Citation: | Linke Jochen, Du Juan, Loewenhoff Thorsten, Pintsuk Gerald, Spilker Benjamin, Steudel Isabel, Wirtz Marius. Challenges for plasma-facing components in nuclear fusion[J]. Matter and Radiation at Extremes, 2019, 4(5): 056201. doi: 10.1063/1.5090100 |
[1] |
Ch. Linsmeier et al., “Material testing facilities and programs for plasma facing component testing,” Nucl. Fusion 57, 092012 (2017).10.1088/1741-4326/aa4feb doi: 10.1088/1741-4326/aa4feb
|
[2] | |
[3] |
Y. Ueda et al., “Baseline high heat flux and plasma facing materials for fusion,” Nucl. Fusion 57, 092006 (2017).10.1088/1741-4326/aa6b60 doi: 10.1088/1741-4326/aa6b60
|
[4] |
P. T. Lang et al., “ELM control strategies and tools: Status and potential for ITER,” Nucl. Fusion 53, 043004 (2013).10.1088/0029-5515/53/4/043004 doi: 10.1088/0029-5515/53/4/043004
|
[5] |
A. Loarte et al., “Characteristics of type I ELM energy and particle losses in existing devices and their extrapolation to ITER,” Plasma Phys. Controlled Fusion 45, 1549 (2003).10.1088/0741-3335/45/9/302 doi: 10.1088/0741-3335/45/9/302
|
[6] |
M. Merola et al., “Overview and status of ITER internal components,” Fusion Eng. Des. 89, 890 (2014).10.1016/j.fusengdes.2014.01.055 doi: 10.1016/j.fusengdes.2014.01.055
|
[7] |
G. L. Kulcinski, “First wall protection schemes for inertial confinement fusion reactors,” J. Nucl. Mater. 85-86(1), 87–97 (1979).10.1016/0022-3115(79)90473-2 doi: 10.1016/0022-3115(79)90473-2
|
[8] |
V. Barabash et al., “Armour materials for the ITER plasma facing components,” Phys. Scr. T81, 74 (1999).10.1238/physica.topical.081a00074 doi: 10.1238/physica.topical.081a00074
|
[9] |
R. A. Pitts et al., “A full tungsten divertor for ITER: Physics issues and design status,” J. Nucl. Mater. 438, S48–S56 (2013).10.1016/j.jnucmat.2013.01.008 doi: 10.1016/j.jnucmat.2013.01.008
|
[10] |
T. E. Evans, “ELM mitigation techniques,” J. Nucl. Mater. 438, S11–S18 (2013).10.1016/j.jnucmat.2013.01.283 doi: 10.1016/j.jnucmat.2013.01.283
|
[11] |
T. Eich et al., “Empirical scaling of inter-ELM power widths in ASDEX upgrade and JET,” Nucl. Mater. 438, S72–S77 (2013).10.1016/j.jnucmat.2013.01.011 doi: 10.1016/j.jnucmat.2013.01.011
|
[12] |
K. Wang et al., “Morphologies of tungsten nanotendrils grown under helium exposure,” Sci. Rep. 7, 42315 (2017).10.1038/srep42315 doi: 10.1038/srep42315
|
[13] | |
[14] |
M. R. Gilbert, J.-Ch. Sublet, and S. L. Dudarev, “Spatial heterogeneity of tungsten transmutation in a fusion device,” Nucl. Fusion 57(4), 044002 (2017).10.1088/1741-4326/aa5e2e doi: 10.1088/1741-4326/aa5e2e
|
[15] | |
[16] |
M. Rieth, R. Doerner, A. Hasegawa, Y. Ueda, and M. Wirtz, “Behaviour of tungsten under irradiation and plasma interaction,” J. Nucl. Mater. 519, 334–368 (2019).10.1016/j.jnucmat.2019.03.035 doi: 10.1016/j.jnucmat.2019.03.035
|
[17] |
