Follow us on Wechat

用微信扫码二维码

分享至好友和朋友圈

Volume 4 Issue 5
Sep.  2019
Turn off MathJax
Article Contents
Zhao Hang, Li Zhichao, Yang Dong, Li Xin, Chen Yaohua, Jiang Xiaohua, Liu Yonggang, Gong Tao, Guo Liang, Li Sanwei, Li Qi, Wang Feng, Liu Shenye, Yang Jiamin, Jiang Shaoen, Zheng Wanguo, Zhang Baohan, Ding Yongkun. Progress in optical Thomson scattering diagnostics for ICF gas-filled hohlraums[J]. Matter and Radiation at Extremes, 2019, 4(5): 055201. doi: 10.1063/1.5090971
Citation: Zhao Hang, Li Zhichao, Yang Dong, Li Xin, Chen Yaohua, Jiang Xiaohua, Liu Yonggang, Gong Tao, Guo Liang, Li Sanwei, Li Qi, Wang Feng, Liu Shenye, Yang Jiamin, Jiang Shaoen, Zheng Wanguo, Zhang Baohan, Ding Yongkun. Progress in optical Thomson scattering diagnostics for ICF gas-filled hohlraums[J]. Matter and Radiation at Extremes, 2019, 4(5): 055201. doi: 10.1063/1.5090971

