Follow us on Wechat

用微信扫码二维码

分享至好友和朋友圈

Volume 4 Issue 5
Sep.  2019
Turn off MathJax
Article Contents
Linke Jochen, Du Juan, Loewenhoff Thorsten, Pintsuk Gerald, Spilker Benjamin, Steudel Isabel, Wirtz Marius. Challenges for plasma-facing components in nuclear fusion[J]. Matter and Radiation at Extremes, 2019, 4(5): 056201. doi: 10.1063/1.5090100
Citation: Linke Jochen, Du Juan, Loewenhoff Thorsten, Pintsuk Gerald, Spilker Benjamin, Steudel Isabel, Wirtz Marius. Challenges for plasma-facing components in nuclear fusion[J]. Matter and Radiation at Extremes, 2019, 4(5): 056201. doi: 10.1063/1.5090100

Challenges for plasma-facing components in nuclear fusion

doi: 10.1063/1.5090100
More Information
  • Corresponding author: a)Author to whom correspondence should be addressed: j.linke@outlook.com. Present address: Auf Vogelsang 48, 52066 Aachen, Germany.
  • Received Date: 2019-01-24
  • Accepted Date: 2019-06-06
  • Publish Date: 2019-09-15
  • The interaction processes between the burning plasma and the first wall in a fusion reactor are diverse: the first wall will be exposed to extreme thermal loads of up to several tens of megawatts per square meter during quasistationary operation, combined with repeated intense thermal shocks (with energy densities of up to several megajoules per square meter and pulse durations on a millisecond time scale). In addition to these thermal loads, the wall will be subjected to bombardment by plasma ions and neutral particles (D, T, and He) and by energetic neutrons with energies up to 14 MeV. Hopefully, ITER will not only demonstrate that thermonuclear fusion of deuterium and tritium is feasible in magnetic confinement regimes; it will also act as a first test device for plasma-facing materials (PFMs) and plasma-facing components (PFCs) under realistic synergistic loading scenarios that cover all the above-mentioned load types. In the absence of an integrated test device, material tests are being performed primarily in specialized facilities that concentrate only on the most essential material properties. New multipurpose test facilities are now available that can also focus on more complex loading scenarios and thus help to minimize the risk of an unexpected material or component failure. Thermonuclear fusion—both with magnetic and with inertial confinement—is making great progress, and the goal of scientific break-even will be reached soon. However, to achieve that end, significant technical problems, particularly in the field of high-temperature and radiation-resistant materials, must be solved. With ITER, the first nuclear reactor that burns a deuterium–tritium plasma with a fusion power gain Q ≥ 10 will start operation in the next decade. To guarantee safe operation of this rather sophisticated fusion device, new PFMs and PFCs that are qualified to withstand the harsh environments in such a tokamak reactor have been developed and are now entering the manufacturing stage.
  • loading
  • [1]
    Ch. Linsmeier et al., “Material testing facilities and programs for plasma facing component testing,” Nucl. Fusion 57, 092012 (2017).10.1088/1741-4326/aa4feb doi: 10.1088/1741-4326/aa4feb
    [2]
    [3]
    Y. Ueda et al., “Baseline high heat flux and plasma facing materials for fusion,” Nucl. Fusion 57, 092006 (2017).10.1088/1741-4326/aa6b60 doi: 10.1088/1741-4326/aa6b60
    [4]
    P. T. Lang et al., “ELM control strategies and tools: Status and potential for ITER,” Nucl. Fusion 53, 043004 (2013).10.1088/0029-5515/53/4/043004 doi: 10.1088/0029-5515/53/4/043004
