Follow us on Wechat

用微信扫码二维码

分享至好友和朋友圈

Volume 4 Issue 5
Sep.  2019
Turn off MathJax
Article Contents
Sio Hong, Li Chikang, Parker Cody E., Lahmann Brandon, Le Ari, Atzeni Stefano, Petrasso Richard D.. Fuel-ion diffusion in shock-driven inertial confinement fusion implosions[J]. Matter and Radiation at Extremes, 2019, 4(5): 055401. doi: 10.1063/1.5090783
Citation: Sio Hong, Li Chikang, Parker Cody E., Lahmann Brandon, Le Ari, Atzeni Stefano, Petrasso Richard D.. Fuel-ion diffusion in shock-driven inertial confinement fusion implosions[J]. Matter and Radiation at Extremes, 2019, 4(5): 055401. doi: 10.1063/1.5090783

Fuel-ion diffusion in shock-driven inertial confinement fusion implosions

doi: 10.1063/1.5090783
More Information
  • Corresponding author: a)Author to whom correspondence should be addressed: hsio@mit.edu
  • Received Date: 2019-01-29
  • Accepted Date: 2019-05-22
  • Publish Date: 2019-09-15
  • The impact of fuel-ion diffusion in inertial confinement fusion implosions is assessed using nuclear reaction yield ratios and reaction histories. In T3He-gas-filled (with trace D) shock-driven implosions, the observed TT/T3He yield ratio is ∼2× lower than expected from temperature scaling. In D3He-gas-filled (with trace T) shock-driven implosions, the timing of the D3He reaction history is ∼50 ps earlier than those of the DT reaction histories, and average-ion hydrodynamic simulations cannot reconcile this timing difference. Both experimental observations are consistent with reduced T ions in the burn region as predicted by multi-ion diffusion theory and particle-in-cell simulations.
  • loading
  • [1]
    J. D. Lindl, P. Amendt, R. L. Berger, S. G. Glendinning, S. H. Glenzer et al., “The physics basis for ignition using indirect-drive targets on the National Ignition Facility,” Phys. Plasmas 11, 339 (2004).10.1063/1.1578638 doi: 10.1063/1.1578638
    [2]
    J. Lindl, O. Landen, J. Edwards, E. Moses, and NIC Team, “Review of the National Ignition Campaign 2009-2012,” Phys. Plasmas 21, 020501 (2014).10.1063/1.4865400 doi: 10.1063/1.4865400
    [3]
    P. Amendt, O. L. Landen, H. F. Robey, C. K. Li, and R. D. Petrasso, “Plasma barodiffusion in inertial-confinement-fusion implosions: Application to observed yield anomalies in thermonuclear fuel mixtures,” Phys. Rev. Lett. 105, 115005 (2010).10.1103/physrevlett.105.115005 doi: 10.1103/physrevlett.105.115005
    [4]
    G. Kagan and X. Tang, “Electro-diffusion in a plasma with two ion species,” Phys. Plasmas 19, 082709 (2012).10.1063/1.4745869 doi: 10.1063/1.4745869
    [5]
    N. M. Hoffman, G. B. Zimmerman, K. Molvig, H. G. Rinderknecht, M. J. Rosenberg et al., “Approximate models for the ion-kinetic regime in inertial-confinement-fusion capsule implosions,” Phys. Plasmas 22, 052707 (2015).10.1063/1.4921130 doi: 10.1063/1.4921130
    [6]
    C. Bellei, P. A. Amendt, S. C. Wilks, M. G. Haines, D. T. Casey et al., “Species separation in inertial confinement fusion fuels,” Phys. Plasmas 20, 012701 (2013).10.1063/1.4773291 doi: 10.1063/1.4773291
    [7]
    A. Le, T. J. T. Kwan, M. J. Schmitt, H. W. Herrmann, and S. H. Batha, “Simulation and assessment of ion kinetic effects in a direct-drive capsule implosion experiment,” Phys. Plasmas 23, 102705 (2016).10.1063/1.4965913 doi: 10.1063/1.4965913
    [8]
    M. J. Rosenberg, H. G. Rinderknecht, N. M. Hoffman, P. A. Amendt, S. Atzeni et al., “Exploration of the transition from the hydrodynamiclike to the strongly kinetic regime in shock-driven implosions,” Phys. Rev. Lett. 112, 185001 (2014).10.1103/physrevlett.112.185001 doi: 10.1103/physrevlett.112.185001
    [9]
    H. G. Rinderknecht, M. J. Rosenberg, C. K. Li, N. M. Hoffman, G. Kagan et al., “Ion thermal decoupling and species separation in shock-driven implosions,” Phys. Rev. Lett. 114, 025001 (2015).10.1103/physrevlett.114.025001 doi: 10.1103/physrevlett.114.025001
    [10]
