Follow us on Wechat

用微信扫码二维码

分享至好友和朋友圈

Volume 4 Issue 4
Jul.  2019
Turn off MathJax
Article Contents
Tikhonchuk V., Gu Y. J., Klimo O., Limpouch J., Weber S.. Studies of laser-plasma interaction physics with low-density targets for direct-drive inertial confinement schemes[J]. Matter and Radiation at Extremes, 2019, 4(4): 045402. doi: 10.1063/1.5090965
Citation: Tikhonchuk V., Gu Y. J., Klimo O., Limpouch J., Weber S.. Studies of laser-plasma interaction physics with low-density targets for direct-drive inertial confinement schemes[J]. Matter and Radiation at Extremes, 2019, 4(4): 045402. doi: 10.1063/1.5090965

Studies of laser-plasma interaction physics with low-density targets for direct-drive inertial confinement schemes

doi: 10.1063/1.5090965
  • Received Date: 2019-01-31
  • Accepted Date: 2019-04-02
  • Available Online: 2021-04-15
  • Publish Date: 2019-07-15
  • Comprehensive understanding and possible control of parametric instabilities in the context of inertial confinement fusion (ICF) remains a challenging task. The details of the absorption processes and the detrimental effects of hot electrons on the implosion process require as much effort on the experimental side as on the theoretical and simulation side. This paper describes a proposal for experimental studies on nonlinear interaction of intense laser pulses with a high-temperature plasma under conditions corresponding to direct-drive ICF schemes. We propose to develop a platform for laser-plasma interaction studies based on foam targets. Parametric instabilities are sensitive to the bulk plasma temperature and the density scale length. Foam targets are sufficiently flexible to allow control of these parameters. However, investigations conducted on small laser facilities cannot be extrapolated in a reliable way to real fusion conditions. It is therefore necessary to perform experiments at a multi-kilojoule energy level on medium-scale facilities such as OMEGA or SG-III. An example of two-plasmon decay instability excited in the interaction of two laser beams is considered.
  • loading
  • [1]
    M. Hohenberger, W. Theobald, S. X. Hu, K. S. Anderson, R. Betti, T. R. Boehly, A. Casner, D. E. Fratanduono, M. Lafon, D. D. Meyerhofer, R. Nora, X. Ribeyre, T. C. Sangster, G. Schurtz, W. Seka, C. Stoeckl, and B. Yaakobi, “Shock-ignition experiments with planar targets on OMEGA,” Phys. Plasmas 21, 022702 (2014).10.1063/1.4865373 doi: 10.1063/1.4865373
    [2]
    G. Cristoforetti, L. Antonelli, S. Atzeni, F. Baffigi, F. Barbato, D. Batani, G. Boutoux, A. Colaïtis, J. Dostal, R. Dudzak, L. Juha, P. Koester, A. Marocchino, D. Mancelli, Ph. Nicolaï, O. Renner, J. J. Santos, A. Schiavi, M. M. Skoric, M. Smid, P. Straka, and L. A. Gizzi, “Measurements of parametric instabilities at laser intensities relevant to strong shock generation,” Phys. Plasmas 25, 012702 (2017).10.1063/1.5006021 doi: 10.1063/1.5006021
    [3]
    M. J. Rosenberg, A. A. Solodov, J. F. Myatt, W. Seka, P. Michel, M. Hohenberger, R. Short, R. Epstein, S. P. Regan, E. M. Campbell, T. Chapman, C. Goyon, J. E. Ralph, M. A. Barrios, J. D. Moody, and J. W. Bates, “Origins and scaling of hot-electron preheat in ignition-scale direct-drive inertial confinement fusion experiments,” Phys. Rev. Lett. 120, 055001 (2018).10.1103/physrevlett.120.055001 doi: 10.1103/physrevlett.120.055001