    [5]
    A. Loarte et al., “Characteristics of type I ELM energy and particle losses in existing devices and their extrapolation to ITER,” Plasma Phys. Controlled Fusion 45, 1549 (2003).10.1088/0741-3335/45/9/302 doi: 10.1088/0741-3335/45/9/302
    [6]
    M. Merola et al., “Overview and status of ITER internal components,” Fusion Eng. Des. 89, 890 (2014).10.1016/j.fusengdes.2014.01.055 doi: 10.1016/j.fusengdes.2014.01.055
    [7]
    G. L. Kulcinski, “First wall protection schemes for inertial confinement fusion reactors,” J. Nucl. Mater. 85-86(1), 87–97 (1979).10.1016/0022-3115(79)90473-2 doi: 10.1016/0022-3115(79)90473-2
    [8]
    V. Barabash et al., “Armour materials for the ITER plasma facing components,” Phys. Scr. T81, 74 (1999).10.1238/physica.topical.081a00074 doi: 10.1238/physica.topical.081a00074
    [9]
    R. A. Pitts et al., “A full tungsten divertor for ITER: Physics issues and design status,” J. Nucl. Mater. 438, S48–S56 (2013).10.1016/j.jnucmat.2013.01.008 doi: 10.1016/j.jnucmat.2013.01.008
    [10]
    T. E. Evans, “ELM mitigation techniques,” J. Nucl. Mater. 438, S11–S18 (2013).10.1016/j.jnucmat.2013.01.283 doi: 10.1016/j.jnucmat.2013.01.283
    [11]
    T. Eich et al., “Empirical scaling of inter-ELM power widths in ASDEX upgrade and JET,” Nucl. Mater. 438, S72–S77 (2013).10.1016/j.jnucmat.2013.01.011 doi: 10.1016/j.jnucmat.2013.01.011
    [12]
    K. Wang et al., “Morphologies of tungsten nanotendrils grown under helium exposure,” Sci. Rep. 7, 42315 (2017).10.1038/srep42315 doi: 10.1038/srep42315
    [13]
    [14]
    M. R. Gilbert, J.-Ch. Sublet, and S. L. Dudarev, “Spatial heterogeneity of tungsten transmutation in a fusion device,” Nucl. Fusion 57(4), 044002 (2017).10.1088/1741-4326/aa5e2e doi: 10.1088/1741-4326/aa5e2e
    [15]
    [16]
    M. Rieth, R. Doerner, A. Hasegawa, Y. Ueda, and M. Wirtz, “Behaviour of tungsten under irradiation and plasma interaction,” J. Nucl. Mater. 519, 334–368 (2019).10.1016/j.jnucmat.2019.03.035 doi: 10.1016/j.jnucmat.2019.03.035
    [17]
    G. Pintsuk, I. Bobin-Vastra, S. Constans, P. Gavila, M. Rödig, and B. Riccardi, “Qualification and post-mortem characterization of tungsten mock-ups exposed to cyclic high heat flux loading,” Fusion Eng. Des. 88, 1858–1861 (2013).10.1016/j.fusengdes.2013.05.091 doi: 10.1016/j.fusengdes.2013.05.091
    [18]
    R. A. Pitts et al., J. Nucl. Mater. 415(1), S957–S964 (2011).10.1016/j.jnucmat.2010.10.070 doi: 10.1016/j.jnucmat.2010.10.070
    [19]
    Th. Loewenhoff et al., “Impact of combined transient plasma/heat loads on tungsten performance below and above recrystallization temperature,” Nucl. Fusion 55, 123004 (2015).10.1088/0029-5515/55/12/123004 doi: 10.1088/0029-5515/55/12/123004
    [20]
    J. P. Gunn et al., “Surface heat loads on the ITER divertor vertical targets,” Nucl. Fusion 57, 046025 (2017).10.1088/1741-4326/aa5e2a doi: 10.1088/1741-4326/aa5e2a
    [21]
    J. Schlosser et al., “Technologies for ITER divertor vertical target plasma facing components,” Nucl. Fusion 45(6), 512–518 (2005).10.1088/0029-5515/45/6/013 doi: 10.1088/0029-5515/45/6/013
    [22]
    E. Visca et al., “Hot radial pressing: An alternative technique for the manufacturing of plasma-facing components,” Fusion Eng. Des. 75, 485–489 (2005).10.1016/j.fusengdes.2005.06.123 doi: 10.1016/j.fusengdes.2005.06.123
    [23]
    A. Herrmann et al., “Experiences with a solid tungsten divertor in ASDEX upgrade,” Nucl. Mater. Energy 12, 205–209 (2017).10.1016/j.nme.2017.03.001 doi: 10.1016/j.nme.2017.03.001