Progress in optical Thomson scattering diagnostics for ICF gas-filled hohlraums

doi: 10.1063/1.5090971
More Information
  • Corresponding author: a)Authors to whom correspondence should be addressed: lizhi@mail.ustc.edu.cn and ding-yk@vip.sina.com; a)Authors to whom correspondence should be addressed: lizhi@mail.ustc.edu.cn and ding-yk@vip.sina.com
  • Received Date: 2019-01-31
  • Accepted Date: 2019-05-20
  • Publish Date: 2019-09-15
  • Optical Thomson scattering (OTS) diagnostics have been continuously developed on a series of large laser facilities for inertial confinement fusion (ICF) research in China. We review recent progress in the use of OTS diagnostics to study the internal plasma conditions of ICF gas-filled hohlraums. We establish the predictive capability for experiments by calculating the time-resolved Thomson scattering spectra based on the 2D radiation-hydrodynamic code LARED, and we explore the fitting method for the measured spectra. A typical experiment with a simplified cylindrical hohlraum is conducted on a 10 kJ-level laser facility, and the plasma evolution around the laser entrance hole is analyzed. The dynamic effects of the blast wave from the covering membrane and the convergence of shocks on the hohlraum axis are observed, and the experimental results agree well with those of simulations. Another typical experiment with an octahedral spherical hohlraum is conducted on a 100 kJ-level laser facility, and the plasma evolution at the hohlraum center is analyzed. A discrepancy appears between experiment and simulation as the electron temperature rises, indicating the occurrence of nonlocal thermal conduction.
  • loading
  • [1]
    J. D. Lindl, P. Amendt, R. L. Berger, S. G. Glendinning, S. H. Glenzer et al., “The physics basis for ignition using indirect-drive targets on the National Ignition Facility,” Phys. Plasmas 11, 339 (2004).10.1063/1.1578638 doi: 10.1063/1.1578638
    [2]
    W. L. Kruer, The Physics of Laser Plasma Interactions (Addison-Wesley Publishing Company, 1988).
    [3]
    J. Lindl, O. Landen, J. Edwards, E. Moses, and NIC Team, “Review of the National Ignition Campaign 2009–2012,” Phys. Plasmas 21, 020501 (2014).10.1063/1.4865400 doi: 10.1063/1.4865400
    [4]
    N. B. Meezan, M. J. Edwards, O. A. Hurricane, P. K. Patel, D. A. Callahan et al., “Indirect drive ignition at the National Ignition Facility,” Plasma Phys. Control. Fusion 59, 014021 (2017).10.1088/0741-3335/59/1/014021 doi: 10.1088/0741-3335/59/1/014021
    [5]
    D. H. Froula, S. H. Glenzer, N. C. Luhmann, and J. Sheffield, Plasma Scattering of Electromagnetic Radiation: Theory and Measurement Techniques (Academic Press, 2011).
    [6]
    D. H. Froula, J. S. Ross, L. Divol, and S. H. Glenzer, “Thomson-scattering techniques to diagnose local electron and ion temperatures, density, and plasma wave amplitudes in laser produced plasmas,” Rev. Sci. Instrum. 77, 10E522 (2006).10.1063/1.2336451 doi: 10.1063/1.2336451
    [7]
    R. K. Follett, J. A. Delettrez, D. H. Edgell, R. J. Henchen, J. Katz et al., “Plasma characterization using ultraviolet Thomson scattering from ion-acoustic and electron plasma waves,” Rev. Sci. Instrum. 87, 11E401 (2016).10.1063/1.4959160 doi: 10.1063/1.4959160
    [8]
    S. H. Glenzer, W. Rozmus, B. J. MacGowan, K. G. Estabrook, J. D. De Groot et al., “Thomson scattering from high-Z laser-produced plasmas,” Phys. Rev. Lett. 82, 97 (1999).10.1103/physrevlett.82.97 doi: 10.1103/physrevlett.82.97
    [9]
    J. S. Ross, H. S. Park, P. Amendt, L. Divol, N. L. Kugland et al., “Thomson scattering diagnostic for the measurement of ion species fraction,” Rev. Sci. Instrum. 83, 10E323 (2012).10.1063/1.4731007 doi: 10.1063/1.4731007
    [10]
    S. H. Glenzer, C. A. Back, L. J. Suter, M. A. Blain, O. L. Landen et al., “Thomson scattering from inertial-confinement-fusion hohlraum plasmas,” Phys. Rev. Lett. 79, 1277 (1997).10.1103/physrevlett.79.1277 doi: 10.1103/physrevlett.79.1277
    [11]
    S. H. Glenzer, T. L. Weiland, J. Bower, A. J. MacKinnon, and B. J. MacGowan, “High energy 4ω probe laser for laser-plasma experiments at Nova,” Rev. Sci. Instrum. 70, 1089 (1999).10.1063/1.1149513 doi: 10.1063/1.1149513
    [12]
    D. H. Froula, J. S. Ross, L. Divol, N. Meezan, A. J. Mackinnon et al., “Thomson-scattering measurements of high electron temperature hohlraum plasmas for laser-plasma interaction studies,” Phys. Plasmas 13, 052704 (2006).10.1063/1.2203232 doi: 10.1063/1.2203232
    [13]
    [14]
    J. S. Ross, D. H. Froula, A. J. Mackinnon, C. Sorce, N. Meezan et al., “Implementation of imaging Thomson scattering on the Omega laser,” Rev. Sci. Instrum. 77, 10E520 (2006).10.1063/1.2220077 doi: 10.1063/1.2220077
    [15]
    J. S. Ross, P. Datte, L. Divol, J. Galbraith, D. H. Froula et al., “Simulated performance of the optical Thomson scattering diagnostic designed for the National Ignition Facility,” Rev. Sci. Instrum. 87, 11E510 (2016).10.1063/1.4959568 doi: 10.1063/1.4959568
    [16]
    B. Bai, J. Zheng, W. Liu, C. X. Yu, X. Jiang et al., “Thomson scattering measurement of gold plasmas produced with 0.351 μm laser light,” Phys. Plasmas 8, 4144 (2001).10.1063/1.1391445 doi: 10.1063/1.1391445
    [17]
    Z. Wang, J. Zheng, B. Zhao, C. X. Yu, X. Jiang et al., “Thomson scattering from laser-produced gold plasmas in radiation conversion layer,” Phys. Plasmas 12, 082703 (2005).10.1063/1.2008262 doi: 10.1063/1.2008262
    [18]
    Z. Li, J. Zheng, X. Jiang, Z. Wang, D. Yang et al., “Interaction of 0.53 μm laser pulse with millimeter-scale plasmas generated by gasbag target,” Phys. Plasmas 19, 062703 (2012).10.1063/1.4729332 doi: 10.1063/1.4729332
    [19]
    T. Gong, Z. Li, X. Jiang, Y. Ding, D. Yang et al., Rev. Sci. Instrum. 86, 023501 (2015).10.1063/1.4907710 doi: 10.1063/1.4907710
    [20]
    H. Zhao, Z. Li, D. Yang, X. Jiang, Y. Liu et al., Rev. Sci. Instrum. 89, 093505 (2018).10.1063/1.5046837 doi: 10.1063/1.5046837
    [21]
    W. Pei, “The construction of simulation algorithms for laser fusion,” Commun. Comput. Phys. 2, 255 (2007).
    [22]
    K. Lan, J. Liu, Z. Li, X. Xie, W. Huo et al., “Progress in octahedral spherical hohlraum study,” Matter Radiat. Extremes 1, 8 (2016).10.1016/j.mre.2016.01.003 doi: 10.1016/j.mre.2016.01.003
    [23]
    J. Zheng, C. X. Yu, and Z. J. Zheng, “The dynamic form factor for ion-collisional plasmas,” Phys. Plasmas 6, 435 (1999).10.1063/1.873209 doi: 10.1063/1.873209
    [24]
    J. Zheng, C. X. Yu, and Z. J. Zheng, “Effects of non-Maxwellian (super-Gaussian) electron velocity distribution on the spectrum of Thomson scattering,” Phys. Plasmas 4, 2736 (1997).10.1063/1.872141 doi: 10.1063/1.872141
    [25]
    J. Dawson and C. Oberman, “High frequency conductivity and the emission and absorption coefficients of a fully ionized plasma,” Phys. Fluids 5, 517 (1962).10.1063/1.1706652 doi: 10.1063/1.1706652
    [26]
    K. Lan and W. Zheng, “Novel spherical hohlraum with cylindrical laser entrance holes and shields,” Phys. Plasmas 21, 090704 (2014).10.1063/1.4895503 doi: 10.1063/1.4895503
    [27]
    W. Huo, Z. Li, Y. Chen, X. Xie, G. Ren et al., Phys. Rev. Lett. 120, 165001 (2018).10.1103/physrevlett.120.165001 doi: 10.1103/physrevlett.120.165001
    [28]
    S. H. Glenzer, W. E. Alley, K. G. Estabrook, J. S. De Groot, M. G. Haines et al., “Thomson scattering from laser plasmas,” Phys. Plasmas 6, 2117 (1999).10.1063/1.873499 doi: 10.1063/1.873499
    [29]
    G. Gregori, S. H. Glenzer, J. Knight, C. Niemann, D. Price et al., “Effect of nonlocal transport on heat-wave propagation,” Phys. Rev. Lett. 92, 205006 (2004).10.1103/physrevlett.92.205006 doi: 10.1103/physrevlett.92.205006
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(11)

    Article Metrics

    Article views (310) PDF downloads(13) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return