G. Pintsuk, I. Bobin-Vastra, S. Constans, P. Gavila, M. Rödig, and B. Riccardi, “Qualification and post-mortem characterization of tungsten mock-ups exposed to cyclic high heat flux loading,” Fusion Eng. Des. 88, 1858–1861 (2013).10.1016/j.fusengdes.2013.05.091 doi: 10.1016/j.fusengdes.2013.05.091
|
[18] |
R. A. Pitts et al., J. Nucl. Mater. 415(1), S957–S964 (2011).10.1016/j.jnucmat.2010.10.070 doi: 10.1016/j.jnucmat.2010.10.070
|
[19] |
Th. Loewenhoff et al., “Impact of combined transient plasma/heat loads on tungsten performance below and above recrystallization temperature,” Nucl. Fusion 55, 123004 (2015).10.1088/0029-5515/55/12/123004 doi: 10.1088/0029-5515/55/12/123004
|
[20] |
J. P. Gunn et al., “Surface heat loads on the ITER divertor vertical targets,” Nucl. Fusion 57, 046025 (2017).10.1088/1741-4326/aa5e2a doi: 10.1088/1741-4326/aa5e2a
|
[21] |
J. Schlosser et al., “Technologies for ITER divertor vertical target plasma facing components,” Nucl. Fusion 45(6), 512–518 (2005).10.1088/0029-5515/45/6/013 doi: 10.1088/0029-5515/45/6/013
|
[22] |
E. Visca et al., “Hot radial pressing: An alternative technique for the manufacturing of plasma-facing components,” Fusion Eng. Des. 75, 485–489 (2005).10.1016/j.fusengdes.2005.06.123 doi: 10.1016/j.fusengdes.2005.06.123
|
[23] |
A. Herrmann et al., “Experiences with a solid tungsten divertor in ASDEX upgrade,” Nucl. Mater. Energy 12, 205–209 (2017).10.1016/j.nme.2017.03.001 doi: 10.1016/j.nme.2017.03.001
|
[24] |
C. Thomser et al., “Plasma facing materials for the JET ITER-like wall,” Fusion Sci. Technol. 62(1), 1–8 (2012).10.13182/fst12-a14103 doi: 10.13182/fst12-a14103
|
[25] |
T. Hirai et al., “Use of tungsten material for the ITER divertor,” Nucl. Mater. Energy 9, 616–622 (2016).10.1016/j.nme.2016.07.003 doi: 10.1016/j.nme.2016.07.003
|
[26] |
A. R. Raffray et al., Nucl. Fusion 54, 033004 (2014).10.1088/0029-5515/54/3/033004 doi: 10.1088/0029-5515/54/3/033004
|
[27] |
M. Wirtz, I. Uytdenhouwen, V. Barabash, F. Escourbiac, T. Hirai, J. Linke, Th. Loewenhoff, S. Panayotis, and G. Pintsuk, “Material properties and their influence on the behaviour of tungsten as plasma facing material,” Nucl. Fusion 57, 066018 (2017).10.1088/1741-4326/aa6938 doi: 10.1088/1741-4326/aa6938
|
[28] |
Z. Zhou, Y. Ma, J. Du, and J. Linke, “Fabrication and characterization of ultra-fine-grained tungsten by resistance sintering under ultra-high pressure,” Mater. Sci. Eng., A 505, 131–135 (2009).10.1016/j.msea.2008.11.012 doi: 10.1016/j.msea.2008.11.012
|
[29] |
Ch. Linsmeier et al., “Development of advanced high heat flux and plasma-facing materials,” Nucl. Fusion 57, 092007 (2017).10.1088/1741-4326/aa6f71 doi: 10.1088/1741-4326/aa6f71
|
[30] |
J. W. Coenen et al., “Materials for DEMO and reactor applications—Boundary conditions and new concepts,” Phys. Scr. T167, 014002 (2016).10.1088/0031-8949/2016/t167/014002 doi: 10.1088/0031-8949/2016/t167/014002
|