    [24]
    C. Thomser et al., “Plasma facing materials for the JET ITER-like wall,” Fusion Sci. Technol. 62(1), 1–8 (2012).10.13182/fst12-a14103 doi: 10.13182/fst12-a14103
    [25]
    T. Hirai et al., “Use of tungsten material for the ITER divertor,” Nucl. Mater. Energy 9, 616–622 (2016).10.1016/j.nme.2016.07.003 doi: 10.1016/j.nme.2016.07.003
    [26]
    A. R. Raffray et al., Nucl. Fusion 54, 033004 (2014).10.1088/0029-5515/54/3/033004 doi: 10.1088/0029-5515/54/3/033004
    [27]
    M. Wirtz, I. Uytdenhouwen, V. Barabash, F. Escourbiac, T. Hirai, J. Linke, Th. Loewenhoff, S. Panayotis, and G. Pintsuk, “Material properties and their influence on the behaviour of tungsten as plasma facing material,” Nucl. Fusion 57, 066018 (2017).10.1088/1741-4326/aa6938 doi: 10.1088/1741-4326/aa6938
    [28]
    Z. Zhou, Y. Ma, J. Du, and J. Linke, “Fabrication and characterization of ultra-fine-grained tungsten by resistance sintering under ultra-high pressure,” Mater. Sci. Eng., A 505, 131–135 (2009).10.1016/j.msea.2008.11.012 doi: 10.1016/j.msea.2008.11.012
    [29]
    Ch. Linsmeier et al., “Development of advanced high heat flux and plasma-facing materials,” Nucl. Fusion 57, 092007 (2017).10.1088/1741-4326/aa6f71 doi: 10.1088/1741-4326/aa6f71
    [30]
    J. W. Coenen et al., “Materials for DEMO and reactor applications—Boundary conditions and new concepts,” Phys. Scr. T167, 014002 (2016).10.1088/0031-8949/2016/t167/014002 doi: 10.1088/0031-8949/2016/t167/014002
    [31]
    G. De Temmerman, T. Hirai, and R. A. Pitts, “The influence of plasma-surface interaction on the performance of tungsten at the ITER divertor vertical targets,” Plasma Phys. Controlled Fusion 60, 044018 (2018).10.1088/1361-6587/aaaf62 doi: 10.1088/1361-6587/aaaf62
    [32]
    G. De Temmerman, “High heat flux capabilities of the magnum-PSI linear plasma device,” Fusion Eng. Des. 88, 483–487 (2013).10.1016/j.fusengdes.2013.05.047 doi: 10.1016/j.fusengdes.2013.05.047
    [33]
    J. H. Yu, G. De Temmerman, R. P. Doerner, and M. A. van den Berg, “Study of temporal pulse shape effects on W using simulations and laser heating,” Phys. Scr. T167, 014033 (2016).10.1088/0031-8949/t167/1/014033 doi: 10.1088/0031-8949/t167/1/014033
    [34]
    J. Ahlf et al., “The HFR Petten as a test bed for fusion materials and components,” J. Nucl. Mater. 212-215(B), 1635–1639 (1994).10.1016/0022-3115(94)91104-5 doi: 10.1016/0022-3115(94)91104-5
    [35]
    T. Hirai et al., “ITER relevant high heat flux testing on plasma facing surfaces,” Mater. Trans. 46(3), 412–424 (2005).10.2320/matertrans.46.412 doi: 10.2320/matertrans.46.412
    [36]
    R. Duwe et al., Fusion Technol. 1994 1995, 355–358 (1995).10.1016/B978-0-444-82220-8.50057-1 doi: 10.1016/B978-0-444-82220-8.50057-1
    [37]
    A. Schmidt et al., Fusion Eng. Des. 83(7-9), 1108–1113 (2008).10.1016/j.fusengdes.2008.08.017 doi: 10.1016/j.fusengdes.2008.08.017
    [38]
    P. Majerus et al., Fusion Eng. Des. 75-79, 365–369 (2005).10.1016/j.fusengdes.2005.06.058 doi: 10.1016/j.fusengdes.2005.06.058
    [39]
    G. Pintsuk, “Tungsten as a plasma-facing material,” Compr. Nucl. Mater. 4, 551–581 (2012). Reference Module in Materials Science and Materials Engineering.10.1016/b978-0-08-056033-5.00118-x doi: 10.1016/b978-0-08-056033-5.00118-x
    [40]
    A. Zhitlukhin et al., “Effect of ELMS on ITER armour materials,” J. Nucl. Mater. 363-365, 301–307 (2007).10.1016/j.jnucmat.2007.01.027 doi: 10.1016/j.jnucmat.2007.01.027