    [4]
    W. Theobald, A. Bose, R. Yan, R. Betti, M. Lafon, D. Mangino, A. R. Christopherson, C. Stoeckl, W. Seka, W. Shang, D. T. Michel, C. Ren, R. C. Nora, A. Casner, J. Peebles, F. N. Beg, X. Ribeyre, E. Llor Aisa, A. Colaïtis, V. Tikhonchuk, and M. S. Wei, “Enhanced hot-electron production and strong-shock generation in hydrogen-rich ablators for shock ignition,” Phys. Plasmas 24, 120702 (2017).10.1063/1.4986797 doi: 10.1063/1.4986797
    [5]
    S. Depierreux, C. Neuville, C. Baccou, V. Tassin, M. Casanova, P.-E. Masson-Laborde, N. Borisenko, A. Orekhov, A. Colaïtis, A. Debayle, G. Duchateau, A. Heron, S. Hüller, P. Loiseau, P. Nicolaï, D. Pesme, C. Riconda, G. Tran, R. Bahr, J. Katz, C. Stoeckl, W. Seka, V. Tikhonchuk, and C. Labaune, “Experimental investigation of the collective Raman scattering of multiple laser beams in inhomogeneous plasmas,” Phys. Rev. Lett. 117, 235002 (2016).10.1103/physrevlett.117.235002 doi: 10.1103/physrevlett.117.235002
    [6]
    D. Batani, L. Antonelli, F. Barbato, G. Boutoux, A. Colaïtis, J.-L. Feugeas, G. Folpini, D. Mancelli, Ph. Nicolaï, J. J. Santos, J. Trela, V. Tikhonchuk, J. Badziak, T. Chodukowski, K. Jakubowska, Z. Kalinowska, T. Pisarczyk, M. Rosinski, M. Sawicka, F. Baffigi, G. Cristoforetti, F. D. Amato, P. Koester, L. A. Gizzi, S. Viciani, S. Atzeni, A. Sciavi, M. Skoric, S. Gus’kov, J. Honrubia, J. Limpouch, O. Klimo, J. Skala, Y. J. Gu, E. Krousky, O. Renner, M. Smid, S. Weber, R. Dudzak, M. Krus, and J. Ullschmied, “Progress in understanding the role of hot electrons for the shock ignition approach to inertial confinement fusion,” Nucl. Fusion 59, 032012 (2019).10.1088/1741-4326/aaf0ed doi: 10.1088/1741-4326/aaf0ed
    [7]
    T. Hall, S. Ellwi, D. Batani, A. Bernardinello, V. Masella, M. Koenig, A. Benuzzi, J. Krishnan, F. Pisani, A. Djaou, P. Norreys, D. Neely, S. Rose, M. Key, and P. Fews, “Fast electron deposition in laser shock compressed plastic targets,” Phys. Rev. Lett. 81, 1003 (1998).10.1103/physrevlett.81.1003 doi: 10.1103/physrevlett.81.1003
    [8]
    J. E. Miller, T. R. Boehly, A. Melchior, D. D. Meyerhofer, P. M. Celliers, J. H. Eggert, D. G. Hicks, C. M. Sorce, J. A. Oertel, and P. M. Emmel, “Streaked optical pyrometer system for laser-driven shock-wave experiments on OMEGA,” Rev. Sci. Instrum. 78, 034903 (2007).10.1063/1.2712189 doi: 10.1063/1.2712189
    [9]
    P. M. Celliers, G. W. Collins, D. K. Bradley, S. J. Moon, D. H. Munro, R. Cauble, D. M. Gold, L. B. D. Silva, F. A. Weber, R. J. Wallace, B. A. Hammel, and W. W. Hsing, “Visar for measuring equation of state and shock propagation in liquid deuterium,” Rev. Sci. Instrum. 72, 1038 (2001).10.1063/1.1326011 doi: 10.1063/1.1326011
    [10]
    K. Nagai, C. S. A. Musgrave, and W. Nazarov, “A review of low density porous materials used in laser plasma experiments,” Phys. Plasmas 25, 030501 (2018).10.1063/1.5009689 doi: 10.1063/1.5009689
    [11]
    S. N. Chen, T. Iwawaki, K. Morita, P. Antici, S. D. Baton, F. Filippi, H. Habara, M. Nakatsutsumi, Ph. Nicolaï, W. Nazarov, C. Rousseaux, M. Starodubstev, K. A. Tanaka, and J. Fuchs, “Density and temperature characterization of long-scale length, near-critical density controlled plasma produced from ultra-low density plastic foam,” Sci. Rep. 6, 21495 (2017).10.1038/srep21495 doi: 10.1038/srep21495