    H. G. Rinderknecht, H. Sio, C. K. Li, A. B. Zylstra, M. J. Rosenberg et al., “First observations of nonhydrodynamic mix at the fuel-shell interface in shock-driven inertial confinement implosions,” Phys. Rev. Lett. 112, 135001 (2014).10.1103/physrevlett.112.135001 doi: 10.1103/physrevlett.112.135001
    [11]
    D. T. Casey, J. A. Frenje, M. Gatu Johnson, M. J.-E. Manuel, H. G. Rinderknecht et al., “Evidence for stratification of deuterium-tritium fuel in inertial confinement fusion implosions,” Phys. Rev. Lett. 108, 075002 (2012).10.1103/physrevlett.108.075002 doi: 10.1103/physrevlett.108.075002
    [12]
    H. W. Herrmann, J. R. Langenbrunner, J. M. Mack, J. H. Cooley, D. C. Wilson et al., “Anomalous yield reduction in direct-drive deuterium/tritium implosions due to 3He addition,” Phys. Plasmas 16, 056312 (2009).10.1063/1.3141062 doi: 10.1063/1.3141062
    [13]
    C. K. Li, F. H. Séguin, J. R. Rygg, J. A. Frenje, M. Manuel et al., “Monoenergetic-proton-radiography measurements of implosion dynamics in direct-drive inertial-confinement fusion,” Phys. Rev. Lett. 100, 225001 (2008).10.1103/physrevlett.100.225001 doi: 10.1103/physrevlett.100.225001
    [14]
    H. Sio, R. Hua, Y. Ping, C. McGuffey, F. Beg et al., “A broadband proton backlighting platform to probe shock propagation in low-density systems,” Rev. Sci. Instrum. 88, 013503 (2017).10.1063/1.4973893 doi: 10.1063/1.4973893
    [15]
    S. Atzeni, A. Schiavia, F. Califanob, F. Cattanib, F. Cornoltib et al., “Fluid and kinetic simulation of inertial confinement fusion plasmas,” Comput. Phys. Commun. 169, 153 (2005).10.1016/j.cpc.2005.03.036 doi: 10.1016/j.cpc.2005.03.036
    [16]
    D. R. Welch, D. V. Rose, R. E. Clark, T. C. Genoni, and T. P. Hughes, “Implementation of an non-iterative implicit electromagnetic field solver for dense plasma simulation,” Comput. Phys. Commun. 164, 183 (2004).10.1016/j.cpc.2004.06.028 doi: 10.1016/j.cpc.2004.06.028
    [17]
    M. D. Rosen and J. H. Nuckolls, “Exploding pusher performance—A theoretical model,” Phys. Fluids 22, 1393 (1979).10.1063/1.862752 doi: 10.1063/1.862752
    [18]
    T. R. Boehly, D. L. Brown, R. S. Craxton, R. L. Keck, J. P. Knauer et al., “Initial performance results of the OMEGA laser system,” Opt. Commun. 133, 495 (1997).10.1016/s0030-4018(96)00325-2 doi: 10.1016/s0030-4018(96)00325-2
    [19]
    F. H. Seguin, N. Sinenian, M. Rosenberg, A. Zylstra, M. J.-E. Manuel et al., “Advances in compact proton spectrometers for inertial-confinement fusion and plasma nuclear science,” Rev. Sci. Instrum. 83, 10D908 (2012).10.1063/1.4732065 doi: 10.1063/1.4732065
    [20]
    F. H. Séguin, J. A. Frenje, C. K. Li, D. G. Hicks, S. Kurebayashi et al., “Spectrometry of charged particles from inertial-confinement-fusion plasmas,” Rev. Sci. Instrum. 74, 975 (2003).10.1063/1.1518141 doi: 10.1063/1.1518141
    [21]
    V. Yu. Glebov, C. J. Forrest, K. L. Marshall, M. Romanofsky, T. C. Sangster et al., “A new neutron time-of-flight detector for fuel-areal-density measurements on OMEGA,” Rev. Sci. Instrum. 85, 11E102 (2014).10.1063/1.4886428 doi: 10.1063/1.4886428
    [22]
    C. Stoeckl, R. Boni, F. Ehrne, C. J. Forrest, V. Yu. Glebov et al., “Neutron temporal diagnostic for high-yield deuterium–tritium cryogenic implosions on OMEGA,” Rev. Sci. Instrum. 87, 053501 (2016).10.1063/1.4948293 doi: 10.1063/1.4948293
    [23]
    H. Sio, J. A. Frenje, J. Katz, C. Stoeckl, D. Weiner et al., “A Particle X-ray Temporal Diagnostic (PXTD) for studies of kinetic, multi-ion effects, and ion-electron equilibration rates in Inertial Confinement Fusion plasmas at OMEGA (invited),” Rev. Sci. Instrum. 87, 11D701 (2016).10.1063/1.4961552 doi: 10.1063/1.4961552
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(3)  / Tables(1)

    Article Metrics

    Article views (111) PDF downloads(3) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return