    [41]
    [42]
    H. Greuner et al., “Surface morphology changes of tungsten exposed to high heat loading with mixed hydrogen/helium beams,” J. Nucl. Mater. 455, 681 (2014).10.1016/j.jnucmat.2014.08.019 doi: 10.1016/j.jnucmat.2014.08.019
    [43]
    M. Wirtz, J. Linke, Th. Loewenhoff, G. Pintsuk, and I. Uytdenhouwen, “Thermal shock tests to qualify different tungsten grades as plasma facing material,” Phys. Scr. T167, 014015 (2016).10.1088/0031-8949/t167/1/014015 doi: 10.1088/0031-8949/t167/1/014015
    [44]
    M. Wirtz et al., “Transient heat load challenges for plasma-facing materials during long-term operation,” Nucl. Mater. Energy 12, 148–155 (2017).10.1016/j.nme.2016.12.024 doi: 10.1016/j.nme.2016.12.024
    [45]
    J. Linke et al., “Performance of different tungsten grades under transient thermal loads,” Nucl. Fusion 51, 073017 (2011).10.1088/0029-5515/51/7/073017 doi: 10.1088/0029-5515/51/7/073017
    [46]
    Th. Loewenhoff et al., Phys. Scr. T145, 014057 (2011).10.1088/0031-8949/2011/t145/014057 doi: 10.1088/0031-8949/2011/t145/014057
    [47]
    Th. Loewenhoff et al., Fusion Eng. Des. 87, 1201–1205 (2012).10.1016/j.fusengdes.2012.02.106 doi: 10.1016/j.fusengdes.2012.02.106
    [48]
    K. Wittlich et al., “Damage structure in divertor armor materials exposed to multiple ITER relevant ELM loads,” Fusion Eng. Des. 84, 1982–1986 (2009).10.1016/j.fusengdes.2008.11.049 doi: 10.1016/j.fusengdes.2008.11.049
    [49]
    J. Compan, T. Renk, T. Hirai, and J. Linke, “Reduction of preferential erosion of carbon fibre composites under intense transient heat pulses,” Phys. Scr. T128, 246–249 (2007).10.1088/0031-8949/2007/t128/048 doi: 10.1088/0031-8949/2007/t128/048
    [50]
    J. Linke, “Plasma facing materials and components for future fusion devices-development, characterization and performance under fusion specific loading conditions,” Phys. Scr. T123, 45–53 (2006).10.1088/0031-8949/2006/t123/006 doi: 10.1088/0031-8949/2006/t123/006
    [51]
    J. Linke, “High heat flux performance of plasma facing materials and components under service conditions in future fusion reactors,” Trans. Fusion Sci. Technol. 53, 278–287 (2008).10.13182/fst06-a1144 doi: 10.13182/fst06-a1144
    [52]
    M. Roedig et al., J. Nucl. Mater. 417, 761–764 (2011).10.1016/j.jnucmat.2010.12.139 doi: 10.1016/j.jnucmat.2010.12.139
    [53]
    G. Pintsuk, W. Kühnlein, J. Linke, and M. Rödig, “Investigation of tungsten and beryllium behaviour under short transient events,” Fusion Eng. Des. 82, 1720–1729 (2007).10.1016/j.fusengdes.2007.06.030 doi: 10.1016/j.fusengdes.2007.06.030
    [54]
    B. Spilker et al., Nucl. Mater. Energy 9, 145–152 (2016).10.1016/j.nme.2016.06.006 doi: 10.1016/j.nme.2016.06.006
    [55]
    B. Spilker et al., “Experimental study of ELM-like heat loading on beryllium under ITER operational conditions,” Phys. Scr. T167, 014024 (2016).10.1088/0031-8949/t167/1/014024 doi: 10.1088/0031-8949/t167/1/014024
    [56]
    B. Spilker et al., “High pulse number transient heat loads on beryllium,” Nucl. Mater. Energy 12, 1184–1188 (2017).10.1016/j.nme.2016.11.032 doi: 10.1016/j.nme.2016.11.032
    [57]
    B. Spilker et al., “Performance estimation of beryllium under ITER relevant transient thermal loads,” Nucl. Mater. Energy 18, 291–296 (2019).10.1016/j.nme.2018.12.026 doi: 10.1016/j.nme.2018.12.026
    [58]
    A. Hassanein and I. Konkashbaev, “Lifetime evaluation of plasma-facing materials during a tokamak disruption,” J. Nucl. Mater. 233-237, 713–717 (1996).10.1016/s0022-3115(96)00213-9 doi: 10.1016/s0022-3115(96)00213-9