    [12]
    S. Depierreux, C. Labaune, D. T. Michel, C. Stenz, Ph. Nicolaï, M. Grech, G. Riazuelo, S. Weber, C. Riconda, V. T. Tikhonchuk, P. Loiseau, N. G. Borisenko, W. Nazarov, S. Hüller, D. Pesme, M. Casanova, J. Limpouch, C. Meyer, P. Di-Nicola, R. Wrobel, E. Alozy, P. Romary, G. Thiell, G. Soullie, C. Reverdin, and B. Villette, “Laser smoothing and imprint reduction with a foam layer in the multikilojoule regime,” Phys. Rev. Lett. 102, 195005 (2009).10.1103/physrevlett.102.195005 doi: 10.1103/physrevlett.102.195005
    [13]
    S. Y. Guskov, J. Limpouch, Ph. Nicolaï, and V. T. Tikhonchuk, “Laser-supported ionization wave in under-dense gases and foams,” Phys. Plasmas 18, 103114 (2011).10.1063/1.3642615 doi: 10.1063/1.3642615
    [14]
    S. Yu. Gus’kov, M. Cipriani, R. De Angelis, F. Consoli, A. A. Rupasov, P. Andreoli, G. Cristofari, and G. Di Giorgio, “Absorption coefficient for nanosecond laser pulse in porous material,” Plasma Phys. Controlled Fusion 57, 125004 (2015).10.1088/0741-3335/57/12/125004 doi: 10.1088/0741-3335/57/12/125004
    [15]
    J. Velechovsky, J. Limpouch, R. Liska, and V. Tikhonchuk, “Hydrodynamic modeling of laser interaction with micro-structured targets,” Plasma Phys. Controlled Fusion 58, 095004 (2016).10.1088/0741-3335/58/9/095004 doi: 10.1088/0741-3335/58/9/095004
    [16]
    C. Tian, L. Shan, B. Zhang, W. Zhou, D. Liu, B. Bi, F. Zhang, W. Wang, B. Zhang, and Y. Gu, “Realization of high irradiation uniformity for direct drive ICF at the SG-III prototype laser facility,” Eur. Phys. J. D 69, 54 (2015).10.1140/epjd/e2015-50828-x doi: 10.1140/epjd/e2015-50828-x
    [17]
    H. A. Rose, D. F. DuBois, and B. Bezzerides, “Nonlinear coupling of stimulated Raman and Brillouin scattering in laser-plasma interactions,” Phys. Rev. Lett. 58, 2547 (1987).10.1103/physrevlett.58.2547 doi: 10.1103/physrevlett.58.2547
    [18]
    T. Kolber, W. Rozmus, and V. T. Tikhonchuk, “Saturation of stimulated Raman scattering by Langmuir and ion-acoustic wave coupling,” Phys. Fluids B 5, 138 (1993).10.1063/1.860861 doi: 10.1063/1.860861
    [19]
    J. C. Fernandez, J. A. Cobble, B. H. Failor, D. F. DuBois, D. S. Montgomery, H. A. Rose, H. X. Vu, B. H. Wilde, M. D. Wilke, and R. E. Chrien, “Observed dependence of stimulated Raman scattering on ion-acoustic damping in hohlraum plasmas,” Phys. Rev. Lett. 77, 2702 (1996).10.1103/physrevlett.77.2702 doi: 10.1103/physrevlett.77.2702
    [20]
    R. K. Kirkwood, B. J. MacGowan, D. S. Montgomery, B. B. Afeyan, W. L. Kruer, J. D. Moody, K. G. Estabrook, C. A. Back, S. H. Glenzer, M. A. Blain, E. A. Williams, R. L. Berger, and B. F. Lasinski, “Effect of ion-wave damping on stimulated Raman scattering in high-Z laser-produced plasmas,” Phys. Rev. Lett. 77, 2706 (1996).10.1103/physrevlett.77.2706 doi: 10.1103/physrevlett.77.2706
    [21]
    J. C. Fernandez, J. A. Cobble, D. S. Montgomery, M. D. Wilke, and B. B. Afeyan, “Observed insensitivity of stimulated Raman scattering on electron density,” Phys. Plasmas 7, 3743 (2000).10.1063/1.1287134 doi: 10.1063/1.1287134
    [22]
    J. L. Kline, D. S. Montgomery, L. Yin, D. F. DuBois, B. J. Albright, B. Bezzerides, J. A. Cobble, E. S. Dodd, D. F. DuBois, J. C. Fernandez, R. P. Johnson, J. M. Kindel, and H. A. Rose, “Different kλD regimes for nonlinear effects on Langmuir waves,” Phys. Plasmas 13, 055906 (2006).10.1063/1.2178777 doi: 10.1063/1.2178777
