., “Short light pulse amplification and compression by stimulated Brillouin scattering in plasmas in the strong coupling regime,” Phys. Plasmas 13, 053110 (2006).10.1063/1.2201896 doi: 10.1063/1.2201896
    [4]
    L. Lancia et al., “Experimental evidence of short light pulse amplification using strong-coupling stimulated Brillouin scattering in the pump depletion regime,” Phys. Rev. Lett. 104, 025001 (2010).10.1103/physrevlett.104.025001 doi: 10.1103/physrevlett.104.025001
    [5]
    L. Lancia et al., “Signatures of the self-similar regime of strongly coupled stimulated Brillouin scattering for efficient short laser pulse amplification,” Phys. Rev. Lett. 116, 075001 (2016).10.1103/physrevlett.116.075001 doi: 10.1103/physrevlett.116.075001
    [6]
    M. Chiaramello et al., “Optimization of interaction conditions for efficient short laser pulse amplification by stimulated Brillouin scattering in the strongly coupled regime,” Phys. Plasmas 23, 072103 (2016).10.1063/1.4955322 doi: 10.1063/1.4955322
    [7]
    M. Chiaramello et al., “Role of frequency chirp and energy flow directionality in the strong coupling regime of Brillouin-based plasma amplification,” Phys. Rev. Lett. 117, 235003 (2016).10.1103/physrevlett.117.235003 doi: 10.1103/physrevlett.117.235003
    [8]
    F. Amiranoff et al., “The role of the global phase in the spatio-temporal evolution of strong-coupling Brillouin scattering,” Phys. Plasmas 25, 013114 (2018).10.1063/1.5019374 doi: 10.1063/1.5019374
    [9]
    S. Weber et al., “Amplification of ultrashort laser pulses by Brillouin backscattering in plasmas,” Phys. Rev. Lett. 111, 055004 (2013).10.1103/physrevlett.111.055004 doi: 10.1103/physrevlett.111.055004
    [10]
    C. Riconda et al., “Spectral characteristics of ultra-short laser pulses in plasma amplifiers,” Phys. Plasmas 20, 083115 (2013).10.1063/1.4818893 doi: 10.1063/1.4818893
    [11]
    C. Riconda et al., “Plasma-based creation of short light pulses: Analysis and simulation of amplification and focusing,” Plasma Phys. Controlled Fusion 57, 014002 (2015).10.1088/0741-3335/57/1/014002 doi: 10.1088/0741-3335/57/1/014002
    [12]
    G. Lehmann and K. H. Spatschek, “Control of Brillouin short-pulse seed amplification by chirping the pump pulse,” Phys. Plasmas 22, 043105 (2015).10.1063/1.4916958 doi: 10.1063/1.4916958
    [13]
    F. Schluck et al., “Dynamical transition between weak and strong coupling in Brillouin laser pulse amplification,” Phys. Plasmas 23, 083105 (2016).10.1063/1.4960028 doi: 10.1063/1.4960028
    [14]
    H. Peng et al., “Single laser pulse compression via strongly coupled stimulated Brillouin scattering in plasma,” Phys. Plasmas 23, 073516 (2016).10.1063/1.4959173 doi: 10.1063/1.4959173
    [15]
    Z. M. Zhang et al., “Generation of high-power few-cycle lasers via Brillouin-based plasma amplification,” Phys. Plasmas 24, 113104 (2017).10.1063/1.4999651 doi: 10.1063/1.4999651
    [16]
    H. Peng et al., “Strongly coupled stimulated Brillouin amplification in pump-ionizing plasma,” Laser Phys. Lett. 15, 026003 (2018).10.1088/1612-202x/aa9aa4 doi: 10.1088/1612-202x/aa9aa4
    [17]
    M. Nakatsutsumi et al., “Fast focusing of short-pulse lasers by innovative plasma optics toward extreme intensity,” Opt. Lett. 35, 2314 (2010).10.1364/ol.35.002314 doi: 10.1364/ol.35.002314
    [18]
    R. K. Kirkwood et al., “Plasma-based beam combiner for very high fluence and energy,” Nat. Phys. 14, 80 (2018).10.1038/nphys4271 doi: 10.1038/nphys4271
    [19]
    R. K. Kirkwood et al., “A plasma amplifier to combine multiple beams at NIF,” Phys. Plasmas 25, 056701 (2018).10.1063/1.5016310 doi: 10.1063/1.5016310
    [20]
    A. Leblanc et al., “Plasma holograms for ultrahigh-intensity optics,” Nat. Phys. 13, 440 (2017).10.1038/nphys4007 doi: 10.1038/nphys4007
    [21]
    C. Thaury et al., “Plasma mirrors for ultrahigh-intensity optics,” Nat. Phys. 3, 424 (2007).10.1038/nphys595 doi: 10.1038/nphys595
    [22]
    R. L. Berger et al., “Theory and three dimensional simulation of light filamentation in laser produced plasma,” Phys. Fluids B: Plasma Phys. 5, 2243 (1993).10.1063/1.860758 doi: 10.1063/1.860758
    [23]
    R. L. Berger et al., “On the dominant and subdominant behavior of stimulated Raman and Brillouin scattering driven by nonuniform laser beams,” Phys. Plasmas 5, 4337 (1998).10.1063/1.873171 doi: 10.1063/1.873171
    [24]
    J.-R. Marquès et al., “Joule-level high-efficiency energy transfer to subpicosecond laser pulses by a plasma-based amplifier,” Phys. Rev. X 9, 021008 (2019).10.1103/physrevx.9.021008 doi: 10.1103/physrevx.9.021008
    [25]
    P. Michel et al., “Dynamic control of the polarization of intense laser beams via optical wave mixing in plasmas,” Phys. Rev. Lett. 113, 205001 (2014).10.1103/physrevlett.113.205001 doi: 10.1103/physrevlett.113.205001
    [26]
    G. Lehmann and K. Spatschek, “Transient plasma photonic crystals for high-power lasers,” Phys. Rev. Lett. 116, 225002 (2016).10.1103/physrevlett.116.225002 doi: 10.1103/physrevlett.116.225002
    [27]
    G. Lehmann and K. H. Spatschek, “Plasma-based polarizer and waveplate at large laser intensity,” Phys. Rev. E 97, 063201 (2018).10.1103/physreve.97.063201 doi: 10.1103/physreve.97.063201
    [28]
    D. Turnbull et al., “High power dynamic polarization control using plasma photonics,” Phys. Rev. Lett. 116, 205001 (2016).10.1103/physrevlett.116.205001 doi: 10.1103/physrevlett.116.205001
    [29]
    D. Turnbull et al., “Refractive index seen by a probe beam interacting with a laser-plasma system,” Phys. Rev. Lett. 118, 015001 (2017).10.1103/physrevlett.118.015001 doi: 10.1103/physrevlett.118.015001
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(5)

    Article Metrics

    Article views (197) PDF downloads(6) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return