    [59]
    I. S. Landman, S. E. Pestchanyi, Y. Igitkhanov, and R. Pitts, “Two-dimensional modeling of disruption mitigation by gas injection,” Fusion Eng. Des. 86(9-11), 1616–1619 (2011).10.1016/j.fusengdes.2010.12.017 doi: 10.1016/j.fusengdes.2010.12.017
    [60]
    E. Martin, G. Camus, J. Schlosser, and G. Chevet, “Damage modelling in plasma facing components,” J. Nucl. Mater. 386-388, 747–750 (2009).10.1016/j.jnucmat.2008.12.208 doi: 10.1016/j.jnucmat.2008.12.208
    [61]
    S. J. Zinkle and J. T. Busby, “Structural materials for fission & fusion energy,” Mater. Today 12(11), 12–19 (2009).10.1016/s1369-7021(09)70294-9 doi: 10.1016/s1369-7021(09)70294-9
    [62]
    R. P. Doerner, M. J. Baldwin, T. C. Lynch, and J. H. Yu, “Retention in tungsten resulting from extremely high fluence plasma exposure,” Nucl. Mater. Energy 9, 89–92 (2016).10.1016/j.nme.2016.04.008 doi: 10.1016/j.nme.2016.04.008
    [63]
    M. Wirtz, A. Kreter, J. Linke, Th. Loewenhoff, G. Pintsuk, G. Sergienko, I. Steudel, B. Unterberg, and E. Wessel, “High pulse number thermal shock tests on tungsten with steady state particle background,” Phys. Scr. T170, 014066 (2017).10.1088/1402–4896/aa909e doi: 10.1088/1402–4896/aa909e
    [64]
    G. De Temmerman, T. W. Morgan, G. G. van Eden, T. de Kruif, M. Wirtz, J. Matejicek, T. Chraska, R. A. Pitts, and G. M. Wright, “Effect of high-flux H/He plasma exposure on tungsten damage due to transient heat loads,” J. Nucl. Mater. 463, 198–201 (2015).10.1016/j.jnucmat.2014.09.075 doi: 10.1016/j.jnucmat.2014.09.075
    [65]
    A. Kreter et al., “Linear plasma device PSI-2 for plasma-material interaction studies,” Fusion Sci. Technol. 68, 8–14 (2015).10.13182/fst14-906 doi: 10.13182/fst14-906
    [66]
    M. Wirtz et al., Nucl. Mater. Energy 9, 177–180 (2016).10.1016/j.nme.2016.07.002 doi: 10.1016/j.nme.2016.07.002
    [67]
    A. Huber et al., “Investigation of the impact of transient heat loads applied by laser irradiation on ITER-grade tungsten,” Phys. Scr. T159, 014005 (2014).10.1088/0031-8949/2014/t159/014005 doi: 10.1088/0031-8949/2014/t159/014005
    [68]
    G. Federici et al., “Overview of the design approach and prioritization of R&D activities towards an EU DEMO,” Fusion Eng. Des. 109-111, 1464–1474 (2016).10.1016/j.fusengdes.2015.11.050 doi: 10.1016/j.fusengdes.2015.11.050
    [69]
    G. Pintsuk et al., “High heat flux testing of first wall mock-ups with and without neutron irradiation,” Nucl. Mater. Energy 9, 41–45 (2016).10.1016/j.nme.2016.02.003 doi: 10.1016/j.nme.2016.02.003
    [70]
    T. Tanabe, “Radiation damage of graphite - degradation of material parameters and defect structures,” Phys. Scr. T64, 7–16 (1996).10.1088/0031-8949/1996/t64/001 doi: 10.1088/0031-8949/1996/t64/001
    [71]
    J. Linke, P. Lorenzetto, P. Majerus, M. Merola, D. Pitzer, and M. Rödig, “EU development of high heat flux components,” Fusion Sci. Technol. 47(3), 678 (2005).10.13182/FST05-A764 doi: 10.13182/FST05-A764
    [72]
    J. Linke, T. Hirai, M. Rödig, and L. A. Singheiser, “Performance of plasma-facing materials under intense thermal loads in tokamaks and stellarators,” Fusion Sci. Technol. 46(1), 142–151 (2004).10.13182/fst04-a550 doi: 10.13182/fst04-a550
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(21)  / Tables(1)

    Article Metrics

    Article views (685) PDF downloads(54) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return