    [23]
    S. Weber and C. Riconda, “Temperature dependence of parametric instabilities in the context of the shock-ignition approach to inertial confinement fusion,” High Power Laser Sci. Eng. 3, e6 (2015).10.1017/hpl.2014.50 doi: 10.1017/hpl.2014.50
    [24]
    V. Yu. Bychenkov, W. Rozmus, and V. T. Tikhonchuk, “Ion acoustic waves in plasmas with light and heavy ions,” Phys. Rev. E 51, 1400 (1995).10.1103/physreve.51.1400 doi: 10.1103/physreve.51.1400
    [25]
    [26]
    I. V. Igumenshchev, D. H. Edgell, V. N. Goncharov, J. A. Delettrez, A. V. Maximov, J. F. Myatt, W. Seka, A. Shvydky, S. Skupsky, and C. Stoeckl, “Crossed-beam energy transfer in implosion experiments on OMEGA,” Phys. Plasmas 17, 122708 (2010).10.1063/1.3532817 doi: 10.1063/1.3532817
    [27]
    V. V. Eliseev, W. Rozmus, V. T. Tikhonchuk, and C. E. Capjack, “Interaction of crossed laser beams with plasmas,” Phys. Plasmas 3, 2215 (1996).10.1063/1.871703 doi: 10.1063/1.871703
    [28]
    A. A. Zozulya, V. P. Silin, and V. T. Tikhonchuk, “Double stimulated scattering—a novel view on the nonlinear parametric processes in plasma,” Phys. Lett. A 99, 224 (1983).10.1016/0375-9601(83)90911-8 doi: 10.1016/0375-9601(83)90911-8
    [29]
    C. Stoeckl, R. E. Bahr, B. Yaakobi, W. Seka, S. P. Regan, R. S. Craxton, J. A. Delettrez, R. W. Short, J. Myatt, and A. V. Maximov, “Multibeam effects on fast-electron generation from two plasmon-decay instability,” Phys. Rev. Lett. 90, 235002 (2003).10.1103/physrevlett.90.235002 doi: 10.1103/physrevlett.90.235002
    [30]
    J. F. Myatt, H. X. Vu, D. F. DuBois, D. A. Russell, J. Zhang, R. W. Short, and A. V. Maximov, “Mitigation of two-plasmon decay in direct-drive inertial confinement fusion through the manipulation of ion-acoustic and Langmuir wave damping,” Phys. Plasmas 20, 052705 (2013).10.1063/1.4807036 doi: 10.1063/1.4807036
    [31]
    R. K. Follett, J. F. Myatt, J. G. Shaw, D. T. Michel, A. A. Solodov, D. H. Edgell, B. Yaakobi, and D. H. Froula, “Simulations and measurements of hot-electron generation driven by the multibeam two-plasmon-decay instability,” Phys. Plasmas 24, 102134 (2017).10.1063/1.4998934 doi: 10.1063/1.4998934
    [32]
    D. F. DuBois, B. Bezzerides, and H. A. Rose, “Collective parametric instabilities of many overlapping laser beams with finite bandwidth,” Phys. Fluids B 4, 241 (1992).10.1063/1.860439 doi: 10.1063/1.860439
    [33]
    J. A. Marozas, M. Hohenberger, M. J. Rosenberg, D. Turnbull, T. J. B. Collins, P. B. Radha, P. McKenty, J. D. Zuegel, F. J. Marshall, S. P. Regan, T. C. Sangster, W. Seka, E. M. Campbell, V. N. Goncharov, M. Bowers, J.-M. G. Di-Nicola, G. Erbert, B. J. MacGowan, L. J. Pelz, and S. T. Yang, “First observation of cross-beam energy transfer mitigation for direct-drive inertial confinement fusion implosions using wavelength detuning at the National Ignition Facility,” Phys. Rev. Lett. 120, 085001 (2018).10.1103/physrevlett.120.085001 doi: 10.1103/physrevlett.120.085001
    [34]
    I. V. Igumenshchev, W. Seka, D. H. Edgell, D. T. Michel, D. H. Froula, V. N. Goncharov, R. S. Craxton, L. Divol, R. Epstein, R. Follett, J. H. Kelly, T. Z. Kosc, A. V. Maximov, R. L. McCrory, D. D. Meyerhofer, P. Michel, J. F. Myatt, T. C. Sangster, A. Shvydky, S. Skupsky, and C. Stoeckl, “Crossed-beam energy transfer in direct-drive implosions,” Phys. Plasmas 19, 056314 (2012).10.1063/1.4718594 doi: 10.1063/1.4718594