[31] |
G. De Temmerman, T. Hirai, and R. A. Pitts, “The influence of plasma-surface interaction on the performance of tungsten at the ITER divertor vertical targets,” Plasma Phys. Controlled Fusion 60, 044018 (2018).10.1088/1361-6587/aaaf62 doi: 10.1088/1361-6587/aaaf62
|
[32] |
G. De Temmerman, “High heat flux capabilities of the magnum-PSI linear plasma device,” Fusion Eng. Des. 88, 483–487 (2013).10.1016/j.fusengdes.2013.05.047 doi: 10.1016/j.fusengdes.2013.05.047
|
[33] |
J. H. Yu, G. De Temmerman, R. P. Doerner, and M. A. van den Berg, “Study of temporal pulse shape effects on W using simulations and laser heating,” Phys. Scr. T167, 014033 (2016).10.1088/0031-8949/t167/1/014033 doi: 10.1088/0031-8949/t167/1/014033
|
[34] |
J. Ahlf et al., “The HFR Petten as a test bed for fusion materials and components,” J. Nucl. Mater. 212-215(B), 1635–1639 (1994).10.1016/0022-3115(94)91104-5 doi: 10.1016/0022-3115(94)91104-5
|
[35] |
T. Hirai et al., “ITER relevant high heat flux testing on plasma facing surfaces,” Mater. Trans. 46(3), 412–424 (2005).10.2320/matertrans.46.412 doi: 10.2320/matertrans.46.412
|
[36] |
R. Duwe et al., Fusion Technol. 1994 1995, 355–358 (1995).10.1016/B978-0-444-82220-8.50057-1 doi: 10.1016/B978-0-444-82220-8.50057-1
|
[37] |
A. Schmidt et al., Fusion Eng. Des. 83(7-9), 1108–1113 (2008).10.1016/j.fusengdes.2008.08.017 doi: 10.1016/j.fusengdes.2008.08.017
|
[38] |
P. Majerus et al., Fusion Eng. Des. 75-79, 365–369 (2005).10.1016/j.fusengdes.2005.06.058 doi: 10.1016/j.fusengdes.2005.06.058
|
[39] |
G. Pintsuk, “Tungsten as a plasma-facing material,” Compr. Nucl. Mater. 4, 551–581 (2012). Reference Module in Materials Science and Materials Engineering.10.1016/b978-0-08-056033-5.00118-x doi: 10.1016/b978-0-08-056033-5.00118-x
|
[40] |
A. Zhitlukhin et al., “Effect of ELMS on ITER armour materials,” J. Nucl. Mater. 363-365, 301–307 (2007).10.1016/j.jnucmat.2007.01.027 doi: 10.1016/j.jnucmat.2007.01.027
|
[41] | |
[42] |
H. Greuner et al., “Surface morphology changes of tungsten exposed to high heat loading with mixed hydrogen/helium beams,” J. Nucl. Mater. 455, 681 (2014).10.1016/j.jnucmat.2014.08.019 doi: 10.1016/j.jnucmat.2014.08.019
|
[43] |
M. Wirtz, J. Linke, Th. Loewenhoff, G. Pintsuk, and I. Uytdenhouwen, “Thermal shock tests to qualify different tungsten grades as plasma facing material,” Phys. Scr. T167, 014015 (2016).10.1088/0031-8949/t167/1/014015 doi: 10.1088/0031-8949/t167/1/014015
|
[44] |
M. Wirtz et al., “Transient heat load challenges for plasma-facing materials during long-term operation,” Nucl. Mater. Energy 12, 148–155 (2017).10.1016/j.nme.2016.12.024 doi: 10.1016/j.nme.2016.12.024
|
[45] |
J. Linke et al., “Performance of different tungsten grades under transient thermal loads,” Nucl. Fusion 51, 073017 (2011).10.1088/0029-5515/51/7/073017 doi: 10.1088/0029-5515/51/7/073017
|
[46] |