    [35]
    A. Colaïtis, X. Ribeyre, E. Le Bel, G. Duchateau, Ph. Nicolaï, and V. Tikhonchuk, “Influence of laser induced hot electrons on the threshold for shock ignition of fusion reactions,” Phys. Plasmas 23, 072703 (2016).10.1063/1.4958808 doi: 10.1063/1.4958808
    [36]
    G. Raj and S. Hüller, “Impact of laser beam speckle structure on crossed beam energy transfer via beam deflections and ponderomotive self-focusing,” Phys. Rev. Lett. 118, 055002 (2017).10.1103/physrevlett.118.055002 doi: 10.1103/physrevlett.118.055002
    [37]
    J. F. Myatt, R. K. Follett, J. G. Shaw, D. H. Edgell, D. H. Froula, I. V. Igumenshchev, and V. N. Goncharov, “A wave-based model for cross-beam energy transfer in direct-drive inertial confinement fusion,” Phys. Plasmas 24, 056308 (2017).10.1063/1.4982059 doi: 10.1063/1.4982059
    [38]
    D. Turnbull, C. Goyon, G. E. Kemp, B. B. Pollock, D. Mariscal, L. Divol, J. S. Ross, S. Patankar, J. D. Moody, and P. Michel, “Refractive index seen by a probe beam interacting with a laser-plasma system,” Phys. Rev. Lett. 118, 015001 (2017).10.1103/physrevlett.118.015001 doi: 10.1103/physrevlett.118.015001
    [39]
    R. K. Kirkwood, D. P. Turnbull, T. Chapman, S. C. Wilks, M. D. Rosen, R. A. London, L. A. Pickworth, W. H. Dunlop, J. D. Moody, D. J. Strozzi, P. A. Michel, L. Divol, O. L. Landen, B. J. MacGowan, B. M. V. Wonterghem, K. B. Fournier, and B. E. Blue, “Plasma-based beam combiner for very high fluence and energy,” Nat. Phys. 14, 80 (2018).10.1038/nphys4271 doi: 10.1038/nphys4271
    [40]
    L. Lancia, A. Giribono, L. Vassura, M. Chiaramello, C. Riconda, S. Weber, A. Castan, A. Chatelain, A. Frank, T. Gangolf, M. N. Quinn, J. Fuchs, and J.-R. Marques, “Signatures of the self-similar regime of strongly coupled stimulated Brillouin scattering for efficient short laser pulse amplification,” Phys. Rev. Lett. 116, 075001 (2016).10.1103/physrevlett.116.075001 doi: 10.1103/physrevlett.116.075001
    [41]
    E. L. Dewald, F. Hartemann, P. Michel, J. Milovich, M. Hohenberger, A. Pak, O. L. Landen, L. Divol, H. F. Robey, O. A. Hurricane, T. Döppner, F. Albert, B. Bachmann, N. B. M. A. J. MacKinnon, D. Callahan, and M. J. Edwards, “Generation and beaming of early hot electrons onto the capsule in laser-driven ignition hohlraums,” Phys. Rev. Lett. 116, 075003 (2016).10.1103/physrevlett.116.075003 doi: 10.1103/physrevlett.116.075003
    [42]
    T. Arber, K. Bennett, C. Brady, A. Lawrence-Douglas, M. Ramsay, N. Sircombe, P. Gillies, R. Evans, H. Schmitz, A. Bell, and C. Ridgers, “Contemporary particle-in-cell approach to laser-plasma modeling,” Plasma Phys. Controlled Fusion 57, 113001 (2015).10.1088/0741-3335/57/11/113001 doi: 10.1088/0741-3335/57/11/113001
    [43]
    H. X. Vu, D. F. DuBois, J. F. Myatt, and D. A. Russell, “Mitigation of two-plasmon decay in direct-drive inertial confinement fusion through the manipulation of ion-acoustic and Langmuir wave damping,” Phys. Plasmas 19, 102703 (2012).10.1063/1.4757978 doi: 10.1063/1.4757978
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(6)

    Article Metrics

    Article views (246) PDF downloads(10) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return