Th. Loewenhoff et al., Phys. Scr. T145, 014057 (2011).10.1088/0031-8949/2011/t145/014057 doi: 10.1088/0031-8949/2011/t145/014057
|
[47] |
Th. Loewenhoff et al., Fusion Eng. Des. 87, 1201–1205 (2012).10.1016/j.fusengdes.2012.02.106 doi: 10.1016/j.fusengdes.2012.02.106
|
[48] |
K. Wittlich et al., “Damage structure in divertor armor materials exposed to multiple ITER relevant ELM loads,” Fusion Eng. Des. 84, 1982–1986 (2009).10.1016/j.fusengdes.2008.11.049 doi: 10.1016/j.fusengdes.2008.11.049
|
[49] |
J. Compan, T. Renk, T. Hirai, and J. Linke, “Reduction of preferential erosion of carbon fibre composites under intense transient heat pulses,” Phys. Scr. T128, 246–249 (2007).10.1088/0031-8949/2007/t128/048 doi: 10.1088/0031-8949/2007/t128/048
|
[50] |
J. Linke, “Plasma facing materials and components for future fusion devices-development, characterization and performance under fusion specific loading conditions,” Phys. Scr. T123, 45–53 (2006).10.1088/0031-8949/2006/t123/006 doi: 10.1088/0031-8949/2006/t123/006
|
[51] |
J. Linke, “High heat flux performance of plasma facing materials and components under service conditions in future fusion reactors,” Trans. Fusion Sci. Technol. 53, 278–287 (2008).10.13182/fst06-a1144 doi: 10.13182/fst06-a1144
|
[52] |
M. Roedig et al., J. Nucl. Mater. 417, 761–764 (2011).10.1016/j.jnucmat.2010.12.139 doi: 10.1016/j.jnucmat.2010.12.139
|
[53] |
G. Pintsuk, W. Kühnlein, J. Linke, and M. Rödig, “Investigation of tungsten and beryllium behaviour under short transient events,” Fusion Eng. Des. 82, 1720–1729 (2007).10.1016/j.fusengdes.2007.06.030 doi: 10.1016/j.fusengdes.2007.06.030
|
[54] |
B. Spilker et al., Nucl. Mater. Energy 9, 145–152 (2016).10.1016/j.nme.2016.06.006 doi: 10.1016/j.nme.2016.06.006
|
[55] |
B. Spilker et al., “Experimental study of ELM-like heat loading on beryllium under ITER operational conditions,” Phys. Scr. T167, 014024 (2016).10.1088/0031-8949/t167/1/014024 doi: 10.1088/0031-8949/t167/1/014024
|
[56] |
B. Spilker et al., “High pulse number transient heat loads on beryllium,” Nucl. Mater. Energy 12, 1184–1188 (2017).10.1016/j.nme.2016.11.032 doi: 10.1016/j.nme.2016.11.032
|
[57] |
B. Spilker et al., “Performance estimation of beryllium under ITER relevant transient thermal loads,” Nucl. Mater. Energy 18, 291–296 (2019).10.1016/j.nme.2018.12.026 doi: 10.1016/j.nme.2018.12.026
|
[58] |
A. Hassanein and I. Konkashbaev, “Lifetime evaluation of plasma-facing materials during a tokamak disruption,” J. Nucl. Mater. 233-237, 713–717 (1996).10.1016/s0022-3115(96)00213-9 doi: 10.1016/s0022-3115(96)00213-9
|
[59] |
I. S. Landman, S. E. Pestchanyi, Y. Igitkhanov, and R. Pitts, “Two-dimensional modeling of disruption mitigation by gas injection,” Fusion Eng. Des. 86(9-11), 1616–1619 (2011).10.1016/j.fusengdes.2010.12.017 doi: 10.1016/j.fusengdes.2010.12.017
|
[60] |
E. Martin, G. Camus, J. Schlosser, and G. Chevet, “Damage modelling in plasma facing components,” J. Nucl. Mater. 386-388, 747–750 (2009).10.1016/j.jnucmat.2008.12.208 doi: 10.1016/j.jnucmat.2008.12.208
|
[61] |
S. J. Zinkle and J. T. Busby, “Structural materials for fission & fusion energy,” Mater. Today 12(11), 12–19 (2009).10.1016/s1369-7021(09)70294-9 doi: 10.1016/s1369-7021(09)70294-9
|
[62] |
R. P. Doerner, M. J. Baldwin, T. C. Lynch, and J. H. Yu, “Retention in tungsten resulting from extremely high fluence plasma exposure,” Nucl. Mater. Energy 9, 89–92 (2016).10.1016/j.nme.2016.04.008 doi: 10.1016/j.nme.2016.04.008
|
[63] |
M. Wirtz, A. Kreter, J. Linke, Th. Loewenhoff, G. Pintsuk, G. Sergienko, I. Steudel, B. Unterberg, and E. Wessel, “High pulse number thermal shock tests on tungsten with steady state particle background,” Phys. Scr. T170, 014066 (2017).10.1088/1402–4896/aa909e doi: 10.1088/1402–4896/aa909e
|
[64] |
G. De Temmerman, T. W. Morgan, G. G. van Eden, T. de Kruif, M. Wirtz, J. Matejicek, T. Chraska, R. A. Pitts, and G. M. Wright, “Effect of high-flux H/He plasma exposure on tungsten damage due to transient heat loads,” J. Nucl. Mater. 463, 198–201 (2015).10.1016/j.jnucmat.2014.09.075 doi: 10.1016/j.jnucmat.2014.09.075
|
[65] |
A. Kreter et al., “Linear plasma device PSI-2 for plasma-material interaction studies,” Fusion Sci. Technol. 68, 8–14 (2015).10.13182/fst14-906 doi: 10.13182/fst14-906
|
[66] |
M. Wirtz et al., Nucl. Mater. Energy 9, 177–180 (2016).10.1016/j.nme.2016.07.002 doi: 10.1016/j.nme.2016.07.002
|
[67] |
A. Huber et al., “Investigation of the impact of transient heat loads applied by laser irradiation on ITER-grade tungsten,” Phys. Scr. T159, 014005 (2014).10.1088/0031-8949/2014/t159/014005 doi: 10.1088/0031-8949/2014/t159/014005
|
[68] |
G. Federici et al., “Overview of the design approach and prioritization of R&D activities towards an EU DEMO,” Fusion Eng. Des. 109-111, 1464–1474 (2016).10.1016/j.fusengdes.2015.11.050 doi: 10.1016/j.fusengdes.2015.11.050
|
[69] |
G. Pintsuk et al., “High heat flux testing of first wall mock-ups with and without neutron irradiation,” Nucl. Mater. Energy 9, 41–45 (2016).10.1016/j.nme.2016.02.003 doi: 10.1016/j.nme.2016.02.003
|
[70] |
T. Tanabe, “Radiation damage of graphite - degradation of material parameters and defect structures,” Phys. Scr. T64, 7–16 (1996).10.1088/0031-8949/1996/t64/001 doi: 10.1088/0031-8949/1996/t64/001
|
[71] |
J. Linke, P. Lorenzetto, P. Majerus, M. Merola, D. Pitzer, and M. Rödig, “EU development of high heat flux components,” Fusion Sci. Technol. 47(3), 678 (2005).10.13182/FST05-A764 doi: 10.13182/FST05-A764
|
[72] |
J. Linke, T. Hirai, M. Rödig, and L. A. Singheiser, “Performance of plasma-facing materials under intense thermal loads in tokamaks and stellarators,” Fusion Sci. Technol. 46(1), 142–151 (2004).10.13182/fst04-a550 doi: 10.13182/fst04-a550
|